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Rotor Eddy-Current Loss in Permanent-Magnet Brushless AC Machines

Jiabin Wang�, K. Atallah�, R. Chin�, W. M. Arshad�, and H. Lendenmann�

Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.

ABB Corporate Research, Västerås SE-721 78, Sweden

This paper analyzes rotor eddy-current loss in permanent-magnet brushless ac machines. It is shown that analytical or finite-element
techniques published in literature for predicting rotor eddy-current loss using space harmonic based approaches may not yield correct
results in each magnet segment when one magnet-pole is circumferentially segmented into more than two pieces. It is also shown that
the eddy-current loss in each equally segmented piece may differ by a large margin, which implies that the temperature distribution
in the magnets will be uneven and the risk of demagnetization has to be carefully assessed. The theoretical derivation is validated by
time-stepped transient finite-element analysis.

Index Terms—Eddy-current loss, permanent-magnet brushless machines.

I. INTRODUCTION

P
ERMANENT-MAGNET (PM) brushless machines have

been increasingly used in a variety of applications ranging

from high speed manufacturing [1], electric and hybrid vehicle

traction [2], [3] to wind power generation [4], [5]. To improve

torque density and reduce torque ripple, a new class of PM ma-

chines are emerging in which stator coils are wound on con-

secutive or alternate teeth with a fraction number of tooth per

pole [3], [6]. While this winding configuration known as mod-

ular is conducive to high efficiency and high torque density, it

results in the fundamental magnetomotive force (MMF) having

fewer poles than the PM rotor, the torque being developed by the

interaction of a higher order stator space harmonic MMF with

the field of the permanent magnets. The lower and higher order

space harmonics rotating at different speeds to that of the rotor

magnets can induce significant eddy currents in the magnets and

incur loss [6].

Analytical methods for predicting rotor eddy-current loss

in PM brushless machines have been developed in [6]–[10].

They are based on the assumption that the magnets are sur-

face-mounted and the eddy currents are resistance limited,

i.e., the relatively high resistivity and low permeability of

permanent magnets will limit the amplitude of induced eddy

currents and the reaction field produced by the eddy currents

is negligible, or the skin depth of the eddy-current distribution

is much greater than both the radial thickness and pole arc of

the magnets. By formulating the eddy-current problem in the

polar coordinate system, the developed methods are applicable

to both internal and external rotor machines [6]–[8], [10] and

can take into account the effect of circumferential segmenta-

tion of magnets and time harmonics in stator currents on the
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eddy-current losses. The methods have been further extended

to linear PM machines [9].

However, for high frequency harmonics or when a metallic

retaining sleeve with high electric conductivity is used, the skin

depth becomes small and the resistance limited assumption may

not be valid. Analytical solutions for rotor eddy-current distribu-

tion can also be established by solving the diffusion equation in

the polar or Cartesian coordinate systems [11]–[16]. The results

are much more complex and as such, the effect of circumferen-

tial segmentation of magnets on eddy-current loss has not been

considered, or they are only applicable to the rotor topologies in

which magnets in each pole are not segmented.

Rotor eddy-current loss can also be predicted by time-stepped

transient finite-element (FE) analysis [17]–[19]. To save compu-

tation time, harmonic based approaches may also be employed

[20], [21] in which eddy-current loss against each rotating space

harmonics is calculated as a steady-state ac problem. The total

loss is the sum of the losses associated with each harmonic.

In all the analytical or harmonic based FE predictions, the

rotor eddy-current distribution is solved for each rotating space

harmonic and the resulting eddy-current loss is calculated by

summing the loss associated with each harmonic. Consequently,

the eddy-current loss in each equally segmented piece will be

the same, which has led to believe that the eddy-current loss in

each piece is equal. In general, however, this treatment yields

correct results only if the frequency of the eddy-current associ-

ated with each space harmonic is different from others.

This condition is, however, not true in most PM machines,

since forward and backward rotating space harmonics of dif-

ferent orders may yield the same frequency seen by the rotor.

To rectify this problem, the rotor eddy-current distribution is

formulated in this paper as a sum of space and time harmonics

for each frequency and the eddy-current loss is calculated by

summing the losses of all frequency components. It is shown

that when the magnets in each pole are segmented into more

than two pieces, the eddy loss in each equally segmented piece

may differ by a large margin, which implies that the temperature

distribution in the magnets will be uneven and the risk of de-

magnetization has to be carefully assessed [22]. The theoretical

0018-9464/$26.00 © 2010 IEEE
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derivation is validated by time-stepped transient finite-element

analysis.

II. EDDY-CURRENT LOSS IN ROTOR MAGNETS

To simplify the derivation, the following assumptions are

made.

1) Stator and rotor cores are infinitely permeable, and the

stator core is slotless.

2) The current distribution in the slotted stator is represented

by an equivalent current sheet with a surface current density

given by

(1)

where is the number of phases, and are the number of

pole-pairs of the stator winding and rotor permanent magnets,

respectively, is the angular displacement on the stator bore,

and is the mechanical angular speed of the rotor. is the

amplitude of the th space harmonic given by

(2)

where is the radius of stator inner bore, and are the

number of series turns per phase, and the peak current, respec-

tively, and is the winding factor associated with the th

harmonic. For machines with concentric windings, it is given

by

(3)

where is the number of slots and is the width of the slot

opening in radians. It should be noted that the variable reluc-

tance effect due to slot openings is neglected under assumptions

1) and 2). Equation (1) can be further expressed with respect to

the rotor reference system as

(4)

where is the angular position at the stator bore referred to the

rotor reference system. For surface-mounted PM machines, the

2-D vector magnetic potential distribution, , in the airgap and

magnet regions can be analytically established [10] and is given

by

(5)

where is a function of the radius and space harmonic

order , and is given by

(6)

is the radius of the rotor back-iron. The first and second

terms in (5) are associated with the forward and backward ro-

tating stator MMF harmonics, respectively. Assuming that the

induced eddy current in the rotor magnets is resistance limited,

the resultant eddy-current density can be obtained from [6],

[7]

(7)

where is the resistivity of the magnets. The second term in (7)

is introduced to ensure that the net current which flows in each

permanent-magnet arc segment of angle is zero at any instant

of time. It is therefore a function of time, and can be derived

from

(8)

where is the angular displacement of the symmetric axis of

the th magnet segment referred in the rotor reference system.

Substituting (5) into (7) and applying (8) yields the following

expression for the eddy-current density in the th magnet seg-

ment as shown in
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TABLE I
FREQUENCIES OF FORWARD AND BACKWARD ROTATING HARMONICS

is given by

(10)

The total eddy-current loss in the th magnet segment can be

obtained from

(11)

Using the orthogonal properties of trigonometric functions, the

above integration in the published literatures on this subject is

evaluated against each space harmonic and the result is obtained

by summing their losses. However, the result is only correct if

the frequency of the eddy current associated with each space

harmonic is different. Unfortunately, this is not the case as will

be evident from Table I which lists the frequencies of induced

eddy current up to 31st space harmonics assuming,

and .

As can be seen, a backward rotating harmonic of the order

, and the forward

rotating harmonic of the order

induce two time-varying eddy-current harmonics of the same

frequency in the rotor magnets. For ex-

ample, the backward rotating harmonic of order 1 and the for-

ward rotating harmonic of order 11 have the same frequency of

3 . Consequently, the sum of the eddy-current loss compo-

nents associated with each space harmonic may lead to an incor-

rect total eddy-current loss in a magnet segment. To circumvent

this problem, the eddy-current density may be expressed in the

form of sum of time harmonics

(12)

where and the definition for ,

and are given in Appendix A. It is evident that the four sine

terms in (12) have the same frequency but different amplitude

and phase angle, and the fundamental frequency of the induced

eddy current is . Substituting (12) into (11)

and using the orthogonal property of trigonometric functions

(13)

the nonzero terms in the integration are given by

(14)

where is a loss component independent of the angular posi-

tion of the th segment, and can be evaluated using (8) given

in [6]. Detailed derivation of (14) and definition of are

given in Appendix B. The second term in (14) is proportional

to , and, hence, is dependent on the relative position

of the segment within a pole pitch. It is also evident from the def-

inition of in Appendix B that the summation term in (14)

is a constant independent of the segment location.

It follows that if one magnet-pole is equally segmented into

pieces, the eddy-current loss in each piece may be

different. This has two implications. i) The temperature dis-

tribution in the magnet segments will not be uniform, and the

temperature will be higher in the segment with greater loss.

Consequently, demagnetization risk will be increased [22]. ii)

When the resistance limited model is employed to quantify 3-D

eddy-current loss in PM brushless machines via magnetostatic

analogy [23], the total loss cannot be determined by calculating

loss in one magnet segment and multiplying the result by the

number of segments. The number of segments to be calculated

is dependent on the symmetry of the loss distribution and can

be determined using (14).

The total eddy-current loss in the rotor magnets is given by

(15)

Since

hence

If , or the magnet in one-pole is not segmented,

and . Equation (15) can, therefore, be sim-

plified to

(16)
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Fig. 1. Six-phase, 10-pole PM brushless machine. (a) Schematic. (b) Prototype.

TABLE II
DESIGN PARAMETERS AND SPECIFICATIONS

This result indicates that derived in [6] is, in fact, the average

loss per pole of segmented pieces, albeit the loss in each

segment may be different.

III. VALIDATION BY FINITE-ELEMENT ANALYSIS

To validate the analytical prediction, time-stepped 2-D
transient FE analysis using Flux2D [24] was performed on a
6-phase, 10-pole PM brushless machine with modular wind-
ings, as shown in Fig. 1, whose design parameters are listed in
Table II. Sm Co is used for the rotor magnets. Both the stator
core and rotor back-iron were constructed using Transil 300
lamination sheets.

The magnetomotive force of the stator current in the machine
contains a rich set of space harmonics, and the torque is pro-
duced by the interaction of the fifth harmonics with the field
of 10-pole permanent magnets. The lower and higher order har-
monics, which travel at different speeds with respect to the rotor,
will induce significant eddy current and hence incur eddy-cur-
rent loss in the magnets. Fig. 2 shows the geometry of the FE

Fig. 2. Geometry of 2-D full model.

Fig. 3. Comparison of analytically and FE predicted variation of eddy-current
loss per unit length with speed.

model in which the magnetic property of the stator and rotor
cores is represented by the nonlinear BH curve of Transil 300
with their conductivity being set to zero. To reduce rotor eddy-
current loss, each pole of magnets is segmented into four pieces.
The 2-D FE model was solved when the six-phase windings
were excited with the rated sinusoidal currents in phase with
the back-electromotive forces (EMFs) and the rotor rotating at
a constant speed. The time step was set to have 6 electric de-
grees for each step and the mesh size was adjusted such that
the airgap flux density distributions were sufficiently smooth.
Further, by assigning each magnet segment in Fig. 2 with a dif-
ferent region id, the Flux2D solver automatically assumes that
each conducting region is insulated and the total current equal
to zero constraint given in (8) is imposed. Fig. 3 compares an-
alytically and FE predicted variations of eddy-current loss per
unit length at full load with speed.

Figs. 4 and 5 show the resultant flux density and eddy-current
distributions at ms, respectively, when the rotor ro-
tates at 5000 rpm. In all FE calculations, the remanence of the
permanent magnets is set to zero, and the stator current wave-
forms are sinusoidal. That is, the eddy-current loss resulting
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Fig. 4. Flux density distribution at � � ����� ms.

Fig. 5. Eddy-current distribution in rotor magnets at � � ����� ms.

from permeance variation due to slot opening and high order
time harmonics in stator currents is not considered.

As will be seen from Fig. 4, the stator current excitation
produces a 2-pole rotating magnetic field which can penetrate
deeply into the rotor magnets, resulting in significant eddy-cur-
rent loss if the magnets are not segmented. As the number of
segments per pole increases, the eddy-current loss decreases.
However for the machine under consideration, the rate of
reduction in eddy-current loss diminishes as the number of
segments is greater than 4. It is also evident that the analytically
and FE predicted rotor eddy-current losses agree very well
over a wide range of operating speed of the machine, which
implies the resistance limited eddy-current model is sufficiently
accurate up to the frequencies of concern in the machine.

Fig. 6 shows FE predicted variations of eddy-current losses
with time over one fundamental eddy-current period in four seg-
mented magnets within one-pole when the machine operates at
5000 rpm and full load. The positions of the magnets are shown
in Fig. 1. As will be seen, the waveforms of the eddy-current
losses in N1 and N2 are mirror images of those in N4 and N3,
respectively. Thus, the average loss over one eddy-current pe-
riod in N1 is equal to that in N4. The same relationship is true

Fig. 6. Variation of eddy-current losses in four segments.

TABLE III
COMPARISON OF ANALYTICAL AND FE PREDICTED EDDY-CURRENT

LOSS IN EACH SEGMENT

for the average eddy-current loss in N2 and N3, i.e., the loss dis-
tribution is symmetrical to the central axis of the magnet pole.
However, the loss in N2 and N3 is % greater than that in
N1 and N4. Table III compares the analytical and FE predicted
eddy-current loss in the four magnet segments. A good agree-
ment between the analytical and FE predictions is observed.

When the axial length of magnets is not significantly greater
than its width and thickness, accurate evaluation of rotor eddy-
current loss requires the use of 3-D time-stepped FE methods
with rotor movement incorporated into the FE mesh. However,
if the eddy current is resistance limited, the resultant eddy-cur-
rent loss can be predicted using the magnetostatic analogy [23].
Since the eddy loss in equally segmented magnets is not the
same, the total eddy-current loss cannot be evaluated by com-
puting eddy-current loss in one segment. The number of magnet
segments need to be modelled for 3-D magnetostatic calculation
in order to predict the total eddy-current loss can be determined
by (14) for a given number of segments per pole. For the ex-
ample given in Fig. 1, magnetostatic field calculation needs to
be performed in two segments.

IV. CONCLUSION

An analytical formula for predicting eddy-current loss in

each segment of permanent-magnet brushless ac machines has

been established. It has been shown that forward and backward

rotating space harmonics of different orders may result in

the same frequency seen by the rotor. Therefore, when more

than two segments per pole are employed in PM machines,

the loss in each segment may be significantly different. Such

nonuniform distribution of eddy-current loss will inevitably

give rise to uneven temperature distribution and increases the

risk of partial irreversible demagnetization. It has been also

shown that although previously reported analytical techniques
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will adequately predict the average eddy-current losses in

circumferentially segmented rotor permanent magnets, they are

not suitable for predicting the eddy-current losses in individual

segments when more than two segments per pole are employed.

The theoretical derivation is validated by time-stepped transient

FE analysis.

APPENDIX A

Definition of , and .
Let

where and are obtained by sub-
stituting for in (2) and (6) with nb and nf, respectively. Simi-
larly, and are obtained by substituting for in equation
(10) with nb and nf, respectively.

APPENDIX B

The average eddy-current loss in the th segment can be eval-
uated by

(B.1)

The first summation term yields the same result as that given by
(8) in [5] while the second summation can be further simplified.
Thus

(B.2)

where

(B.3)

(B.4)

(B.5)

(B.6)

However, the sum of and are given by

(B.7)

Substituting (B.3) and (B.7) into (B.2) yields (14).
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