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SUMMARY

Recent palaeomagnetic studies suggest that excursions of the geomagnetic ¢eld,

during which the intensity drops suddenly by a factor of 5^10 and the local direction

changes dramatically, are more common than previously expected. The `normal' state

of the geomagnetic ¢eld, dominated by an axial dipole, seems to be interrupted every

30^100 kyr; it may not therefore be as stable as we thought. We have investigated a

possible mechanism for the instability of the geodynamo by calculating the critical

Rayleigh number (Rc) for the onset of convection in a rotating spherical shell permeated

by an imposed magnetic ¢eld with both toroidal and poloidal components. We have

found Rc to be a very sensitive function of the poloidal ¢eld at the very small Ekman

number pertaining to the core. The magnetic Reynolds number, and therefore the

dynamo action, is equally sensitive to the applied ¢eld because of its dependence on

the di¡erence between the Rayleigh number and its critical value. This explains why

numerical dynamo simulations at small Ekman number fail when similar magneto-

convection calculations succeed: the £uctuating magnetic ¢eld of the dynamo leads

to rapid swings in convection strength that cannot be resolved numerically. The geo-

dynamo may be unstable for the same reason, with the strength of convection varying

wildly in response to the inevitable small changes in magnetic ¢eld. Frequent geo-

magnetic excursions may therefore be a manifestation of the instability arising from the

core's very weak viscosity and the controlling e¡ects of the Earth's rotation.
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1 INTRODUCTION

Recent studies suggest that the Earth's magnetic ¢eld has fallen

dramatically in magnitude and changed direction repeatedly

since the last reversal 700 kyr ago (Langereis et al. 1997; Lund
et al. 1998). These important results paint a rather di¡erent

picture of the long-term behaviour of the ¢eld from the con-

ventional one of a steady dipole reversing at random intervals:

instead, the ¢eld appears to spend up to 20 per cent of its

time in a weak, non-dipole state (Lund et al. 1998). One of us

(Gubbins 1999) has suggested that this is evidence of a rapid

natural timescale (500 yr) in the outer core, and that the mag-

netic ¢eld is usually prevented from reversing completely by

the longer di¡usion time of the inner core (2^5 kyr). This raises

a number of important but di¤cult questions for geodynamo

theory. How can the geomagnetic ¢eld change so rapidly and

dramatically? Can slight variations of the geomagnetic ¢eld

a¡ect the dynamics of core convection signi¢cantly? If so, is the

geodynamo process intrinsically unstable?

Of course, an ideal way to answer the above questions is to

simulate the geodynamo directly (Glatzmaier & Roberts

1995; Glatzmaier & Roberts 1996; Kuang & Bloxham 1997;

Jones et al. 1995). However, it is impossible to simulate the

strong e¡ects of rotation in the Earth because it produces

very small-scale solutions that vary rapidly with time (Zhang

& Jones 1997). In this paper we argue, on the basis of results

from magnetoconvection studies, that large swings in the geo-

magnetic ¢eld result from extreme sensitivity of core convection

to changes in the poloidal geomagnetic ¢eld. Furthermore,

this behaviour cannot be simulated by the present generation

of geodynamo models, and may be the root cause of apparent

numerical instabilities reported by some authors (e.g. Walker

et al. 1998).
Core magnetohydrodynamics (MHD) is subtle because of

the competing e¡ects of rotation and geomagnetic ¢elds. There

are six major forces: Coriolis, Fc, buoyancy, Fb, magnetic

(Lorentz), Fl, inertial, Fi, viscous, Fv, and pressure, Fp. These

must be in balance at any instant of time:

FczFbzFlzFizFvzFp~0 : (1)

In dimensionless form, with length measured by the core

radius and time by the magnetic di¡usion time, the ratio of
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Coriolis to viscous forces is given by the Ekman number, E,
which is extremely small [E~O(10{15)]; the buoyancy force is

measured by the Rayleigh number, RE ; the Lorentz force by

the Elsasser number, "; and the inertial forces by the Rossby

number, Ro, which is also extremely small [Ro~O(10{7)].

Note that our Rayleigh number, RE, is the same as that used by

Roberts (1968) and others in the problem of convection and

di¡erent by a factor of E from the so-called modi¢ed Rayleigh

number, Rmod~ERE . The pressure force, Fp, is passive in the

Boussinesq approximation.

The small Ekman number E causes an intriguingly subtle

balance among the six forces in eq. (1) that must be satis¢ed by

a dynamic dynamo all the time. In non-magnetic convection a

force balance is struck between buoyancy, pressure and viscous

forces. This leads to very small length scales O(E1=3) and very

large critical Rayleigh numbers, the smallest value of RE for

which convection occurs, of order O(E{4=3) (Roberts 1968;

Busse 1970). This makes numerical simulations di¤cult but

possible at low Ekman number (E¦10{5, Sun et al. 1993).
In magnetoconvection with an externally imposed magnetic

¢eld the primary force balance is magnetostrophicöbetween

Coriolis, buoyancy, pressure and Lorentz forcesöprovided the

magnetic ¢eld is strong enough [Elsasser number "~O(1)].

The viscous force is not required in the leading force balance;

the solution can be large scale and therefore presents few

numerical di¤culties. Why then is the dynamo calculation so

much more di¤cult at low E, when the only di¡erence is that

the ¢eld is self-generated rather than being imposed?

2 THE MAGNETOCONVECTION MODEL

We consider a spherical shell of electrically conducting

Boussinesq £uid with constant thermal di¡usivity i, magnetic

di¡usivity j, thermal expansion coe¤cient a and kinematic

viscosity l in which convection is maintained by a uniform

distribution of heat sources. The £uid is con¢ned in a spherical

shell of inner radius ri and outer radius ro, with ri/ro~0:4. The
whole system rotates with a constant angular velocity ). We

assume that the inner and outer bounding spherical surfaces

are stress-free and impenetrable, since it is well known that

the choice of velocity boundary condition does not a¡ect the

leading-order convection solution. Perfectly magnetic insulating

boundaries are assumed at both the inner and outer bounding

surfaces of the shell.

In the problem of magnetoconvection, we impose a large-

scale magnetic ¢eld upon the spherical shell of electrically

conducting £uid. Our imposed axisymmetric magnetic ¢eld

contains both toroidal and poloidal parts with dipole symmetry:

B~B0(�BPzBT) , (2)

scaled so that jBPjmax~1 and jBTjmax~1. We use the same

functional form of BT and BP as in a previous study of magnetic

¢eld instability (Zhang & Fearn 1994; Zhang & Fearn 1995).

Let us look at the form of the poloidal magnetic ¢eld BP as

an example. Any mean poloidal ¢eld can be represented as a

linear combination of functions Hln(h, r) that are solutions of

(b2lnz+2)Hln(h, r)~0 , (3)

where bln are to be determined and spherical polar coordinates

(r, h, �) are used. The boundary conditions are to match the

potential ¢elds in the exterior of the shell that satisfy

+2Hln(h, r)~0 (4)

for r > ro or r < ri, which yields

Hln(h, r)~Pl(cos h)[ jl(rbln)nl{1(robln){jl{1(robln)nl(rbln)] ,

(5)

where Pl(cos h) is the Legendre function, and jl(rbln) and

nl(rbln) are the spherical Bessel functions of the ¢rst and second

kinds. The parameter bln is then determined by the equation

jl(ribln)nl{1(robln){jl{1(robln)nl(ribln)~0 , (6)

where 0 < bl1 < bl2 < bl3 . . . . Here n in bln re£ects the com-

plexity of the poloidal ¢eld in the radial direction. We choose

the poloidal ¢eld with the largest scale with l~1 and n~1,

BP~ {r+2H11z
1

r
L
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LH11

Lr

� �

rª z
1
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L
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L(rH11)

Lr
hê . (7)

Our toroidal ¢eld BT is chosen in a very similar way.

The magnetoconvection problem is characterized by ¢ve

independent dimensionless parameters: the Rayleigh number,

RE , the Ekman number, E, the Prandtl number, Pr, the

Roberts number, q, and the Elsasser number, ", all with

the usual de¢nitions. Pr and q represent material properties of

an electrically conducting £uid.

The primary objective of our calculation is to show that the

MHD convection system is very sensitive to small variations of

the poloidal ¢eld at small E, which can lead to rapid swings

in convection strength that cannot be resolved numerically

and which may lead to instabilities of a geodynamo model. To

achieve this objective, we have neglected the inertial term

Lu/Ltzu ?+u in the equation of motion by taking the large

Pr limit (see also Glatzmaier & Roberts 1995). This can be

justi¢ed on the basis that convection relevant to dynamo action

is on a much longer timescale than the period of rotation. We

take the Roberts number q~1 and ¢x the Elsasser number at

"~10. This value of " ensures we are in the strong-¢eld

regime, in which length scales are large and the main force

balance is magnetostrophic. It is also typical of the values

obtained from large-scale geodynamo calculations, which have

"~O(10) based on the average ¢eld (Sarson et al. 1998).
We ¢x E, Pr, q and " and solve the equations of motion,

heat and induction simultaneously for many di¡erent values of

the Rayleigh number RE, to determine the smallest RE (which

is referred to as Rc) at which convection can take place.

Repeating the calculations for di¡erent values of �, the strength
of the poloidal ¢eld, gives the variation of Rc with �.
Our simulation cannot reach the value of the Ekman number

for the core, which is about 10{15. However, we can reach the

asymptotic region for small E. Table 1 gives results for �~0. It

shows the solution approaching a limit with Rc&12E{1 and

drift rate C&8:5 as E?0. The scaling of Rc arises from the

necessity of buoyancy to remain in the force balance.

We have simulated 30 solutions at small E by increasing �
gradually from zero. The results are shown in Fig. 1 for the

most unstable linear mode, which is m~1, except very close

to �~0, when Rc for m~2 becomes comparable. Increasing �
slightly from zero to 0.07 reduces the critical Rayleigh number

Rc from Rc&12E{1 to Rc&1. The range of Rc is larger for

smaller E: at E~10{15 it ranges from 1 to 1016, a huge e¡ect
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for such a small change in the ¢eld. The corresponding drift

rate changes from positive (eastwards) to negative (westwards).

We therefore expect the amplitude and pattern of convection,

and hence the size of Rm, also to change dramatically in

response to small variations in the poloidal ¢eld.

3 IMPLICATIONS FOR NUMERICAL

SIMULATIONS

Now consider the more complicated scenario when the

magnetic ¢eld is self-generated by dynamo action. Di¡erential

rotation can produce a large BT with dipole symmetry, and a

poloidal ¢eld will arise from the action of radial motion on

the toroidal ¢eld, or from small-scale £ows, with timescales of

centuries.

Negative values of Rc in Fig. 1 correspond to magnetic

instabilities, which draw their energy from the imposed mag-

netic ¢eld rather than the applied heat sources. Such a solution

could not be maintained inde¢nitely if the ¢eld were generated

from dynamo action, although it could occur temporarily as

part of a time-dependent solution. The part of the curve with

Rc§0 is therefore the most relevant for dynamo calculations.

When the Ekman number is small, Rc can be wildly and

sensitively dependent on the strength and form of the magnetic

¢eld. It can change from Rc~O(1020) when the magnetic ¢eld

is weak (Busse 1970; Zhang 1992) to Rc&1 in the magneto-

strophic regime.We show here that Rc is extremely sensitive to

small variations in the magnetic ¢eld, particularly the poloidal

¢eld. It follows that Rm can swing rapidly through a wide range

of values because of its dependence on (RE{Rc). It is di¤cult

to anticipate the existence of a quasi-steady geodynamo if

the whole system is so sensitive to small variations of the ¢eld

and Rm varies so wildly. The results suggest that the dynamic

geodynamo is intrinsically unstable and is characterized by a

strong time dependence.

These results also provide a clue as to why numerical

integrations of an Earth-like dynamo model characterized

by small Ekman number (rather than hyperdi¡usivity with

large e¡ective Ekman number at small wavelength) prove

to be formidably di¤cult (Walker et al. 1998), while no such

di¤culties arise in the corresponding non-magnetic problem

(Sun et al. 1993). Although non-magnetic convection may be

highly chaotic, the driving force that determines the average

amplitude of convection, measured by (RE{Rc), is ¢xed and

time-independent. In the geodynamo problem, because the

Lorentz force enters eq. (1) together with a small Ekman

number, the dynamic balance becomes highly variable even

though RE is ¢xed. This inevitably leads to rapid variations

and collapses of the magnetic ¢eld, and the many numerical

problems that arise in computer simulations.

This discussion is based on linear simulations of the

magnetoconvection, but the real problem is non-linear.

However, we believe the dynamic behaviour discussed in this

paper would be manifested in the non-linear problem because

all the key elements of the dynamic force balance (1) in the £uid

core at small Ekman number have been captured.We imagine a

non-linear solution in which the applied ¢eld varies with time.

The linear calculations reported here will not re£ect this time

dependence, which changes the nature of the stability analysis.

However, there is no reason to expect the strong dependence

of Rc on Bp to change. We shall investigate the e¡ects of a

time-dependent ¢eld in a future study.

We also imagine the ¢eld to be self-generated through a

dynamo mechanism rather than imposed, which is much more

di¤cult to investigate or quantify. Dynamo action occurs

through non-linear interaction of the convection with the

magnetic ¢eld via the term +¾(v¾B) in the induction equation,

which may stabilize or destabilizethe system. A further study of

the dependence of the generated ¢eld on the £ow is underway

using kinematic dynamo theory.

4 IMPLICATIONS FOR THE EARTH'S

MAGNETIC FIELD

This study was inspired by recent palaeomagnetic results,

which suggest the geomagnetic ¢eld is rather unstable and

undergoes collapses in strength and large changes in direction

after a few tens of thousands of years. The interval of weak,

non-dipolar ¢eld lasts only 2^5 kyr before the ¢eld grows once

more to its typical modern strength and dipole-dominated

character.

Current geodynamo simulations do not show such dramatic

behaviour.We attribute the extra stability to the larger e¡ective

viscosity in the numerical calculations, necessitated by the

Table 1. Results of linear magnetoconvection calculation for �~0,

m~1, showing approach to an asymptotic limit as E?0. C is the

dimensionless oscillation frequency of the solution (drift rate).

E Rc ERc C

1:0¾10{4 9:68¾104 9:69 7:02
5:0¾10{5 2:12¾105 10:1 7:61
1:0¾10{5 1:18¾106 11:9 8:12
5:0¾10{6 2:42¾106 12:1 8:25
1:0¾10{6 12:3¾106 12:3 8:32

Figure 1. The scaled critical Rayleigh number, E{1Rc, and the

corresponding drift rate, C, are plotted against �, the poloidal ¢eld

strength. E~10{4 here, but Table 1 shows this is in the asymptotically

small Ekman number regime.
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limited temporal (and spatial) resolution o¡ered by even the

largest computers available. High viscosity applied to small-

wavelength convection will prevent it from reaching the high

Rc regime in Fig. 1, thus limiting the swings in convective and

dynamo power.

We therefore envisage a true geodynamo operating mainly in

magnetostrophic balance with occasional collapses into a high-

Rc regime.What happens then is a matter for speculation at the

moment because the £ow would be small scale, rapidly time-

varying and beyond present numerical resolution. Observations

show clearly that geodynamo action continues and the large-

scale, magnetostrophic state is quickly re-established. The inner

core may play a stabilizing role by giving the poloidal ¢eld a

longer timescale based on electrical di¡usion rather than £uid

advection (Hollerbach & Jones 1993; Gubbins 1999).

Our intention has been to isolate the e¡ect of a poloidal

magnetic ¢eld on magnetoconvection in a rapidly rotating

spherical system and to show it can have a dramatic e¡ect on

the convection.We have therefore excluded other possible e¡ects

such as those of di¡erential rotation, which may be important

in understanding the exchange of angular momentum between

core and mantle (Jault et al. 1988), and non-linear stability

in the magnetostrophic approximation (e.g. McLean & Fearn

1999). The e¡ects of di¡erential rotation are expected to be

of secondary importance in eq. (1) simply because the inertial

term u ?+u can be neglected to leading order on the long

timescale that is relevant to dynamo action.

The di¤cult theoretical question now posed is not why the

geodynamo is so unstable, but why the large-scale magneto-

strophic state is as stable as it is, persisting for tens of thousands

of years or about one magnetic di¡usion time.
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