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Abstract6

Individual-based modelling approaches are being used to simulate larger complex7

spatial systems in ecology and in other fields of research. Several novel model de-8

velopment issues now face researchers: in particular how to simulate large num-9

bers of individuals with high levels of complexity, given finite computing resources.10

A case study of a spatially-explicit simulation of aphid population dynamics was11

used to assess two strategies for coping with a large number of individuals: the use12

of ‘super-individuals’ and parallel computing. Parallelisation of the model main-13

tained the model structure and thus the simulation results were comparable to the14

original model. However, the super-individual implementation of the model caused15

significant changes to the model dynamics, both spatially and temporally. When16

super-individuals represented more than around 10 individuals it became evident17

that aggregate statistics generated from a super-individual model can hide more18

detailed deviations from an individual-level model. Improvements in memory use19

and model speed were perceived with both approaches. For the parallel approach,20

significant speed-up was only achieved when more than five processors were used21

and memory availability was only increased once five or more processors were used.22

The super-individual approach has potential to improve model speed and memory23

use dramatically, however this paper cautions the use of this approach for a density-24

dependent spatially-explicit model, unless individual variability is better taken into25

account.26

Key words: Agent-based modelling, Individual-based modelling, Parallel27

computing, Super-individuals28

3



∗ Corresponding author. Address: Central Science Laboratory, Sand Hutton, York,

YO41 1LZ, England. Tel.: +44 1904 462724; Fax: +44 1904 462111.

Email address: h.parry@csl.gov.uk (Hazel R. Parry ).

4



1 Introduction29

A desire to better understand and inter-link the complex dynamic structures30

of ecosystems, along with self-organisation, emergence of spatial and temporal31

patterns and apparent unpredictability, has prompted a shift in the general32

approach to ecological modelling today (Grimm and Railsback, 2005; Parrott33

and Kok, 2000). Following trends in other fields of research, from social science34

(Gilbert and Troitzsch, 1999) to fluvial sediment transport (Schmeeckle and35

Nelson, 2003), there has been a shift away from procedural, equation-based36

models to object-based simulations. These include individual-based models37

(IBMs), cellular automata and multi-agent simulation (MAS). Such models38

are concerned with modelling variation among individuals in a population,39

and the interaction between individuals (DeAngelis and Gross, 1992; Grimm,40

1999; Grimm and Railsback, 2005; Grimm et al., 1999; Huston et al., 1988;41

Judson, 1994; Uchmański and Grimm, 1996). IBM is closely related to multi-42

agent simulation. MAS has arisen from artificial intelligence (AI) research and43

is used widely in other fields such as social science and computing (Gilbert44

and Troitzsch, 1999).45

Object-based approaches have been successfully implemented to model a range46

of ecological systems (for a review see Grimm, 1999; Grimm and Railsback,47

2005). They have the potential to further understanding of the local processes48

that influence regional species population dynamics spatially and temporally,49

enabling better understanding of how individual local-level and field-scale in-50

teractions result in larger scale population distributions. However, some of51

the potential of MAS and IBM methods is constrained by the demands that52

may be placed on computing power. For realistic scenarios, it may be nec-53
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essary to simulate large numbers of individuals. There may also be added54

complexity, such as in models where interactions or agent-density are impor-55

tant, but populations are sparse (for example insect populations, Parry et al.,56

2006b, 2004), or where agents are memory-heavy because they are complex57

(e.g. forest dynamics, Verzelen et al., 2006), or multiple types of agent are58

used, such as in models of competition or predator-prey models (e.g. Hos-59

seini, 2006). Haefner (1992: pp.156-157), with some foresight, identified future60

developments in ecological individual-based models that would benefit from61

advanced computing as: multi-species models; models of large numbers of in-62

dividuals within a population; models with greater realism in the behavioural63

and physiological mechanisms of movement; and models of individuals with64

‘additional individual states’ (e.g. genetic variation).65

The key limitations imposed by computer hardware are: (1) the number of66

calculations that can be performed in a reasonable time (controlled by pro-67

cessing power); (2) the number of agents that can be modelled (controlled68

by memory). Relationships were determined between increasing numbers of69

initial agents and the memory and simulation speed of a simple agent model70

(described in section 2) run on a single 2.80 GHz Intel Xeon processor 2097 MB71

RAM machine. Once the model is running, processor use of memory is nearly72

linear and using an equation derived from the curve we can predict that at a73

maximum available memory capacity of 1.5GB RAM on the single machine,74

the theoretical limit to the initial number of agents is approximately 7,500,000.75

However, at this limit, the simulation is calculated to take approximately 176

million seconds (12 days) to run (calculated from the simulation speed curve77

using a quadratic function). This may be an under-estimate, as there is a78

slight processing overhead for dealing with additional memory blocks, which79
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would result in a less linear relationship over time. The potential number of80

replicates of a stochastic simulation are affected by this, so for example the81

use of Monte Carlo techniques would no longer be possible.82

There are a number of solutions to the problem of large numbers of individu-83

als in an individual- or agent-based simulation (table 1). Solutions may range84

from hardware investment (such as obtaining a more powerful computer) to85

computational solutions, such as changes in the software design (e.g. paralleli-86

sation) or changes in the the model structure. This paper evaluates and com-87

pares two such solutions to this problem. The first is a computational solution88

that requires access to networked hardware: to parallel program the model89

software to work across a network of powerful computers, so splitting the pro-90

cessing/data load. The second is a mathematical solution, where the model91

itself is altered so that individuals are aggregated into ‘super-individuals’ (af-92

ter Scheffer et al., 1995). The two methodologies are applied to a case study of93

a spatially-explicit, individual-based simulation of aphid population dynam-94

ics in agricultural landscapes (Parry et al., 2006b). The comparability of the95

model results with the original model are first determined, then the two ap-96

proaches are evaluated in terms of improved model efficiency (memory use97

and speed).98

A key advantage of parallel programming is that it maintains the strengths99

of an individual-based approach whilst potentially increasing the number of100

agents that can be simulated, as opposed to the super-individual approach101

where the key interactions in the model are altered. However, parallelisation102

is a complex solution, and although the agent interactions are unchanged sig-103

nificant restructuring of the model software is needed. Haefner (1992) outlined104

the potential applications of parallel computing to individual-based simula-105
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tions in ecology, but also pointed out the need for ecological modellers to106

improve their technical knowledge. Few examples of parallel simulations exist107

in the ecological literature to date. Some examples of note are a parallel sim-108

ulation of a school of fish by Lorek and Sonnenschein (1995) and several in109

relation to the ATLSS project (http://atlss.org/), which include a parallel110

individual-based model of Everglades deer ecology by Abbott et al. (1997) and111

a parallel spatially-explicit fish model (ALFISH) by Wang et al. (2004). Other112

agent simulation examples can be found outside ecology in the use of parallel113

agents for reducing genetic algorithm search times (Lefley and McKew, 2004)114

and performing large scale traffic simulations (Dupuis and Chopard, 2001).115

The simplicity of the super-individual approach makes it attractive, particu-116

larly as it does not require complex programming and powerful computer sys-117

tems to implement. It maintains the philosophy and integrity of an individual-118

based approach without reverting to a population model to deal with large119

numbers of individuals. However, implementations of this approach to date120

are primarily not spatially-explicit.121

2 Application122

The results presented in this paper relate to a simplified version of a spatially123

explicit individual-based simulation model of aphid population dynamics in124

agricultural landscapes (Parry, 2006; Parry et al., 2006b, 2004). A spatially-125

explicit IBM of aphid populations was constructed to assess the impact of126

variation in agronomic practices in time and space. These practices included127

crop introduction and configuration, pesticide spray application, matrix habi-128

tat availability and fragmentation. The impacts that these have upon aphid129
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populations were observed, including both regional and local population dy-130

namics as well as individual movement paths. A key limitation of the model131

was the restriction on the number of insect agents that could be modelled.132

The simplified model was used to explore and evaluate the options for cop-133

ing with large numbers and complexity in the full model. The simple model134

moves aphid agents (Rhopalosiphum padi) randomly from cell to cell around135

a uniform landscape and local agent density is recorded. Aphids reproduce136

parthogenetically with winged and non-winged morphs produced. Density de-137

termines the proportion of alate (winged) morphs that are born at each iter-138

ation. The simulation is begun with a population of alate agents originating139

from a central cell in a 50×50 cell landscape, where each cell is 25×25 m. The140

wind is set to a constant speed of 8kmh−1 and a constant westerly direction.141

In the full version of the model there are a number of variables (some of which142

are density dependent), realistic immigration across a region and a more com-143

plex environment. The complexity of the full version of the model increases144

computational demands beyond those demonstrated here and a large number145

of agents (several million) were required for the simulation to be realistic at146

the landscape scale.147

Initial populations of 10, 100, 1,000, 10,000, 100,000 and 500,000 aphids were148

used, originating from a single central cell. Each simulation was run thirty149

times and an average taken to represent the total population trend over time150

(as several parameters in the model are stochastic). While the model was151

allowed to run for 120 days, spatial comparisons were made after 2, 20 and152

40 days by creating surfaces that show the mean density in each cell over the153

thirty runs. Temporal comparisons were made of the population dynamics at154

the central cell.155
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3 Parallel computing156

3.1 Implementation157

In order to address computing problems where a model is hindered by data158

requirements far larger than can be accommodated at any individual pro-159

cessing element, parallel solutions are often implemented. The combined or160

‘virtual shared’ RAM of several computers is used to cope with the amount of161

data and processing needed, using a Sequential-Algorithm Multiple-Data ap-162

proach (SAMD), where the same algorithm is applied to different data items163

on different processors (“nodes”). The scale of the problem for each individ-164

ual computer is therefore reduced (often speeding the model up), or more165

resources are made available (allowing for larger models). To parallelise the166

model software, sections are run on each node and then the nodes periodi-167

cally communicate together to share results. This requires somewhat complex168

communication strategies to make the physically distributed systems act as a169

single unit.170

Key to an efficient parallel model is minimising the inter-processor communi-171

cations; it is these that take valuable time (Pacheco, 1997). Because of this,172

in models with static agents that only interact locally it makes sense to divide173

the environment and agents between processors. Conversely, in models with174

roaming agents, it makes sense to divide up the agents and have a copy of the175

whole environment on each processor. Hardest to deal with are the situations176

where agents roam the environment, but also interact with each other. In such177

cases dividing up either the agents or the environment results in an increase178

in inter-processor messages or agent transfer.179

10



In this case study, parallelisation essentially splits the agents in the simulation180

between a number of processors (nodes), each containing information on the181

environment and total agent densities. Direct agent interaction (to determine182

morphology) is mediated by density in the model. Thus, aphids can be split183

between processors because it is not necessary for each processor to know the184

exact position of all the aphids, just the density within each section of the185

environment on the other machines. This information can be collated at a186

single ‘control’ node and the total densities broadcast to each ‘worker’ node.187

The initial model was created using the agent-based simulation toolkit Repast188

(http://repast.sourceforge.net). The toolkit was implemented in paral-189

lel by running the Repast interface on the control node (including the GUI190

etc.), while the rest of the model code is run independently on worker-nodes,191

synchronised by the control node using message passing (Parry, 2006; Parry192

et al., 2006a). Agents are established on the worker nodes, coordinated by193

the control node. In coding the parallel version of the model software, the194

same code is placed on each processor but different sections of code are run195

dependent on the node ID. The code on the control node controls the model196

input, output and program flow, using the standard Repast methods of ‘setup’,197

‘buildModel’, ‘preStep’, ‘step’ and ‘postStep’ to structure the code and to ini-198

tiate the simulation steps (figure 1). For example, when the method preStep199

is run, the control node (node zero) is programmed to send out messages to200

the other nodes to invoke agent methods associated with preStep (the model201

is strongly synchronised). The updated agents pass density information back202

to the control node when needed (figure 1). It was expected that the speed of203

the simulation would increase with the number of nodes used, compensating204

for any minor time delay caused by the timing control of the simulation from205
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the control node. A similar strategy was employed by Lorek and Sonnenschein206

(1995) for a non-Repast simulation, which was found to increase simulation207

speed as well as enable the size of the simulation to increase.208

3.1.1 Message passing209

The agent model was parallelised using a Message-Passing Interface (MPI)210

for Java, MPIJava (http://www.hpjava.org), run on a 30-node distributed211

memory parallel computer known as a Beowulf cluster. Message passing (MP)212

is the principle manner by which Beowulf clusters are linked. MPIJava uses the213

open-source native MPI ‘LAM’ (http://www.lam-mpi.org/). Further details214

on the methods used to incorporate the MPI into the model are given in215

Parry (2006); Parry et al. (2006a). The particular Beowulf cluster used for the216

simulations presented here was a dedicated cluster of thirty machines (nodes),217

where each node has dual 2.66 GHz Intel Xeon processors with 1280 MB of218

DDR memory and 40GB 7200rpm internal IDE disks running over a switched219

GB network. Although the results presented in this paper refer to simulations220

conducted on a dedicated Beowulf cluster, the principles of parallelising the221

model for a multi-core machine or a non-dedicated cluster would be very222

similar. The model presented here has since been adapted to run on an Intranet223

cluster of non-dedicated PCs and on a multi-core processor system without224

re-coding the parallelisation, only altering the MPI commands in the code to225

work with a customised MPI. Non-dedicated clusters of machines with mixed226

specifications may however introduce problems of network unreliability and227

performance bottlenecking on the slowest machines. Such issues are explored228

further in Parry (in press).229
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3.1.2 Data mapping and load balancing230

Data must be evenly distributed between the nodes, known as ‘load balancing’231

(Pacheco, 1997). In this model, a balanced load was calculated using a form232

of ‘block mapping’ (Pacheco, 1997). Agents were split evenly across the sys-233

tem, whilst each node contained full environmental information. The agents234

remained on the same node throughout the simulation, thus maintaining a235

balanced load while being able to roam the environment. For all the parallel236

simulations, it was found that the maximum memory used by each node was so237

similar that 95% confidence limits derived from the standard error evaluated238

to ±0.00 in all cases. This shows that the distribution of individuals across239

the worker nodes was highly efficient, and the load very well balanced.240

4 Super-individuals241

4.1 Implementation242

The super-individual approach to modelling large populations on an individ-243

ual basis was proposed by Scheffer et al. (1995), comparable to the earlier244

‘generalised individuals’ of Metz and de Roos (1992). A super-individual ap-245

proach ‘allows zooming from a real individual-by-individual model to a cohort246

representation or ultimately an all-animals-are-equal view without changing247

the model formulation’ (Scheffer et al., 1995: pp. 161). The simple idea is that248

individuals in a population can be grouped together into ‘super-individuals’,249

thus reducing the number of objects to simulate and therefore reducing the250

memory and processing power required (figure 2). For populations such as251

aphids where there are high reproductive and mortality rates leading to large252
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juvenile populations, this approach can be very useful (Grimm and Railsback,253

2005). It is possible to use the approach to test the effects of grouping individ-254

uals, and also to examine the degree to which individual behaviour explains255

the observed phenomena. A similar approach is used in physical models such256

as the lattice models of fluid dynamics, particle modelling and Lagrangian257

modelling (e.g. Woods and Barkmann, 1994).258

4.1.1 Combining individuals into a single super-individual259

Although Scheffer et al. (1995) state that no changes to the model formula-260

tion are required for the super-individual approach, there are some significant261

changes to the model structure that potentially influence the model results. To262

convert the individual-based model to super-individuals, individuals originat-263

ing at the same spatial location (cell) were split by initial age and morphology264

(whether they have wings or not) into super-individuals. Each super-individual265

represented a fixed number of individuals throughout the course of the simu-266

lation.267

4.1.2 Adding individual immigrants to super-individuals268

Initial immigrants were added as super-individuals of the same scale factor269

and, as in the unmodified model, these were of uniform age and morphology270

(adult alates (i.e. winged)).271

4.1.3 Mortality of individuals/super-individuals272

Estimating the mortality of super-individuals can be done in a number of273

ways, all of which are prone to error. The three main approaches are given by274
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Grimm and Railsback (2005: pp. 267) (figure 3):275

N = the number of individuals represented by the super-individual (i.e. the276

scale factor). N0 = the number of individuals represented by the super-individual277

at the start of the simulation.278

(1) The number of super-individuals remains constant, and mortality reduces279

N.280

(2) N is kept relatively constant, by mortality reducing N until super-individuals281

are recombined when N falls below N0/2.282

(3) Assume that an entire super-individual dies when subject to mortality.283

Both approaches 1 and 2 require dynamic updating of the number of individ-284

uals represented by the super-individual, but in this way they do maintain285

more of the original variability of the model. However, significant errors, par-286

ticularly spatial errors, would be introduced as individuals are re-grouped,287

and the process would be computationally intensive. Reducing the number of288

super-individuals in approaches 2 and 3 has computational advantages (the289

number of super-individuals to iterate is minimised and individual variability290

is less important so calculations are less complex).291

Approach 3 was chosen: super-individuals are subject to the same probability292

of mortality as individuals and when the super-individual dies all individuals293

represented by the super-individual die. This approach was chosen because294

the variability between individuals of the model (particularly age) meant that295

approach 2 (recombining individuals) was problematic. Approach 1 (main-296

taining a constant number of super-individuals) would also be problematic to297

implement as the constant updating and variability of N would be computa-298

tionally intensive, particularly as the density of individuals is important to a299
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number of model processes. Approach 3 was therefore considered to be the300

most computationally efficient, although the least biologically realistic as it301

suggests that mortality affects equally a group of aphids of uniform age and302

morph in a particular cell (discretization of mortality). Another potential is-303

sue with approach 3 is that it may require a lower value of N than the other304

approaches to avoid excessive discretization of mortality. This paper assesses305

whether this is the case.306

4.1.4 Changes to the model structure307

The construction of a super-individual simulation involved very little alter-308

ation of the model structure (for details of this structure see Parry et al.,309

2006b, 2004). A variable was added to record the number of individuals all310

super-individuals actually represent. Equations that were dependent on den-311

sity (such as morphology determination) were altered so that the density val-312

ues were related to the real number of individuals in the simulation, not the313

number of super-individuals (see equation 1). This was because the proportion314

of alates produced is in relation to the density of individuals.315

Morph determination is represented by the equation:316

ALPROP =
0.002 + 0.991

(1 + EXP (−0.076 × (DENSITY − 67.416)))
(1)

317

where ALPROP = the proportion of newly laid nymphs that will become alate318

and DENSITY = the total number of individual aphids per plant.319

320
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5 Evaluation321

The parallel version of the model produced extremely similar results to the322

non-parallel model, as expected (no changes were made to the model structure,323

only to the software). Variability between the original model and the parallel324

model was only due to the model’s stochasticity. However, the super-individual325

model did alter the model structure, therefore some variation was expected326

in the output between the super-individual model and the original model.327

This variability is presented first below, then a comparison is made of the328

improvement in performance in terms of model speed and memory use for329

both the parallel and super-individual approach in relation to the original330

model.331

5.1 Super-individual temporal and spatial replication of the individual-based332

simulation333

Movement of super-individuals followed the same rules as that of individuals,334

however this produced spatial clustering of the populations. To test the super-335

individual model, populations of 100, 1,000, 10,000 and 100,000 and 500,000336

individuals were represented by varying numbers of super-individuals (Table337

2). Results are compared to the original individual-based model, both tem-338

porally and spatially, in the following sections. Results from simulations with339

10,000 individuals are given in more detail as an example to demonstrate the340

effects of combining individuals.341
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5.1.1 Temporal342

Overall, for simulations of fewer than 10,000 individuals the super-individual343

simulations produced population densities that were much lower than the344

individual-based model equivalent (figure 4). For 10,000 individuals, densi-345

ties only become significantly lower at the second population peak, and the346

super-individual simulations also reach this peak earlier. This can be related347

to the spatial results (below), where it is only after this point in time that348

it is evident that differing spatial distributions and densities are beginning to349

emerge. The only case where the super-individual simulation falls within the350

95% confidence limits of the original model for the duration of the simulation351

period is the simulation of 10,000 individuals with 1,000 super-individuals352

(scale factor 10), figure 4. The percentage error between the temporal results353

for all the super-individual simulations and the individual-based simulations is354

shown graphically in figure 5. This confirms that super-individual simulations355

of 10,000 aphids and above with low scale factors may be acceptable. This356

also shows that when a large number of individuals are represented by very357

few super-individuals (in this case 10 super-individuals) the error is greatest.358

Excessive discretization of mortality is therefore evident (suggested in section359

4.1), resulting in a need to reduce the scale factor for results to better represent360

the individual-based model.361

5.1.2 Spatial362

Clustering is evident in the spatial distribution. The super-individuals are363

contained in fewer cells, closer to the origin, than the individual-based simu-364

lation. This is illustrated for 10,000 individuals by figure 6. The distribution365
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better replicates the unmodified model when the number of super-individuals366

is maximised and the individuals they represent minimised, due to the assump-367

tion that when mortality occurs, the whole super-individual dies. Only when368

the number of individuals within the super-individual (N) is minimised in a369

large population of super-individuals can this be overcome (Grimm and Rails-370

back, 2005). However, even when this is the case, for 10,000 individuals with371

1,000 super-individuals (scale factor 10) (figure 4) this still does not produce372

a similar spatial distribution pattern, despite giving a satisfactory temporal373

result. This suggests that errors in spatial distribution may be hidden in super-374

individual models validated temporally. The super-individual patterns are in375

fact most comparable to the patterns of the individuals for the same number,376

e.g. 10 super-individuals compares well with the distribution of 10 individuals,377

the difference is the density at each cell. This is the expected result when the378

local redistribution of (super)individuals is the main process determining the379

spatial distribution, despite density affecting morphology.380

5.2 Speed381

Super-individuals always improve the model speed (figure 7). The speed im-382

provement is enormous for the largest simulations, where 500,000 individuals383

simulated with super-individuals using a scale factor of 100,000 increases the384

model speed by over 500 times the original speed. However, it was shown above385

that only large simulations with a low scale factor (10-100) may benefit from386

the super-individual approach, thus for these scale factors an improvement387

in model speed of approximately 10,000-30,000% (100-300 times) the original388

speed would result for simulations of 100,000 to 500,000 individuals.389
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Adding more processors does not necessarily increase the model speed. Fig-390

ure 7 shows that for simulations run on two nodes (one control node, one391

worker node) the simulation takes longer to run in parallel compared to the392

non-parallel model. Message passing time delay and the modified structure of393

the code are responsible. As the number of nodes used increases, the speed394

improvement depends on the number of agents simulated. The largest im-395

provement in comparison to the non-parallel model is when more than 500,000396

agents are run across twenty-five nodes, although the parallel model is slower397

by comparison for lower numbers of individuals. However, when only five nodes398

are used the relationship is more complex: for 100,000 agents five nodes are399

faster than the non-parallel model, but for 500,000 the non-parallel model is400

faster. This is perhaps due to the balance between communication time in-401

creasing as the number of nodes increases versus the decrease in time expected402

by increasing the number of nodes. Overall, these results seem to suggest that403

when memory is sufficient on a single processor, it is unlikely to ever be effi-404

cient to parallelise the code.405

5.3 Memory usage406

Super-individuals always reduce the memory requirements of the simulation407

(figure 8). The memory requirements for a simulation of super-individuals has408

a similar memory requirement to that of an individual-based simulation with409

the same number of agents. For simulations of 100,000 agents this can reduce410

the memory requirement to less than 10% of the memory required for the411

individual-based simulation with a scale factor of 10,000, and for simulations412

of 500,000 agents this may be reduced to around 1% with the same scale413
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factor.414

The mean maximum memory usage by each worker node in the parallel simu-415

lations is significantly lower than the non-parallel model, for simulations using416

more than two nodes (figure 8). The two node simulation used more memory417

on the worker node than the non-parallel model when the simulation had418

100,000 agents or above. This is probably due to the memory saved due to the419

separation of the GUI onto the control node being over-ridden by the slight420

additional memory requirements introduced by the density calculations. How-421

ever, when 5 and 25 nodes are used, the memory requirements on each node422

are very much reduced, below that of the super-individual approach in some423

cases. The super-individual approach uses the least memory for 500,000 indi-424

viduals, apart from when only a scale factor of 10 is used (then the 25 node425

parallel simulation is more memory efficient).426

6 Discussion427

The parallel model produced identical results to the initial model, as this428

modifies only the model software and not the model itself. However, the super-429

individual approach did not produce identical results to the initial model,430

especially when assessed spatially. The similarity between the super-individual431

results and the initial, unmodified model varied according the number of real432

individuals that the super-individual was representing, and the number of433

individuals simulated. The super-individual approach can only be considered434

in situations where the number of individuals is high and the number of real435

individuals represented by each super-individual is low (i.e. a low scale factor).436
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For the super-individual approach, within-cell density peaks vary temporally437

between simulations run with different super-individual sizes. This is due to438

the differences in emigration and movement patterns as a result of the size439

of the super-individuals, as well as the method used to represent mortality.440

Excessive discretization of mortality is evident as it is assumed that an en-441

tire super-individual dies when subject to mortality. Further assessment of442

the model (Parry, 2006) shows that regionally, the total population density is443

similar between the different super-individual configurations and the unmodi-444

fied model, but as shown in figure 6 there is a clear difference in the dispersal445

patterns. Overall, the evidence indicates that the variability is such that the446

super-individual approach is not suitable for the spatially-explicit simulation447

of the aphid model, as presented here. Indeed, although the aphid model448

is more strongly density dependent than most ecological models, most are449

to some degree density dependent, rendering super-individual models prob-450

lematic for spatially informative work. Modifications to the approach could451

make it a possibility for future work. Experimentation with the other rules452

for super-individual mortality suggested in section 4.1 would be a first step.453

Other possible modifications include:454

(1) Weighted kernels around a central ‘super-individual’, so that a more re-455

alistic dispersal pattern is achieved.456

(2) Relocation of a percentage of the super-individuals from a cell, without457

actual population redistribution.458

(3) Cell population model with individual migration.459

However, re-distribution of individuals could significantly increase run-time,460

adds complexity to the simulations and may take more memory than the461

individual-based approach. This would also rely on a non-naturalistic model462
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of dispersion. Most movement in the model is a short distance each day, so463

there will be constant shifting from super-individual to individual or creation464

of dispersal kernels.465

Further investigation may also indicate that spatial heterogeneity may have a466

strong impact on the accuracy of the super-individual approach. The simula-467

tions presented here were conducted in a neutral landscape, but if the model468

were run in a heterogeneous landscape the interactions of the individuals with469

the landscape may create model feedback that might further affect the accu-470

racy of the super-individual results, both spatially and temporally.471

Although the parallel solution appears to be more appropriate, in order to en-472

sure it is optimised for agent simulations the balance between the advantage473

of increasing the memory availability and the cost of communication between474

nodes must be assessed in relation to the number of individuals simulated.475

When the number of individuals is low, parallel simulations take longer (fig-476

ure 7) and are less efficient (figure 8) than a non-parallel model run on a477

single node. Increasing the number of nodes can reduce the demands on each478

individual node, but time to communicate between processors may also be479

increased (depending on the way in which the model is parallelised).480

For the model presented here, estimates of the maximum number of agents481

that can be simulated for varying numbers of nodes (table 3) and the maxi-482

mum number of agents for a given super-individual scale factor (table 3) were483

calculated with 1GB RAM, based upon information in figure 8. For the parallel484

version, when only two nodes are used the non-parallel simulation is estimated485

to have a higher maximum agent capacity per worker node, because space is486

not being used by the message passing code. However, from five nodes and487
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up there is a higher maximum agent capacity for the parallel version than the488

non-parallel model. The maximum agent capacity of 25 nodes is very high, at489

nearly 100 million. This is approximately ten times the number of agents that490

can be run within a reasonable time in the individual-based model. For low491

numbers of nodes run times are huge: for two and five nodes the run times are492

estimated to be 13 days and 47 days respectively. This would be expected to493

increase with the complexity of the simulation. For any given model there will494

be a threshold below which parallelisation is not efficient. Investigating this495

threshold is likely to be a matter of iterative development as demonstrated496

here, starting with a stripped-down model containing just the basic message-497

passing elements. Passing of agents between nodes is processor intensive, and498

therefore should be minimised. In this model, only the environment object499

and information on the number of agents to create on each node are passed500

from the control node to each of the nodes, and only density information is501

returned to the control node for redistribution and display (see figure 1).502

For the super-individuals (table 4) the relationship between the maximum503

number of individuals that can be simulated and the scale factor is very simple.504

The run time remains the same, as the maximum number of super-individuals505

or individuals is constant. The maximum number of individuals that can be506

simulated by this approach therefore depends purely on the scale factor used.507

It would therefore not be unrealistic to assume this approach may potentially508

enable the simulation of very large numbers of individuals indeed, in excess509

of 7E11 if a scale factor of 1,000,000 is used, for example (assuming this scale510

factor may be acceptable).511
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7 Conclusion512

In order to address the limitations on the number of agents imposed by the513

processing power and memory available, two solutions have been tested: par-514

allel processing and super-individuals. The parallel approach involved signifi-515

cant recoding of the model software, but no changes were made to the model516

structure and performance increased significantly, enabling the simulation of517

at least ten times more agents. The parallel model produced results that are518

comparable to the initial, non-parallel model, leading to the conclusion that for519

the simulation of very large populations the parallel model is a good solution.520

Although initially far simpler to implement, the super-individual approach is521

inappropriate for spatial simulations in the form presented here. However,522

it may be possible to use this approach if the model were to be signifi-523

cantly altered, by using another approach to simulate super-individual mor-524

tality, or a super-individual model merged with an individual-based model,525

where dispersal can be simulated by switching from a super-individual to an526

individual-based model when necessary. There is a high risk that the complex-527

ity of switching between model or implementing retrospective re-distribution528

of agents could introduce significant error and put high demands on the pro-529

cessor and/or memory, which are already limited. Overall, the results pre-530

sented here indicate that the super-individual approach is inappropriate to531

the spatially-explicit simulation of populations with density-dependent func-532

tions or interactive agents, unless individual variability is better taken into533

account. If this can be achieved satisfactorily, it has been demonstrated that534

the super-individual approach may lead to very large reductions in computa-535

tional demands.536
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Solution Pros Cons

Invest in an extremely
powerful computer.

No changes to model
code or structure.

High cost.

Invest in an extremely
powerful computer net-
work and reprogram the
model in parallel.

Makes available high
levels of memory and
processing power.
Model remains the
same.

High cost.
Advanced computing
skills required for re-
structuring of model
software.

Super-individuals Relatively simple solu-
tion.
Little change to model
formulation.

Reprogramming of
model and altered
structure and interac-
tions.
Untested in spatial
context.

Reduce the number of
individuals in order for
model to run.

No reprogramming of
model.

Unrealistic population.
Alters model behaviour.

Revert to a popula-
tion based modelling
approach.

Could potentially han-
dle any number of indi-
viduals.

Lose insights from IBM.
Potentially unsuitable
for the particular re-
search questions of the
study.
Construction of entirely
new model.

Table 1
Possible solutions when faced with a large number of individuals to model.
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Number of individu-
als

Number of super-
individuals

Number of indi-
viduals represented
by each super-
individual (‘scale
factor’)

100 10 10

1,000 10 100

100 10

10,000 10 1,000

100 100

1,000 10

100,000 10 10,000

100 1,000

1,000 100

10,000 10

500,000 50 10,000

500 1,000

5,000 100

50,000 10

Table 2
Table to show the construction of the tested super-individuals: individuals, super-
individuals and the number of individuals each super-individual represents
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Number of Nodes Maximum number of
agents

Estimated run time
of simulation (sec-
onds)

IBM 7.49E6 1.12E6

2 3.33E6 1.11E6

5 1.43E7 4.06E6

25 1.00E8 2.20E4

Table 3
The maximum number of agents that can be simulated for 2, 5 and 25 processors,
and the associated estimated run time
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Scale factor Maximum
number of
individuals

Maximum
number
of super-
individuals
(agents)

Estimated run
time of simula-
tion (seconds)

IBM 7.49E6 - 1.12E6

10 7.49E7 7.49E6 1.12E6

100 7.49E8 7.49E6 1.12E6

1,000 7.49E9 7.49E6 1.12E6

10,000 7.49E10 7.49E6 1.12E6

100,000 7.49E11 7.49E6 1.12E6

Table 4
The maximum number of agents that can be simulated when the super-individual
scale factor (number of individuals represented by each super-individual) is 10, 100,
1,000, 10,000 and 100,000 and the associated estimated run time.
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Fig. 1. Flow chart illustrating the operation of rules at each stage of a model run
for a simple Repast model, and the role of message passing to control the program
flow between node 0 and the other nodes.
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Fig. 2. Super-individuals: Grouping of individuals into single objects that represent
the collective
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(a) (b) (c)

Fig. 3. The three main approaches to estimating the mortality of super-individuals:
(a) The number of super-individuals remains constant, and mortality reduces the
number of individuals (N) represented by the super-individual. (b) N is kept rel-
atively constant, by mortality reducing N then super-individuals are recombined
when N falls below N0/2. (c) Assume that an entire super-individual dies when
subject to mortality.
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Fig. 4. 10,000 individuals: comparison between individual-based simulation, 1,000
super-individual simulation (each represents 10 individuals), 100 super-individual
simulation (each represents 100 individuals) and 10 super-individual simulation
(each represents 1,000 individuals), showing 95% confidence limits derived from
the standard error.
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Fig. 5. Comparison of the mean (absolute) percentage error between the su-
per-individual simulations and the individual-based simulation, at t = 40.
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(a) 10,000 individuals, density at 2 days: (l-r) Individual-based simulation,
super-individual simulation scale factor 10, 100 and 1,000

(b) 10,000 individuals, density at 20 days: (l-r) Individual-based simula-
tion, super-individual simulation scale factor 10, 100 and 1,000

(c) 10,000 individuals, density at 40 days: (l-r) Individual-based simula-
tion, super-individual simulation scale factor 10, 100 and 1,000

Fig. 6. Spatial density distributions for individual-based versus super-individual sim-
ulations (10,000 aphids) at (a) 2 days (b) 20 days and (c) 40 days. The distribution
further from the central cell is influenced by the constant westerly wind direction
to result in a linear movement pattern.
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Fig. 7. Plot of the percentage speed up from the individual-based (non-parallel)
model against number of agents modelled: comparison between parallel simulations
using 2, 5 and 25 nodes and super-individuals of scale factor 10, 100, 1,000, 10,000,
100,000 and 500,000
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Fig. 8. Plot of the mean maximum memory used in a simulation run against number
of agents for the model, for different numbers of nodes (memory per node) and scale
factors for super-individuals
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