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The interplay between boundary conditions and flow geometries in shear banding:

hysteresis, band configurations, and surface transitions
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We study shear banding flows in models of wormlike micelles or polymer solutions, and explore
the effects of different boundary conditions for the viscoelastic stress. These are needed because the
equations of motion are inherently non-local and include “diffusive” or square-gradient terms. Using
the diffusive Johnson-Segalman model and a variant of the Rolie-Poly model for entangled micelles
or polymer solutions, we study the interplay between different boundary conditions and the intrinsic
stress gradient imposed by the flow geometry. We consider prescribed gradient (Neumann) or value
(Dirichlet) of the viscoelastic stress tensor at the boundary, as well as mixed boundary conditions
in which an anchoring strength competes with the gradient contribution to the stress dynamics. We
find that hysteresis during shear rate sweeps is suppressed if the boundary conditions favor the state
that is induced by the sweep. For example, if the boundaries favor the high shear rate phase then
hysteresis is suppressed at the low shear rate edges of the stress plateau. If the boundaries favor the
low shear rate state, then the high shear rate band can lie in the center of the flow cell, leading to
a three-band configuration. Sufficiently strong stress gradients due to curved flow geometries, such
as that of cylindrical Couette flow, can convert this to a two-band state by forcing the high shear
rate phase against the wall of higher stress, and can suppress the hysteresis loop observed during a
shear rate sweep.

I. INTRODUCTION

Microscopic models for certain viscoelastic fluids, such
as wormlike micelles [1] and high molecular weight poly-
meric liquids [2, 3] predict unstable homogeneous station-
ary states for controlled average shear rates. Specifically,
the coupled equations of motion for the fluid flow and
microstructural quantities, such as the viscoelastic stress
Σ or orientational order, predict a nonmonotonic con-

stitutive curve, i.e. the steady state total shear stress
Txy (or equivalently the applied torque) as a function of
applied shear rate γ̇ for homogeneous flows. This con-
stitutive curve typically is multivalued with a region of
decreasing shear stress as a function of increasing shear
rate, which is a hallmark of hydrodynamic instability [4].
Understanding this nonlinear behavior is important for
practical applications such as injection moulding of plas-
tics and drilling muds used in bore holes [5]. The simplest
resolution of the instability is an inhomogeneous state
with macroscopic regions of high and low shear rates,
known as shear bands [6, 7], which has been widely ob-
served in wormlike micelles [8, 9, 10, 11], lamellar surfac-
tant solutions [12], and liquid crystals [13]. The resulting
experimental signature of this inhomogeneous state is a
stress plateau as a function of controlled average shear
rate. We denote this experimentally determined relation
between total shear stress and average shear rate as the
flow curve; in shear banding flow this curve incorporates
inhomogeneous flows and is distinct from the constitutive

curve, which cannot be measured because of the consti-
tutive instability. In Fig. 1 the dashed line shows the con-
stitutive curve while the triangles show flow curves that
could be measured upon either increasing or decreasing
average shear rate ramps.

Experimentally, it is clear that the geometry of the
shear cell affects the positioning of the shear bands. The
simplest structure is seen in the cylindrical Couette ge-
ometry where two bands form, with the higher shear rate
band near the inner wall (rotor) [14]. In the cone and
plate geometry a different band configuration has been
reported: two low shear rate regions next to the cone
and plate separated by a high shear rate region [9]. One
explanation offered for that result was that secondary
flows stabilized the center band [15]. We will show that
a boundary condition that prescribes a value for the poly-
meric stress tensor similar to that of the low shear rate
phase can induce this three-band configuration.

The experimental rheological features of shear band-
ing have been studied in detail for wormlike micellar so-
lutions [10, 11, 16]. A constitutive curve such as the
dashed line in Fig. 1 can only be inferred because the
negative slope region is unstable; however, the exper-
imentally measured flow curve, indicated by triangles,
typically shows a stress plateau which spans the range of
average applied shear rates at which the system shows
shear banding. During shear rate ramps from rest, hys-
teresis is often observed at the start of this plateau: the
stress increases past the plateau stress and follows the

http://uk.arXiv.org/abs/0710.3242v1


2

constitutive curve until, at a time that depends on the
rate of the ramp, a high shear rate band develops and
the total stress decreases onto the steady state plateau
[10, 11, 17]. However, if the shear rate is reduced from a
point on the plateau, the low shear rate branch of the con-
stitutive curve is intersected directly by the flat plateau.
This behavior is reminiscent of nucleation and hysteresis
at first order phase transitions, and we will show below
that the boundary conditions can influence this hystere-
sis, in a manner analogous to heterogeneous nucleation.

FIG. 1: Dashed line: the constitutive curve (dimensionless

specific torque Γ̂ as a function of dimensionless shear rate ˆ̇γ)
for the diffusive Johnson-Segalman (DJS) model in cylindri-
cal Couette flow. The triangles show simulated steady state
flow curves for zero gradient (Neumann) boundary conditions,
for increasing (⊲) and decreasing (⊳) the average shear rate

〈ˆ̇γ〉 from small or large average shear rates respectively. The

model parameters are a = 0.3, ǫ = 0.05, D̂ = 10−5, and the
gap size is 0.1% of the radius (q = 0.005). The physical differ-
ence between the two bands is illustrated by ellipsoids whose
principal axes’ directions and length ratios coincide with those
of the viscoelastic stress tensor ΣL and ΣH in, respectively,
the low and high shear rate phases.

In modelling shear banding systems such as wormlike
micelles the most important degrees of freedom are the
fluid velocity v and a viscoelastic contribution to the
stress, Σ; here we neglect other other potentially impor-
tant quantities such as concentration and micellar length.
Among models with non-monotonic constitutive curves
for homogeneous flow, spatially local ones such as the
Johnson-Segalman model in its original form [18] show
high sensitivity to the flow history and do not give the
well-defined and unique stress plateau observed in experi-
ments [19]. In contrast, if a non-local diffusive term (typ-
ically proportional to ∇2Σ) is included in the constitu-
tive equation for the viscoelastic stress (e.g. the diffusive
Johnson-Segalman (DJS) model), there is only a single
value of the total stress for which the interface between

bands is stable and stationary [20]. The diffusive term
arises from microscopic physical mechanisms such as the
diffusion of molecules that carry stress [21], the persis-
tence length of wormlike micelles [22], or hydrodynam-
ics [23, 24]. The resulting equation governing inhomoge-
neous steady states is thus a spatial differential equation
for the viscoelastic stress, which necessitates a bound-
ary condition that is, at present, unknown. The most
frequently used boundary condition on the viscoelastic
stress Σ has been that of zero stress gradient parallel to
the boundary normal [20]. This boundary condition pre-
dicts the flow curve shown in Fig. 1 for the DJS model.
As noted above, this flow curve shows hysteretic behav-
ior at the start of the stress plateau similar to that seen
in experiment [11], with a stress overshoot during an in-
creasing shear rate ramp.

Other theoretical studies of shear banding have used a
fixed value of the polymeric stress [25, 26, 27] at the wall
(Dirichlet boundary conditions). Cook and Rossi con-
sidered a two-fluid model for wormlike micelles in which
the micelles were assumed to align at the wall parallel to
the flow direction, in both planar and cylindrical Cou-
ette flow. They found that the flow curve deviates sig-
nificantly from the constitutive curve near the low shear
rate branch [25, 26], exhibited hysteresis only at the high
shear rate side of the stress plateau, and possessed a
three-band state with the boundary condition induced
high shear rate bands near the wall. Qualitatively sim-
ilar results were found by Picard and co-workers in a
scalar model for shear banding in a yield stress solid [27].

In this paper we perform a more detailed study of the
effects of different boundary conditions for the viscoelas-
tic stress at the wall, Σ0. We consider strong “anchoring”
in which Dirichlet conditions apply, and interpolate be-
tween oblate and prolate forms of Σ0. We also study
mixed boundary conditions, in which Σ0 is determined
by a balance between spatial gradients and surface an-
choring. Moreover, we address the important interplay
between the boundary conditions and intrinsic inhomo-
geneity of the flow determined by the flow geometry (to
compare cylindrical and planar Couette flow with cone
and plate flow, for example).

The organization of the paper is as follows. In Sec-
tion II we outline the details for solving the equations of
motion within the creeping flow approximation in cylin-
drical Couette flow, and describe two constitutive equa-
tions for the viscoelastic stress: the DJS model [20] and a
tube-based model which has been developed for polymer
solutions and wormlike micelles [28, 29]. The physical
motivation for the boundary conditions is discussed in
Section III. After reviewing previous results for Neu-
mann boundary conditions in Section V, the main new
results are presented in Section VI. We organize these as
follows: (1) the effect of different fixed value (Dirichlet)
boundary conditions on the flow curves and hysteresis
upon increasing and then decreasing the average shear
rate; (2) the interplay between boundary conditions and
the stress gradient imposed by the flow geometry (e.g.
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cylindrical Couette flow) and their effects on the stable
position of the shear bands; and (3) the effect of mixed
boundary conditions, in which the viscoelastic stress at
the surface is influenced by both the bulk constitutive re-
lation and the flow geometry. We demonstrate the possi-
bility of a transition between different effective boundary
conditions as a function of the anchoring strength.

II. EQUATIONS OF MOTION

A. Creeping Flow Approximation

In a wormlike micellar system we assume that the total
stress T can be separated into contributions from the
Newtonian solvent and a viscoelastic stress Σ from the
micelles:

T = 2ηD + Σ − pI. (II.1)

Here I denotes the identity matrix, η is the solvent shear
viscosity, D = 1

2

[

∇v + (∇v)T
]

is the symmetric veloc-
ity gradient tensor, and p is the isotropic pressure deter-
mined by incompressibility (∇·v = 0). We are interested
here in the creeping flow regime (low Reynolds number),
for which the force balance has the form

∇ · T = 0. (II.2)

We perform calculations explicitly for Couette flow be-
tween concentric cylinders and assume unidirectional

flow v = v(r, t)θ̂, where r and θ are the usual cylindrical
coordinates. In this case, Eqs. (II.1-II.2) imply that

ηγ̇(r, t) + Σrθ(r, t) =
Γ

r2
, (II.3)

where

γ̇(r, t) = r
∂

∂r

v(r, t)

r
, (II.4)

and Γ, the specific torque per unit cylinder height per
radian, is a constant of integration. We assume no-slip
boundary conditions on the velocity field. For cylindrical
Couette flow with a fixed outer cylinder and a rotating
inner cylinder of velocity V , the no-slip boundary condi-
tions lead to the following global constraint

V

R1

=

∫ R1

R2

γ̇(r, t)
dr

r
, (II.5)

which implies that the specific torque Γ is given by

Γ
R2

1 − R2
2

R2
1R

2
2

= 2

(

ηV

R1

−
∫ R2

R1

Σrθ

dr

r

)

. (II.6)

To simplify the equations we define the spatial variable

x =
1

q
ln

(

r

R1

)

, (II.7)

where q = ln R2

R1
. Making use of this variable change, the

creeping flow equation becomes

ηγ̇ = Γe−2qx − Σrθ, (II.8)

with the specific torque is given by

Γ =
2q

1 − e−2q
(〈Σrθ〉 − η〈γ̇〉) , (II.9)

where the spatial averages are simplified to 〈(·)〉 =
∫ 1

0
(·)dx. This expression can be used to calculate Γ for an

imposed average shear rate, and hence render Eq. (II.8)
an integral equation determining the relation between the
local and average shear rates and viscoelastic shear stress.
A complete description of the dynamics requires an equa-
tion of motion for the viscoelastic stress Σ, examples of
which are described below.

B. Constitutive Equations

1. Diffusive Johnson-Segalman (DJS) Model

One of the simplest tensorial models that produces
a non-monotonic constitutive curve is the DJS model,
which has been studied in detail [18, 19, 20, 30]. Phys-
ically it is motivated by neglecting all but the lowest
modes of vibration of polymer chains, thereby represent-
ing them as elastic dumbbells with span R [31]. The
viscoelastic stress tensor Σ is related to the extension of
the dumbbells by Σ = G(−I + k〈RR〉), where expres-
sions for the normalization k and the modulus G can be
derived in terms of the parameters in the underlying mi-
croscopic polymeric models. Here 〈(·)〉 denotes a thermal
average. The DJS model [20, 32] provides the constitu-
tive equation for the evolution of the viscoelastic stress:

�

Σ +
1

τ
Σ = 2

µ

τ
D + D∇2Σ, (II.10)

where

�

Σ= (∂t+v·∇)Σ+(Ω·Σ−Σ·Ω)−a(D·Σ+Σ·D), (II.11)

τ is a relaxation time, the “polymer” viscosity µ is related
to the modulus by G = µ/τ , and Ω = 1

2

[

∇v − (∇v)T
]

.
The total stress comprises the viscoelastic stress of the
DJS model and a Newtonian contribution, according to
Eq. (II.1), and the viscosity ratio ǫ ≡ η/µ controls the
balance between the two stresses. The ‘slip parameter’
a, which describes non-affine stretch of the dumbell with
respect to the extension of the flow, allows for a non-
monotonic constitutive curve for 0 < |a| < 1 and ǫ < 1/8.

The “diffusion” term D∇2Σ describes non-local relax-
ation of the viscoelastic stress and is necessary to describe
strongly inhomogeneous flow profiles [20]. Because of this
term the steady shear banding state obeys a spatial dif-
ferential equation, which must solved subject to bound-
ary conditions specified at the walls of the flow cell. The
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solvability condition for a stationary interface leads to
a unique total shear stress plateau for imposed average
shear rates in the non-monotonic portion of the constitu-
tive curve [24]. The characteristic width ℓ of the interface

between shear bands is given by ℓ =
√
Dτ .

For convenience we define the modulus G = µ/τ . In
cylindrical Couette flow the constitutive equation has the
following components [20]:

LΣrr = −(1 − a)γ̇Σrθ +
2De−2qx

q2R2
1

(Σθθ − Σrr) (II.12a)

LΣθθ = (1 + a)γ̇Σrθ −
2De−2qx

q2R2
1

(Σθθ − Σrr) (II.12b)

LΣrθ = γ̇

[

G − 1 − a

2
Σθθ +

1 + a

2
Σrr

]

− 4De−2qx

q2R2
1

Σrθ,

(II.12c)

where

L ≡ ∂

∂t
+

1

τ
− De−2qx

q2R2
1

∂2

∂x2
. (II.13)

2. Reptation-Reaction and Rolie-Poly Models

In Cates’ model [33] of wormlike micellar solutions the
micelles are assumed to relax in a tube, and the devia-
toric viscoelastic stress is defined by Σ = G(−I+3〈uu〉),
where the unit vector u describes the local orientation
of tube segments. The viscoelastic stress is given by a
history integral over the second moment of the correla-
tion function 〈uu〉, weighted by the distribution of tube
segments as they are created and subsequently vacated
by the wormlike micelles. The resulting integral equation
can be re-written as the following differential equation by
using a decoupling approximation to remove fourth order
moments [29]:

∇

Σ +
1

τ
Σ = 2GD− 2

3
Σ : ∇v (I + (1 + β)[Σ/G])+D∇2Σ,

(II.14)
where

∇

Σ= (∂t+v·∇)Σ+(Ω·Σ−Σ·Ω)−(D·Σ+Σ·D). (II.15)

and β = 0. A stress diffusion term, which did not appear
in the original formulation, has been included here. The
non-linear term in this equation preserves the traceless
property of the deviatoric stress.

Interestingly, for β 6= 0 this model is identical to an
extension of the original Doi-Edwards (DE) theory of en-
tangled polymers [2], which has a constitutive instability
and therefore predicts shear banding. This extension to

the DE theory incorporates the enhanced release of poly-
mer entanglements due to convection[34], which increases
the polymer stress and can “cure” the DE instability for
sufficiently strong convected constraint release (CCR).
CCR and tube stretching were incorporated in [3] to de-
scribe polymer melts and wormlike micelles, and later
simplified to a differential version called the Rolie-Poly
model [28]. In the version of the Rolie-Poly model used
in Eq. (II.14) the tube length is assumed to be relaxed
(“non-stretching”). The CCR parameter β (0 ≤ β ≤ 1)
corresponds to the frequency of the release of polymer
entanglement constraints due to convection by the flow,
and Ref. [28] used β = 1 to model a well-entangled poly-
mer melt without a constitutive instability. For small
enough β a constitutive instability results.

FIG. 2: Regions of parameter space β and ǫ for which
the DRP model has either a monotonic (unshaded) or non-
monotonic (shaded) constitutive curve.

The DE constitutive instability is thought to be an un-
physical prediction of polymer melts [3], but a series of re-
cent experiments have reignited the interest in this insta-
bility by showing data, such as velocity profiles, consis-
tent with shear banding in polymer solutions [35, 36, 37].
Hence, the Rolie-Poly model is an alternative simple con-
stitutive model to the DJS model for wormlike micelles,
and by tuning the parameter β it can be used to address
polymer solutions and melts.

As with the DJS model, we define the modulus by
G = µ/τ and the ratio of Newtonian (or “solvent”) to
viscoelastic stress by ǫ = η/µ. For a given ǫ a non-
monotonic constitutive curve is found if the degree of
convected constraint release β is small enough (Fig. 2).
We will refer to the model described above as the diffusive
Rolie-Poly (DRP) model. In cylindrical Couette flow the
components of the DRP model evolve according to
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LΣrr = −2

3
γ̇Σrθ [1 + (1 + β)(Σrr/G)] +

2De−2qx

q2R2
1

(Σθθ − Σrr) (II.16a)

LΣθθ = −2

3
γ̇Σrθ [1 + (1 + β)(Σθθ/G)] + 2γ̇Σrθ −

2De−2qx

q2R2
1

(Σθθ − Σrr) (II.16b)

LΣrθ = Gγ̇ + γ̇Σrr −
2

3
γ̇Σrθ(1 + β)[Σrθ/G] +

4De−2qx

q2R2
1

Σrθ. (II.16c)

III. BOUNDARY CONDITIONS

A. Liquid crystal analogy

To motivate the possible boundary conditions in micellar systems, we first recall the situation of nematic liquid
crystals confined between walls, in which the boundary conditions are a balance between surface and bulk interactions
[38]. The free energy depends on the nematic order parameter Q = 〈uu〉 − 1

3
I, where the unit vector u is parallel to

the liquid crystalline mesogen [38]. A simple free energy functional for a nematic liquid crystal is [38]

FLC =

∫

V

[

f b
h(Q) + 1

2
K(∇Q)2

]

dV + 1

2
WQ

∫

walls

Tr(Q − Q0)
2dS, (III.1)

where f b
h(Q) is the homogeneous part of the bulk free

energy, typically expanded in Landau form as f b
h(Q) =

a
2
TrQ2 + . . .; and K is a Frank elastic constant. In the

surface free energy, WQ specifies the strength of the wall
potential which penalizes deviations away from a specific
order parameter tensor Q0. More complex surface free
energies are possible [39], and one may alternatively con-
sider boundary conditions that influence the orientation,
but not magnitude, of Q at the wall.

The spatial dependence of the order parameter is found
by demanding that the free energy functional be station-
ary with respect to varying Q. Stationarity in the bulk
leads to the following differential equation,

δFLC

δQ
= [aQ + . . .] −K∇2Q = 0, (III.2)

whose boundary condition arises from requiring zero vari-
ation at the wall:

K n̂ · ∇Q + WQ(Q− Q0) = 0. (III.3)

Here n̂ is the outward unit normal from the fluid at the
wall. Physically the boundary condition is a balance of
surface and bulk mesogen torques at the wall.

The bulk equation defines a correlation length ℓ =
√

K/a, which controls the decay of order parameter fluc-
tuations away from the surface, while the boundary de-
fines an extrapolation length

ξ =
K

WQ

. (III.4)

which controls wall anchoring [38]. The extrapolation
length ξ roughly sets the scale for the gradient ∇ ≃ 1/ξ

induced at the wall by the boundary conditions, in the
absence of bulk Frank stresses. For small ξ the effective
gradient at the wall is very large, so the wall potential has
a strong effect. Conversely, for large ξ the characteristic
gradient is small, and the anchoring potential has a weak
effect.

The extrapolation length should thus be compared
with the bulk healing length or correlation length ℓ to
assess the relevant regime. For strong anchoring (ξ ≪ ℓ)
the boundary conditions effectively impose Q0 at the
walls, while for weak anchoring (ξ ≫ ℓ) the boundary
conditions are dictated by the Frank elastic term, result-
ing in Neumann boundary conditions, or ∇Q = 0. Mixed
boundary conditions apply between these two extremes
[38].

B. Viscoelastic stress

Based on the liquid crystalline example, we apply simi-
lar boundary conditions to the viscoelastic stress; the de-
tails are given in Appendix A. The viscoelastic stress is
analogous to the liquid crystalline order parameter, and
the stress diffusion constant is analogous to the Frank
elastic constant (according to Dτ → K), and there is a
corresponding anchoring potential, leading to

Dτ n̂ · ∇Σ + W (Σ − Σ0) = 0. (III.5)

In this formulation the anchoring potential has the di-
mensions of length.

As shown in Appendix A, the anchoring potential W
can be expressed as W = W0/G, where G is the modulus
and W0, with dimensions of energy per area, penalizes
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deviations of the polymer deformation Λ from a refer-
ence strain Λ0. A simple, albeit weak, contribution to
the anchoring potential comes from the effect of the wall
on nearby micellar or polymer conformations. In Ap-
pendix A we estimate W ≃ 2Rg, where Rg is the radius
of gyration.

By analogy with the liquid crystal example above, the
extrapolation length is given by

ξ =
Dτ

W
=

√
Dτ

W
ℓ, (III.6)

where the interfacial width ℓ is set by the diffusion con-
stant according to ℓ =

√
Dτ . The two characteristic

lengths are comparable when ξc/ℓ ≃ 1, or as noted
above, we expect weak anchoring (large ξ) to yield ef-
fectively Neumann boundary conditions (zero gradient)
[19, 20, 26]. Alternatively, very strong anchoring might
be encouraged by specific wall treatments such as rub-
bing or grooving the walls along a particular direction
m̂, i.e. specifying Σ0 ∼ m̂m̂. This would give very
small ξ and effectively Dirichlet boundary conditions, as
used by Cook and co-workers [25, 40].

To determine the extrapolation length an estimate for
the diffusion constant D is necessary. Two physical ef-
fects that can lead to non-local dynamics and hence stress
diffusion are (1) the semi-flexibility of wormlike micelles
[22] and (2) diffusion of micelles that carry stress [40].
In the former case the characteristic length scale is set
by the persistence length ℓp. In Appendix B we estimate
these two contributions to be

Dτ =











ℓ2
p

126
(semi-flexiblility)

Dtrτ (translational diffusion),

(III.7)

where Dtr is the translational diffusion coefficient.

If we consider effects due to semiflexibility, combined
with the estimate for W due steric wall interactions, we
estimate anchoring length to be

ξ ≃
ℓ2
p

126Rg

. (III.8)

For typical giant micelles for which L ≃ 200 µm, ℓp ≃
20 nm, we find Rg ≃ 18ℓp ≃ 670nm, or ξ ≃ 0.05Å. The

interfacial width in this case is ℓ ≃ 0.09ℓp ≃ 180Å, which
would imply strong anchoring.

Alternatively, if we naively apply the estimate for the
contribution of translational diffusion to semidilute mi-
cellar solutions with Dtr ≃ 10−8 cm2/s, τ ≃ 1 s, one finds
Dτ ≃ 1 µm2, leading to ξ/ℓ ≃ 0.8 . Hence in this case
one might expect the effective boundary conditions to be
somewhere between Neumann and Dirichlet.

We stress that these estimates are necessarily very
crude, and should ultimately be replaced by more pre-
cise calculations.

IV. METHOD OF CALCULATION

A. Non-dimensional parameterization

For both models we express all stresses in units of
the modulus G, and express time in units of the mi-
cellar (polymer) stress relaxation time τ . In cylindrical
Couette flow the natural scale for length is the quan-
tity R1q, which for small q is identical to the gap size
R2 − R1 = R1(1 − e−q). Hence the dimensionless quan-
tities are:

t̂ = t/τ ˆ̇γ = γ̇τ (IV.1a)

Σ̂ =
Σ

G
D̂ =

Dτ

R2
1q

2
(IV.1b)

Ŵ =
W

R1q
. (IV.1c)

In cylindrical Couette flow the boundary conditions are

− D̂ ∂

∂x
Σ + Ŵ (Σ − Σ0) = 0 at x = 0 (IV.2)

D̂e−q ∂

∂x
Σ + Ŵ (Σ − Σ0) = 0 at x = 1, (IV.3)

where the change in sign arises from the orientation of
the surface normal n̂.

We use ǫ = 0.05, a = 0.3 for the DJS model and ǫ =
0.01, β =0 for the DRP model, which places the latter in
a non-monotonic regime of parameter space (Fig. 2). For

the shear rate startup calculations shear rates of 〈ˆ̇γ〉=3.8

(DJS model) and 〈ˆ̇γ〉=9 (DRP model) were used, which
are approximately in the middle of the respective stress
plateaux.

B. Numerical Methods

We solve the creeping flow equation (Eq. II.8) for
the steady state banding profiles of the two models
(Eqs. II.12 and II.16) for different imposed boundary
conditions and parameter values. In all cases an aver-
age shear rate 〈γ̇〉 is imposed, so the local shear rate is
eliminated using Eq. (II.8) to obtain a set of coupled sec-
ond order partial differential equations for Σrr, Σθθ and
Σrθ. This set of equations is then solved subject to the
chosen boundary conditions by evolving them using the
Crank-Nicolson algorithm [41].

Two protocols were followed; the first for shear rate
sweeps to calculate flow curves, and the second to cal-
culate shear rate startups from rest. In the first proto-
col, shear rate sweeps, an initial viscoelastic stress pro-
file was generated by a set of the 20 longest wavelength
Fourier modes that fit the desired boundary conditions.
Randomly assigned amplitudes for modes of the stress
components Σαβ were taken from a uniform distribution
such that the maximum total value for any component
1. The equations of motion were then evolved to find the
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steady state for the first average imposed shear rate in
the sweep, which was on either the low or high shear rate
flow branch of the constitutive curve. This state was then
used as the initial condition for the next average shear
rate in the sweep (either incremented or decremented).
This process was continued until the desired region of
the flow curve had been calculated. At each shear rate
the system was evolved typically 500 relaxation times τ ,
using a time step of 0.05; it was checked that the steady
state results did not change for smaller time steps.

In the second protocol a range of initial viscoelastic
stress configurations were subjected to a given step in
the shear rate from zero, and evolved to ensure that the
same steady state was reached. Using random initial
conditions often produced multiple bands in this proto-
col; these multiple bands often did not anneal into two
bands, which is probably a consequence of both the slow
motion of interfaces in one dimensional systems and the
fact that multiple interface solutions are known to be
locally stable when the interface width is much smaller
than the system size [42]. Because we are not interested,
here, in the details of this degeneracy, we used a spatially
smooth initial condition for the viscoelastic stress tensor
which would encourage the simplest band configuration
commensurate with the given boundary conditions. A
variety of different smooth initial conditions were used
to ensure that the results obtained were robust.

For smaller D̂ and q steady state could take as long as
10000τ to attain. In the shear banding regime the po-
sitions of the interfaces between bands were monitored
to ensure that they had stopped moving. In nearly flat
geometries with weak curvatures and/or sharp interfaces

(q < 10−4.5, D̂ < 10−3), it was difficult to reliably de-
termine the steady state interfacial position; this slow
dynamics of fronts in one dimension is well known [43].
Hence we did not study this range of parameter space for
this protocol.

C. Notation for (Dirichlet) Boundary Conditions

A convenient parameterization of the Dirichlet bound-
ary condition Σ0 arises from the physical interpretation
of viscoelastic stress tensor in terms of the second mo-
ment of unit vector orientations, Σ = G (3〈uu〉 − I). In
its principal frame Σ0 can be written (in dimensionless
form) as

1

3
Σ̂0 + 1

3
I =





2S+1

3
0 0

0 1−S
3

− b 0
0 0 1−S

3
+ b



 , (IV.4)

where S = 3

2
〈cos2 θ〉− 1

2
and b = 〈sin2 θ cos 2φ〉. The con-

ventional spherical polar coordinates θ and φ describe the
orientation of unit vectors with respect to the principal
axes. The parameter S specifies the degree of order along
the principal direction, and b specifies the degree of bi-
axiality; S and b obey − 1

2
< S < 1, so − 1−S

3
< b < 1−S

3
.

The order parameter may be illustrated by plotting an
ellipsoid with principal axes parallel to and proportional
to those of the tensor (Fig. 3).

By symmetry, we expect the principal axes of Σ0 to
coincide with the axes chosen, although in principle one
could include non-trivial tilt angles with respect to the
surface, as is found in the behavior of liquid crystals at
some interfaces. One could also consider, as was done
in Refs. [25, 26], a preferred direction of alignment along
the wall. Below we will consider the natural principal
axes set by the wall, the principal axes determined by
the steady state bulk solutions, and a restricted set of
angles rotated with respect to the natural axes.

FIG. 3: Tuning between (top) prolate and oblate boundary
alignment, and (bottom) homeotropic and tangential align-
ment. In (top) the principal axes remain unchanged and the
parameters S and b are varied, while in (bottom) S and b are
fixed to a prolate distribution, and the angle of orientation
with respect to the surface is changed.

V. REVIEW: NEUMANN BOUNDARY
CONDITIONS

We first review the results for Neumann boundary con-
ditions, calculated previously for the DJS model [20]. In
this case the diffusion term selects the value T ∗

xy of the to-
tal shear stress plateau [24]. At other values for the total
stress the interface moves at a speed c ∼ Txy − T ∗

xy [44].
In a flow geometry such as cylindrical Couette flow, in
which the total stress is inhomogeneous in steady state,
the interface lies at the position of the flow cell at which
the total stress is equal to T ∗

xy (as long as the stress gra-
dient is negligible over the scale of the interfacial width

ℓ =
√

D̂) [44, 45]. Hence the stress gradient drives the in-
terface to the correct position. In a flat geometry with no
stress gradient the speed of approach to the steady state
position commensurate with the imposed average shear
rate is determined by interaction with the distant wall,
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FIG. 4: Hysteresis observed in the DJS model in Couette flow
for q = 0.00995 upon increasing and decreasing the average
shear rate (or the gap velocity) along the either edge of the
stress plateau stress plateau (From [20]).

and vanishes in the limit of a small diffusion coefficient
[46].

The flow curve in cylindrical Couette flow has a stress
plateau with a slope ∂T ∗/∂〈γ̇〉 ∼ eq − 1, which vanishes
in the planar limit q = 0. In either case the flow curves
display hysteresis at either edge of the stress plateau
(Fig. 4) [20]. During a shear rate sweep from rest the
fluid follows the low shear rate branch to a total wall
stress Trθ > T ∗

xy, until a high shear rate band forms and
the stress decreases onto the stress plateau. For a down-
ward shear rate sweep from on the stress plateau the high
shear rate band shrinks until the interface “touches” the
wall; at this point a banding solution is unstable with
respect to a homogeneous phase with a higher stress on
the low shear rate branch. The width of the hysteresis
loop decreases upon decreasing the diffusion constant D̂.
Hysteresis of this sort is frequently seen in wormlike mi-
cellar solutions at the low shear rate edge of the stress
plateau [10, 11, 17]. The nature of nucleation of a shear
banded state from a homogeneous phase is unknown and
worthy of study in its own right. Similar behavior is pre-
dicted near the high shear rate edge of the stress plateau;
this has rarely been studied wormlike micelles, because
in many cases the high shear rate band is unstable or
unattainable.

Fig. 5 shows the position of the interface between
bands as a function of curvature q, defined as the po-
sition of midpoint between the high and low values of
Σrθ. The high shear rate band appears to shrink at high
curvatures (large q) because of the total stress gradient;
this larger gradient effectively concentrates the shear rate
near the inner wall, so that the shear band occupies a
slightly narrower region. The viscoelastic stress tensor
of the high shear rate band of the DRP model, while
strongly ordered, is only slightly more aligned with the
velocity direction than in the low shear rate state. The
high shear rate state has an alignment angle of 26◦ which
is comparable to that reported in experiments on worm-

FIG. 5: Position x of the interface between the shear bands
for Neumann boundary conditions for the DJS (top) and DRP

(bottom) models, for D̂ = 1.6 × 10−3. The ellipses show the
eigenvalues and principal axes of the viscoelastic stress tensor,
which in all cases is nearly prolate in the velocity gradient
plane. The coordinate x is parallel to the velocity gradient,
∇.

like micelles [16]. This contrasts with the DJS model,
in which the viscoelastic stress tensor is strongly aligned
with the flow in the high shear rate band. Hence the
DRP model may be a more realistic model for wormlike
micelles than the DJS model.

The upper abscissas of Fig. 5 shows the stress dif-
ferences in terms of geometric parameters for cylindri-
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cal Couette flow, ∆R/R and an equivalent cone angle
θ for cone and plate flow. In Couette flow, ∆R/R ≡
(R2 − R1)/R1 = 1 − e−q, and the relative stress differ-
ence between the two cylinders is ∆Trθ/Trθ = 1 − e−2q.
In cone and plate geometry the relative stress difference
is a weak function of the cone angle, ∆Tθφ/Tθφ = tan2 θ
[47]. Hence, the cone angle θ that is roughly equivalent
to a given Couette curvature satisfies tan2 θ = 1 − e−2q.

For reference, the selected stresses for the two models
in a flat geometry, in the limit of an infinite system and
Neumann boundary conditions, are:

T̂ ∗

rθ

1 + β
= 0.62431 DRP model (V.1)

T̂ ∗

rθ

√

1 − a2 = 0.4829 DJS model. (V.2)

VI. RESULTS

We first consider weakly curved Couette flow, and
study the effect of different Dirichlet boundary conditions
and the magnitude of the diffusion coefficient, or equiv-
alently the widths of interfaces, on the flow curves and
attendant hysteresis. Then we study how the stress pro-
files and configuration of bands depends on the competi-
tion between the stress gradient due to the curvature of
Couettte flow and the boundary conditions. Finally, we
consider mixed boundary conditions, in which the value
at the wall can adjust depending on the competition be-
tween boundary parameters and the stress gradient.

A. Effect of different Dirichlet boundary conditions
for fixed geometry

1. Prolate and flow-aligning anchoring

Here we choose the degree of curvature to be q = 0.005,
which corresponds to radii R2 ≃ 1.005R1, and enforce
Σ0, the value of the viscoelastic stress at the boundaries
(Dirichlet boundary conditions). The principal axes of
Σ0 are chosen to be parallel to the flow, gradient and
vorticity directions. The parametrisation of Eq. (IV.4)
was then applied so that Σ0 is completely aligned in the
flow direction, tangential to the walls, for S → 1.

Figure 6 shows the flow curves and shear rate pro-
files for upward (⊲) and downward (⊳) sweeps of the
DJS model for flow-aligning prolate boundary conditions,
S = 1.0, b = 0, similar to the value ΣH of the high shear
rate branch. For low shear rates the stress is lower than
that of the low shear rate constitutive curve; profiles 1
and 4. This can be traced to a lubricating layer (evident
in the inset of profile 1) induced by the wall, which has
a higher shear rate and hence reduces the stress for a
given imposed shear rate. Hysteresis is not seen at the
low shear rate edge of the plateau, presumably because

of this lubricating layer. Hence the effect of the bound-
ary condition is similar to heterogeneous nucleation or a
wetting: it provides a site upon which the shear band can
easily grow, and can eliminate the hysteresis so that the
shear band grows smoothly from the wall without requir-
ing “nucleation”. Hysteresis is only seen at the high shear
rate side of the stress plateau, as shown in profiles 3 and
6, which are at the same imposed shear rate but after
different histories. This behavior should be contrasted
with Neumann boundary conditions, in which hysteresis
was predicted at both edges of the stress plateau.

In the stress plateau region the high shear rate band
lies near the inner cylinder (near x = 0), for both increas-
ing and decreasing shear rate sweeps (profiles 2 and 5).
Hence the higher total stress near the wall induces pref-
erential growth of the inner cylinder’s lubricating layer
upon increasing the average shear rate, while the low
shear rate band preferentially forms at the outer wall
upon decreasing the average shear rate.

2. Homeotropic anchoring

The converse behavior is observed when the bound-
ary conditions are less favorable to the high shear rate
phase. Fig. 7 shows the flow profiles and flow curves for
S = −0.5, b = −0.5, which corresponds to homeotropic
orientation with principal axis in the gradient direction.
In this case a hysteresis loop is found at the low shear
rate end of the plateau (profiles 1 and 4), and not at the
high shear rate end (profiles 3 and 6). This boundary
condition induces a more viscous layer of low shear rate
material near the wall, even well into the stress plateau
(profiles 2 and 5). Profiles 2 and 5 are not quite su-
perposable, indicating that steady state was probably
not exactly attained for these profiles; indeed, this value
D̂ = 4.4×10−4 is at the lower limit of our computational
capabilities. The more viscous layer near the boundary
increases the total stress on the high shear rate branch
above than that of the constitutive curve (profiles 3 and
6), as opposed to the lubricating layer found for the flow-
aligning boundary condition.

The shear rate adjacent to the wall is extremely high
(inset to profile 1), even higher than that of the high
shear rate phase. This is because the principal axes of
the boundary condition Σ0 are aligned with the velocity,
gradient, and vorticity, such that the shear component
Σ0rθ vanishes. To compensate for this vanishing con-
tribution to the shear stress, a very high shear rate is
required to obtain the necessary value for the total shear
stress. For boundary conditions conducive to the low
shear rate phase, the viscoelastic stress tensor Σ adja-
cent to the wall nonetheless “heals” to the value char-
acteristic of the low shear rate branch, whereas in the
flow-aligning case it heals to the value characteristic of
the high shear rate branch. Although our numerics can
adequately resolve the sharp gradient near the wall, it
is likely that higher order gradients are necessary for a
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FIG. 6: Top left: constitutive curve (solid line) and flow curves (triangles) for upward and downward sweeps of the DJS model

with D̂ = 4.4×10−5 , in cylindrical Couette flow with q = 0.005. The boundary condition is Σ0 = diag(2,−1,−1), as illustrated
by the ellipsoids (top right). For the noted average imposed shear rates, figures (1)-(6) show the steady state shear rate profiles
ˆ̇γ(x), and cross-sections of the ellipsoids corresponding to Σ(x)+ I in the velocity-flow gradient plane. In all cases the ellipsoids
are nearly prolate. The inset in (1) shows the detail of the shear rate profile near the inner wall x = 0.

constitutive model to give physically accurate results.

3. Variation with anchoring angle and from prolate to
oblate anchoring

A summary of the behavior of the DJS and DRP mod-
els for a range of boundary conditions is shown in Fig. 8.
There are essentially three types of behaviors: hystere-
sis loops can be observed on (1) the high shear rate end
of the stress plateau, (2) the low shear rate end of the
stress plateau, or (3) both ends of the stress plateau. Hys-
teresis vanishes on those flow branches whose viscoelastic
stress, loosely, is similar to the imposed boundary value

Σ0. The two models have broadly similar qualitative be-
havior. [The apparently greater slope across the plateau
for the DRP model (Fig. 8.2) is due to the curvature of
Couette flow and the smaller vertical scale.]

The behavior was similar when the boundary condi-
tions were altered by choosing a prolate Σ0 and rotating
its principal axis from the flow gradient (homeotropic)
to the velocity (tangential) directions. For tangential
boundary conditions (resembling the high shear rate
state) there was no overshoot at the start of the plateau
either on ramping the shear rate up or down. However
on ramping down the shear rate the flow curve under-
shoots the stress plateau at the high shear rate end of
the plateau. As the boundary condition is rotated the
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FIG. 7: Top left: constitutive curve (solid line) and flow curves (triangles) for upward and downward sweeps of the DJS model

with D̂ = 4.4×10−5 , in cylindrical Couette flow with q = 0.005. The boundary condition is Σ0 = diag(−1, 2,−1), as illustrated

by the ellipsoid (top right). (1)-(6) show the shear rate profiles ˆ̇γ, and cross-sections of the ellipsoids corresponding to Σ(x)+ I
in the velocity-flow gradient plane. Except for very near the boundaries, the ellipsoids are nearly prolate. The inset in (1)
shows the detail of the shear rate profile near the inner wall x = 0.

hysteresis at the high shear rate end vanishes, and starts
to develop at the low shear rate end. For homeotropic
alignment (resembling the low shear rate state) the hys-
teresis completely vanishes at the high shear rate end of
the plateau, and hysteresis develops at the low shear rate
end.

4. Effect of the diffusion constant

Having determined that similarity of the imposed vis-
coelastic stress Σ0 to that of either the high or low shear

rate phases is crucial, we focus for the remainder of this
paper on boundary conditions for which Σ0 is one of these
values. For the DJS model with ǫ = 0.05 and a = 0.3
these values are
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(8.1) Parameter space and characteristic flow curves: DJS Model. (8.2) Parameter space and characteristic flow curves: DRP Model.

FIG. 8: (a,e) Regions of S − b parameter space for Σ0 that give rise to different signatures of hysteresis during shear rate

ramps, for q = 0.005, and D̂ = 4.4 × 10−5. The dashed lines on (a,e) correspond to uniaxial order interpolating between an
oblate “pancake” and a prolate “needle” (at S = −0.5, b = ±0.5, and S = 1), aligned along the vorticity, flow gradient, and
flow directions. Hysteresis occurs at the low shear rate end of the stress plateau ( N, b,f); at the high shear rate end of the
stress plateau (⋆, d,h); or at both ends shear rate end of the stress plateau (◦, c,g).
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FIG. 9: Constitutive curve and flow curves for the DJS model, for q = 0.005, and diffusion constants D̂ = 1.0 × 10−4 (solid),
1.6 × 10−5 (dashed) and 4.0 × 10−6 (dotted). (a,c) show the start of the plateau, while (b,d) show the end; and the boundary
condition Σ0 equal to the viscoelastic stress ΣH or ΣL of, respectively, the high (a,b) or low (c,d) shear rate branch. The
arrows indicate the direction in which the hysteresis loops are encircled (b,c) or the shear rate swept (a,d).

ΣL : (ΣLθθ, ΣLrr, ΣLrθ) = (0.40,−0.21, 0.47) low shear rate branch (VI.1a)

ΣH : (ΣHθθ, ΣHrr, ΣHrθ) = (1.4,−0.75, 0.12) high shear rate branch, (VI.1b)

and for the DRP model with β = 0 and ǫ = 0.01 they are

ΣL : (ΣLθθ, ΣLrr, ΣLrθ) = (0.81,−0.40, 0.60) low shear rate branch (VI.2a)

ΣH : (ΣHθθ, ΣHrr, ΣHrθ) = (1.7,−0.85, 0.44) high shear rate branch. (VI.2b)

The extent of the hysteresis depends on the magnitude
of the diffusion constant. Fig. 9 shows how D, or equiv-
alently the width ℓ ∼

√
D of the interface, influences

the flow curves, for the two different boundary condi-
tions of the DJS model. As the diffusion constant is
reduced the heterogeneous flow curve approaches the ho-
mogeneous constitutive curve, and the degree of hystere-
sis decreases. This occurs for both the DRP (not shown)
and DJS models. As noted above, this is because the
interfacial layer occupies a progressively smaller fraction
of the sample: the separation between the heterogeneous
flow curve and homogeneous constitutive curve is propor-
tional to

√
D ∼ ℓ. This behavior should be contrasted

with the Neumann case (Fig. 4), in which the flow curve

matches the constitutive curve for all D.

B. The effects of flow geometry and total stress
gradient

1. Dirichlet boundary conditions

For a flow cell with a stress gradient, such as a cylin-
drical Couette cell, the interface in simple banding flow
with Neumann boundary conditions lies at the position
in the flow cell where the stress is equal to the selected
total shear stress T ∗

rθ. With Dirichlet boundary condi-
tions there are typically three bands and two interfaces,
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because of the boundary layer imposed by the wall. We
now study how the position of these bands varies as a
function of the flow geometry and diffusion coefficient.
Calculations were performed using the second protocol
outlined in Sec. IV: starting up from rest with a suitable
initial condition and evolving at fixed average strain rate
to steady state. The boundary condition Σ0 was chosen
to be either ΣL or ΣH .

In a flat geometry the phase near the wall is that most
similar to the imposed boundary conditions, ideally re-
sulting in a symmetric three band configuration stabi-
lized by the very weak interactions of the interfaces with
the walls. For strong enough curvature we expect the
high shear rate phase to preferentially occupy the high
stress regions. This is indeed what we find. For increas-
ing curvature the three band configuration becomes in-
creasingly asymmetric, as seen in both the DJS and DRP
models (Figs. 10 and 11). A crossover from three banded
to nearly two-banded behavior occurs at smaller q values
(weaker curvature) for smaller D. The three band state
is most pronounced when the boundaries induce the low
shear rate phase Σ0.

The behavior described above can be rationalized as
follows. For a symmetric flat system (q = 0) both in-
terfaces lie at the selected stress, since the total stress is
uniform. The very weak effect a slightly curved system
q & 0 breaks the symmetry of the shear banded structure,
and only one (or neither) interface can lie at the selected
stress; at the same time, the stress gradient would fa-
vor locating the high shear band near the inner cylinder.
These two tendencies adjust the band configuration such
that high (low) shear rate bands grow (shrink) near the
inner cylinder and shrink (grow) near the outer cylinder.
For example, for boundary conditions that favor the low
shear rate band the band near the inner cylinder should
become narrower with increasing curvature (as seen in
Fig. 10a,c). However, a larger diffusion coefficient broad-
ens the interfaces between bands, which means that the
walls can strongly influence the bulk behavior. Corre-
spondingly, for large D the position of the center shear
band moves more smoothly as a function of the geometric
curvature q. For example, compare Fig. 10c (D̂ = 10−2)

with Fig. 10a (D̂ = 10−3).

Just as for Fig. 5, the effective cone angles are again
shown in the upper abscissas in Figures 10 and 11. For
small diffusion constant, Fig. 10a shows that in cone and
plate flow with a typical angle of θ = 4◦, a three banded
structure could be observed, while the third band would
be much smaller in Couette flow with ∆R/R = 0.05,
and could easily be interpreted as a two band structure.
Thus, a three band structure, as observed by Britton and
Callaghan [9], could be consistent with boundary condi-
tions that favor the low shear rate form of the viscoelastic
stress.

Finally, we note that these results are consistent with
those of Cook and co-workers [25, 26], who studied a two-
fluid model of wormlike micelles. In cylindrical Couette
flow with q = 0.064, D̂ = 10−3 they also found a three-

band state, but did not explore the effects of geometry
or diffusion coefficient.

2. Competing boundary conditions

Finally we allow surface anchoring to compete with
the bulk spatial gradients, according to Equation (III.5).
By varying W , or equivalently the extrapolation length
ξ = Dτ/W , the boundary condition at the wall can be
tuned smoothly from a fixed value Σ0 as W → ∞ (ξ → 0)
to zero gradient as W → 0 (ξ → ∞). As above, we con-
sider boundary conditions in which Σ0 is the viscoelastic
stress of either the low or high shear rate branch, ΣL or
ΣH . We vary both the extrapolation length ξ and the ge-
ometric curvature q, and monitor the behavior of a well-
formed shear band, with an imposed average shear rate
such that the high and low shear rate bands are roughly
the same size. We find qualitatively similar results for
both the DJS and DRP models.

Figure 12 shows the results for the DRP model for
boundary conditions Σ0 = ΣL. Consider changing
the anchoring strength at fixed q (profiles {i,ii,iii,iv} in
Fig. 12). For weak anchoring strength (large ξ, profile
a), the effective boundary condition at the inner wall
is nearly zero gradient (Neumann), and the high shear
rate band lies near the inner wall. Upon increasing
the anchoring strength (reducing ξ) the boundary con-
ditions deviates slightly from Neumann conditions be-
fore reverting to Dirichlet conditions for strong enough
anchoring (small ξ), thus imposing ΣL at the wall and
inducing three bands. The crossover occurs when the
extrapolation length is of order the interfacial thickness,
ξ ≃ ℓ =

√
Dτ .

In all cases the interface closest to the outer cylinder
(at larger x) remains at the selected stress T ∗

rθ while the
inner interface is at a higher stress, as can be seen by the
intersections of the shear rate profiles as a function of
total stress in Fig. 12(iii,iv). Upon approaching the flat
limit both interfaces approach the selected stress. The
degree of anchoring strength above which the boundary
conditions become Dirichlet-like depends weakly on the
geometric curvature. For a more highly curved geometry
a larger anchoring potential (smaller ξ) is required to en-
force the boundary condition Σ0 = ΣL. This is because
the higher stress at the inner wall competes with the ten-
dency of the wall to induce the low shear rate band.

We have examined whether or not this “surface tran-
sition” between different anchoring states has an appre-
ciable mechanical signal. The torque at the inner cylin-
der, as would be measured in an experiment, changes
by of order 1% upon tuning between Neumann-like and
Dirichlet-like boundary conditions; hence this has only
a small effect on the macroscopic response of the sys-
tem. The degree of anchoring is only weakly affected by
the overall average shear rate; only when one interface
approaches the wall is there an effect, and again this is
reflected in only a small change in the measured total



15

FIG. 10: Viscoelastic stress ellipses as a function of position x and curvature q, for the DJS model with 〈ˆ̇γ〉 = 3.8(log
10
〈ˆ̇γ〉 =

0.58). The diffusion constant is D̂ = 10−3 (a,b) and D̂ = 10−2 (c,d). The high shear rate phase is lightly shaded (green), and
the low shear rate phase is dark grey. The boundary conditions are Σ0 = ΣH or ΣL. The top axes show the equivalent Couette
cylinder gap ∆R relative to the inner cylinder radius R, and equivalent cone angles θ if we assume that the stress gradient
mimics that found in cone and plate flow.

stress.

Similar behavior is found for Σ0 = ΣH , with a few
differences. In this case the interface closest to the in-
ner wall lies at the selected stress, as can be seen in the
profiles for γ̇(Trθ) in Fig. 13; this implies that for both
Σ0 = ΣL and Σ0 = ΣH the interface that separates an
inner band at high shear rate from an outer band at low
shear rate lies at the selected stress. Another difference
is that the geometric curvature q has a very weak effect
on the effective boundary condition, because the higher
stress at the inner wall doesn’t compete with the bound-
ary condition.

VII. CONCLUSION

A. Summary of results

We have performed a numerical study of the effect of
the boundary conditions on the viscoelastic (polymer)
stress for the diffusive Johnson-Segalman (DJS) and dif-
fusive non-stretching Rolie-Poly (DRP) models, in cylin-
drical Couette flow. The main results are the following:

a. Dirichlet boundary conditions (fixed Σ0) influence
the possible hysteretic behavior for the flow curve:
for Σ0 resembling the high shear rate phase a hys-
teresis loop occurs at the high shear rate end of
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FIG. 11: Viscoelastic stress profiles, shown as ellipses as a
function of position x, for the DRP model in different degrees
of curvature q, for D̂ = 10−3 and 〈ˆ̇γ〉 = 9 (log

10
〈ˆ̇γ〉 = 0.95).

The high shear rate phase is lightly shaded (green), and the
low shear rate phase is dark grey. The boundary conditions
are Σ0 = ΣH (right) or Σ0 = ΣL (left). The upper abscissa
shows the equivalent geometrical parameters for cylindrical
Couette (∆R/R) and cone and plate (θ) geometries.

the stress plateau, while for Σ0 resembling the low
shear rate phase a hysteresis loop occurs at the low
shear rate end of the stress plateau.

b. The walls can induce a lubrication (or thickened)
layer that suppresses the hysteresis that would oc-
cur upon sweeping the shear rate into a banded
state from a flow branch with characteristic dis-
similar to the boundary layer.

c. As with Neumann boundary conditions, the hys-
teresis loop shrinks with decreasing diffusion con-

stant.

d. For Dirichlet boundary conditions the stress distri-
bution in the gap depends on both the boundary
condition and the stress gradient. A three-band
state is stable for weak curvature such as cone and
plate flow, which becomes more asymmetric or even
two-banded as the stress gradient increases to that
of typical cylindrical Couette flow.

e. For mixed boundary conditions the strength of wall
anchoring determines whether the effective bound-
ary conditions are Neumann or Dirichlet. The
crossover occurs when the extrapolation ξ length
is of order the interfacial width ℓ, or W ≃

√
Dτ .

This is the first use of the DRP model to study shear
banding. The model is microscopically motivated by
either polymer solutions or wormlike micelles, and its
non-monotonic behavior arises from better-understood
physics (convected constraint release competing with
tube alignment) than that in the DJS model (where the
“slip parameter” a is necessary). The physics of con-
vected constraint release yields a less well aligned state
in the high shear rate phase, whose alignment angle,
compared to that from the DJS model, is closer to that
seen experimentally [16]. Numerically, interfaces typi-
cally travel faster in the DRP model than in the DJS
model, and hence can be more quickly and reliably cal-
culated, and the DRP model is more robust to large time
steps and inhomogeneous initial conditions.

B. Discussion and outlook

An important open problem is the relation of wall slip
to shear banding flows. A boundary condition such as
Σ0 ∼ v̂v̂, which imposes alignment parallel to the flow
direction v, yields velocity profiles that could be inter-
preted in terms of wall slip, because of the lack of a shear
component of the viscoelastic stress at the wall. The
banding profiles in Fig. 6, for example, have small regions
of very high shear rate near either wall. Becu et al. mea-
sured a correlation between band motion and wall slip
in a solution of CTAB wormlike micelles [48, 49]. They
used smooth and sand-blasted Couette cells and found
different velocity profiles and interface dynamics in the
banding regime. It is possible that these differences are
a combination of both different intrinsic boundary con-
ditions and different degrees of wall slip.

Another signature of this effect would lie in the mea-
surement of the low shear rate branch before shear band-
ing occurs: the flow cell (for example, the smooth one)
that induced tangential ordering would have a smaller
stress at a given shear rate, due to the associated lubrica-
tion layer, than would the flow cell (e.g. the sand-blasted
one) with less preference for the high shear rate branch.

In related work, Manneville and co-workers [50] mea-
sured the rheology and velocity profiles in a triblock
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FIG. 12: Flow profiles as a function of extrapolation length ξ = D̂/Ŵ and geometrical curvature q for the DRP model with

mixed boundary conditions, for 〈ˆ̇γ〉 = 3.8, D̂ = 7 × 10−4 and Σ0 equal to the viscoelastic stress in the low shear rate branch,
ΣL. (i,iii) Shear rate γ̇ as a function of position x; the labels a, . . . , d and 1, . . . , 4 refer to the points in the (ξ, q) parameter
map in the center. (ii, iv): Shear rate as a function of the deviation of the total stress Trθ ∼ e−2qx from the selected stress T ∗.
(Center) Map of different effective boundary conditions as a function of extrapolation length ξ and curvature q: ⋆ ≃ Neumann
boundary conditions; N ≃ Dirichlet conditions; ◦ ≃ mixed boundary conditions.

copolymer solution that forms wormlike micelles, using
heterodyne light scattering. At T = 37◦ the solutions
did not shear band but did exhibit wall slip, within the
≃ 40 µm resolution of the technique. At a higher tem-
perature T = 39.4◦, believed to correspond to longer mi-
celles, the solution exhibited a three-band shear banding
scenario with the high shear rate bands near the inner
wall. These data are consistent with the walls inducing
preferential ordering parallel to the walls with increasing
temperature and longer micelles, so that that wall slip
could be either “true” slip or an apparent slip due to the
specific nature of the boundary conditions. Other mech-
anisms for slip, such as micelles detaching from the wall
and disentangling near the surface, may also be relevant
in this case [51, 52, 53].

In principle, mixed boundary conditions allows for
multiple stable inhomogeneous solutions, which could be
susceptible to non-linear perturbations such as local flow
inhomogeneities, thermal fluctuations, asperities, motor
noise, etc. The solutions found here switched between ef-
fective Neumann and Dirichlet boundary conditions as a
function of anchoring strength, but easily externally con-
trollable quantities such as flow geometry and imposed
average shear rate had very weak effects, and the total
stress differences between the two kinds of anchoring was
small (typically less than a percent).

One could, in principle, envision more complex sur-
face anchoring behavior, such as a multi-welled wall po-

tential that would govern a surface phase transition be-
tween two different wall orientations Σ0a and Σ0b. The
order parameter in the bulk could then, in principle,
drive the boundary condition between the two poten-
tial wells, which would then have more dramatic con-
sequences. Such a bulk-driven wall transition could also
be triggered by fluctuations, would then lead to erratic
band motion coupled to an apparent wall slip, depending
on the details of the specific measurements.

Another physical effect that has not been considered
here is the concentration degree of freedom, which in
some cases probably leads to a depletion layer (or in
rarer cases perhaps coagulation) layer near the surface.
Ref. [26] included concentration in their treatment, but
without any specific wall-concentration coupling aside
from a zero flux condition. This is a promising direc-
tion for future study.
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(13.1) DJS model with mixed boundary conditions.

(13.2) DRP model with mixed boundary conditions.

FIG. 13: Left: Map of effective boundary conditions as a function of curvature q and extrapolation length ξ and selected shear
rate profiles as a function of position and total stress, for D = 7 × 10−4: ⋆ ≃ Neumann boundary conditions; N ≃ Dirichlet
conditions; ◦ ≃ intermediate boundary conditions. Shear rate as a function of local total stress (middle) and position (right)
for the DJS and DRP models with boundary conditions Σ0 = ΣH and Σ0 = ΣL.

APPENDIX A: VISCOELASTIC STRESS
BOUNDARY CONDITIONS

The dynamics of the DJS or DRP model are formu-
lated in terms of the viscoelastic (or polymeric) contri-
bution to the total stress. The free energy of a polymer
solution is more commonly expressed in terms of the non-
linear deformation tensor Λ. A simple free energy func-
tional that includes surface, bulk, and distortion elastic

terms is

F =
1

2

∫

d3r
[

GΛ2 + K (∇Λ)
2
]

+
1

2

∫

S

d2r W0(Λ− Λ0)
2,

(A.1)

where K is analogous to the Frank elastic terms that
penalize distortions of order parameter in nematic liq-
uid crystals, and G is the modulus. For ordinary poly-
mer (rubber) elasticity the deformation tensor is Λ ≃
〈RR〉/(Nb2)− 1

3
I , where N is the number of Kuhn steps
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per strand, b is the Kuhn length, and R is the end-to-
end distance of the strand, and the modulus is thus given
by G ≃ 3kBTcs, where cs is the number of strands per
unit volume. A simple dynamics and boundary condi-
tions for such a free energy (based on the analogy with
liquid crystals) is

∂tΛ = −1

ζ

[

GΛ− K∇2Λ
]

(A.2)

0 = W0 (Λ− Λ0) + K∇2Λ. (A.3)

Since the viscoelastic stress Σ is related to the strain
by a modulus, Σ = GΛ, we can rewrite the equations
above as

F =
1

2

∫

d3r

[

1

G
Σ2 +

K

G2
(∇Σ)

2

]

+
1

2

∫

S

d2r
W0

G2
(Σ − Σ0)

2 (A.4)

∂tΣ = −G

ζ

[

Σ− K

G
∇2Σ

]

+ . . . (A.5)

0 = W0 (Σ − Σ0) + Kn̂ · ∇Σ, (A.6)

where n̂ is the outward unit vector normal to the surface.
On the other hand, the dynamics of the DJS model is

∂tΣ = −1

τ

[

Σ + Dτ∇2Σ
]

+ . . . , (A.7)

from which we identify τ = ζ/G and Dτ = K/G. Thus,
the boundary condition for the DJS model, which follows
from this correspondence and from Eq. (A.6), is

0 =
W0

G
(Σ − Σ0) + Dτ∇Σ. (A.8)

Here W0 is the surface anchoring term that penalizes the
strain variable at the surface according to Eq. (A.4). In
the main text we have used W ≡ W0/G.

APPENDIX B: ESTIMATES OF W AND D

One mechanism for such a potential is the steric ex-
clusion of micelles at the wall, which would favor an
oblate deformation Λ and hence an oblate viscoelastic
stress. Such an effect was found in Monte Carlo sim-
ulations of polymer melts, which showed a decrease in
the radius of gyration R⊥

g normal to the wall of 20%
and a corresponding increase parallel to the wall, inde-
pendent of the attraction of chain segments to the wall
[54]. Assuming weak perturbations due to the wall poten-
tial, the free energy governing subsequent perturbations
is governed by the entropic elasticity of polymer chains:
F/chain ≃ 3

2
kBT Tr (Λ − Λ0)

2
. Converting to a wall po-

tential according to

Fwall

Area
≃ F

chain
cs 2Rg (B.1)

=
3kBTcsb√

6N
Tr (Λ− Λ0)

2
, (B.2)

we estimate W0 ≃ kBTcsb
√

6/N (according to Eq. A.4),

and W ≃ b
√

2N/3 = 2Rg. Here, cs is the number of
strands per unit volume.

The stress in a solution of semiflexible polymers, such
as wormlike micelles, has a contribution Σ from the tube
orientation 〈uu〉, as well as a liquid crystalline contri-
bution ΣLC . Although liquid crystalline effects are only
appreciable near an isotropic-to-nematic transition, they
are nonetheless present. Hence, the total stress takes the
form [55, 56]

T = Σ + 2ηD +
δFLC

δQ
+ . . . , (B.3)

where FLC is the liquid crystalline contribution to the
free energy and the neglected terms are non-linear in both
Q and D.

For a semiflexible polymer solution FLC has been cal-
culated by Liu and Fredrickson, and depends on the per-
sistence length ℓp. To lowest order in the nematic order
parameter Q it is

FLC = 1

2

∫

V

[

aTr
(

Q2
)

+ K ∂µQ : ∂µQ
]

, (B.4)

where only a single Frank constant has been included
here. This leads to a liquid crystalline contribution to
the stress of the form

ΣLC = aQ−K∇2Q. (B.5)

In this case the parameters are [22]

K =
45

126π

kBTℓpφ

D2
, a ≃ 45φkBT

πD2ℓp

, (B.6)

where φ is the volume fraction φ [22] and D is the micellar
diameter. For wormlike micelles ℓp ≃ 20 nm, D ≃ 2 nm
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[33], leading to K ≃ 0.37 φkBT/nm. Upon converting
the entire description to one in terms of the total micel-
lar stress Σtot = Σ + ΣLC and performing a gradient
expansion, one finds the following contribution to the
stress diffusion coefficient due to Frank-like elasticity:

Dτ ≃ K
a

≃
ℓ2
p

126
. (B.7)

There may of course, be other non-local contributions,
which could depend on micellar size, concentration, hy-
drodynamics, or other physics.
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