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Relational Visual Cluster Validity (RVCV)

Yunfei Ding a,∗ Robert F Harrison a

aDepartment of Automatic Control and Systems Engineering, The University of
Sheffield, Mappin Street, Sheffield, S1 3JD, UK

Abstract

The assessment of cluster validity plays a very important role in clustering anal-
ysis. Most commonly used clustering validity methods are based on statistical hy-
pothesis testing or finding the best clustering scheme by computing a number of
different cluster validity indices. A few visual methods of clustering validity have
been produced to display directly the validity of clusters by mapping data into two-
or three- dimensional space. However, these methods may lose too much informa-
tion to correctly estimate the results of clustering algorithms. Although the visual
cluster validity (VCV) method of Hathaway and Bezdek can successfully solve this
problem, it can only be applied for object data. There are very few validity methods
which can be used to analyze the clustering validity of relational data. To tackle this
problem, this paper presents a relational visual cluster validity (RVCV) method to
assess the validity of clustering relational data by combining the results of the non-
Euclidean relational fuzzy c-means (NERFCM) algorithm with a modified VCV
display method. RVCV can cluster complete and incomplete relational data and
adds to the visual cluster validity theory. Numeric examples using synthetic and
real data are presented.

Key words: Clustering, Cluster validity, Relational data, Non-Euclidean fuzzy
c-means, Visual cluster validity

1 Introduction

The aim of data classification is to disclose unknown information about a
new object or phenomenon. Data classification is composed of supervised and
unsupervised processes according to whether the available data is labeled or
unlabeled. Clustering is one of the most important unsupervised classification
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processes that assign objects into clusters whose members are in some way
similar to and in others, dissimilar from objects in other clusters. Generally
speaking, clustering seeks to identify natural partitions of a finite unlabeled
data set.

The typical clustering procedure consists of three steps. Clustering tendency:
to decide whether the data actually does contain significant clusters by ex-
amining the raw data. Most methods of cluster tendency focus on the true
number of clusters in the data (Dubes, 1987) on the basis of statistical hy-
potheses and parameter estimation e.g. Bootstrap procedure (Sahmer, Vi-
gneau and Qannari, 2005), Bayesian Ying-Yang Model (Guo, Chen and Lyu,
2002) and Hopkins algorithm (Fernández Pierna and Massart, 2000). Another
non-parametric approach using Adaptive Resonance Theory (ART) neural
networks has been developed to examine clustering tendency without depen-
dence on additional similarity metric and optimization procedure (Massey,
2002). Currently, a method named visual assessment of cluster tendency (VAT)
is a very useful and convenient tool to analyze raw data clustering tendency
(Bezdek and Hathaway, 2002) and has the advantage of presenting a 2-D im-
age, which is easily evaluated by the user.

The second step is the clustering algorithm itself. Clustering techniques are
broadly divided into hierarchical and partitioning methods, based on the prop-
erties of the clusters generated. Partitioning algorithms assign samples into
some clusters directly while hierarchical algorithms build a nested series of
partitions gradually, according to a proximity matrix. Clustering by partition-
ing is considered in three categories: error-based clustering, mixture density-
based clustering and graph-theoretic clustering. The K-means method is the
most common and simplest error-based clustering algorithm (MacQueen, 1967;
Forgy, 1965). Expectation-maximization (EM) is a general mixture density-
based algorithm to cluster an incomplete data set by modelling its density
function (Dempster, Laird and Rubin, 1977; McLachlan and Krishnan, 1997).
Graph-theoretic clustering is based on the minimum spanning tree (MST)
algorithm (Prim, 1957; Friedman and Rafsky, 1979) or an extension of the
MST that relates to regions of influence or directed trees (Zahn, 1971). Over-
all, clustering algorithms have been comprehensively reviewed in two good
surveys (Xu and Wunsch, 2005; Jain, Murty and Flynnet, 1999).

The clusters produced by each clustering algorithm may be different. How
to evaluate and assess the results of a clustering algorithm is the problem of
cluster validation which is concerned with the third step in the process. Ef-
fective assessment criteria can be built by applying statistical methods and
testing hypotheses. There are three types of assessment measures: external
indices, internal indices and relative indices which determine the optimal par-
titions and quality in different groups (Halkidi, Batistakis and Vazirgiannis,
2002). In order intuitively to understand the results of validity there are a few
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visual methods that display validity in two- or three-dimensional graphics.
Most of them transform raw data to two-dimensional space by some mapping
algorithms such as the Fastmap algorithm or α-mapping and then combine
expert knowledge in corresponding areas and allow users to examine and re-
fine clusters (Huang, Cheung and Ng, 2001; Chen and Liu, 2003). Regardless
of whether a scalar measure using indices or a visual method of mapping is
used, it always leads to the loss of more or less information during scaling
or transformation. To combat this problem, Hathaway and Bezdek present
a visual approach to assess cluster validity – visual cluster validity (VCV)
(Hathaway and Bezdek, 2003). For a sample of size, N , VCV is a visual dis-
play of an N×N intensity image after utilizing and organizing all information
produced by “prototype generator” clustering methods as mentioned above,
e.g. K-means and fuzzy c-means (FCM) (Bezdek, 1981) methods. VCV gives
good results for some synthetic and real data sets for the type of data called
“object data” i.e. feature measurements.

Sometimes object data is not available. Instead some relation between sam-
ples is known, leading to “relational data” (Hathaway and Bezdek, 1994). If
the objects are connected by links, i.e. persistent relationship, we can em-
ploy relational data to describe them through pairwise relations, which are
similarities or dissimilarities between the objects. Similarity or dissimilar-
ity is usually measured by some proximity associations such as correlation
(Pearson’s coefficient, Spearman’s coefficient and Kendall’s coefficient etc.),
covariance, distance (Euclidean, Manhattan etc.) or difference (Pearson’s dis-
similarity, Spearman’s dissimilarity and Percent disagreement etc.) functions
(Rosen, 1988; Lee, 1999). Sometimes we only have relational data consist-
ing of similarity or dissimilarity values without object data ever having ex-
isted, e.g. from expert/opinion or summary statistics. Although both hierar-
chical and partitional algorithms can all be revised to cluster relational data,
partitional methods are focused on in this report. Hathaway, Davenport and
Bezdek modify the objective functions to be able to work on relational data
by reformulating a family of functionals, membership vectors and relational
squared Euclidean distance algorithms instead of using the prototypes of ob-
jective clustering algorithms, and present relational duals of HCM and FCM
clustering methods – relational hard c-means (RHCM) and relational fuzzy
c-means (RFCM) methods (Hathaway,Davenport and Bezdek, 1989). RHCM
and RFCM can perform the same job as HCM and FCM only when available
relational data satisfies the assumptions of Euclidean distance, that is, there
exists a Euclidean realization of the relational data matrix R which is some set
of N points in RN−1 (Hathaway and Bezdek, 1994). Without the existence of
such points, RHCM and RFCM may be unsuccessful in clustering relational
data because there might be “negative distances” occuring during iterative
computation. Therefore, Hathaway and Bezdek apply a “spreading” trans-
formation to change non-Euclidean relational data to a matrix that has the
properties of the Euclidean relationship to avoid this limitation, and they call
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this method the non-Euclidean relational fuzzy c-means (NERFCM) cluster-
ing algorithm (Hathaway and Bezdek, 1994). Moreover, they give two simple
transformations to convert similarity data into dissimilarity data to make the
NERFCM method applicable to any kind of numerical relational data.

VCV doesn’t assess the clustering results of relational data because it needs
object prototype parameters from prototype generator clustering methods.
Specifically, the mean vectors which are not available from the relational al-
gorithms. To solve this problem, we present a relational visual cluster validity
(RVCV) method based on VCV. RVCV utilizes two relational prototype pa-
rameters – prototype distances and membership values which are available
from relational clustering methods. Our method follows the steps of VCV but
permits the re-ordering of clusters in the instead stage, which is not possible
using the original algorithm. VCV requires knowledge of clusters in feature
space which can’t be computed directly for relational data. Instead we infer
the necessary information from parameters that are available in VCV. This
permits the generalization to relational data. In addition, when one or more
components of relational data are missing, NERFCM offers a simpler solution
than any of the object clustering approaches (Hathaway and Bezdek, 2002). In
order to see the cluster validity of the results from NERFCM naturally, RVCV
is presented to undertake this task and complete the entire visual cluster va-
lidity theory. The remainder of this paper is arranged as follows. The next
part introduces the relational clustering method NERFCM, and the existing
object clustering validity method, VCV. In the third part, the RVCV approach
is described in detail and the specific RVCV algorithm steps are given. The
fourth part includes results from four experiments for synthetic and real data
and a description of the results. These are then discussed and conclusions are
drawn.

2 Theoretical background

2.1 Non-Euclidean Relational Fuzzy Clustering

Prototype clustering algorithms for object data usually minimize an objective

function defined as Jm(U, v) =
c∑

i=1

N∑
k=1

Um
ik ‖xk − vi‖2 to partition object data

x ∈ Rn, k = 1, ..., N , where m is a predefined fuzzification parameter which is
usually 2, c is the assumed number of clusters set by the user before applying
algorithm, U is the c×N membership matrix every element of which belongs
to a set MU that satisfies

(a) 0 ≤ uij ≤ 1, for i = 1, .., c, j = 1, ..., N ;
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(b) u1j + ... + ucj = 1, for j = 1, ..., N ;
(c) ui1 + ... + uiN > 0, for i = 1, .., c;

and v = (v1, ..., vc) is a matrix of prototype cluster centers. dki = ‖xk − vi‖
describes the distance between xk and prototype center vi.

A relational data matrix R = [Rij], i, j = 1, ..., N measures the relationship
between objects i and j. Normally we use S or D to denote similarity or
dissimilarity relationships, respectively. Dissimilarity is more often used than
similarity in clustering algorithms. If a relational data matrix is called Eu-
clidean, D must satisfy the following four conditions :

(a) Symmetry. Dij = Dji, for i=1,...,N, j=1,...,N;
(b) Positivity. Dij ≥ 0, for i=1,...,N, j=1,...,N;
(c) Reflexivity. Dii = 0, for i=1,...,N;
(d) Triangle inequality. Dij ≤ Dik + Dkj, for all i,j and k=1,...N;

where Dij =‖ xi−xj ‖ is the Euclidean norm. This kind of relational data can
be realized by some set of points {x1, ..., xN} in RN−1 (Hathaway and Bezdek,
1994).

Compared with prototype clustering algorithms for object data, most rela-
tional clustering methods consider squared Euclidean relational data as input
data and minimize a corresponding objective function represented by (Hath-
away,Davenport and Bezdek, 1989)

Km(U) =
c∑

i=1

(
N∑

j=1

N∑

k=1

(um
ij u

m
ikr

2
jk)

/
2

N∑

t=1

um
it ) (1)

where m ≥ 1, U ∈ MU , and for 1 ≤ k ≤ N , r2
jk is some numerical relation be-

tween objects. In relational clustering algorithms, of the two key modifications
used, one is the relational mean vector vi calculated from U only according to

vi = (um
i1, u

m
i2, ..., u

m
in)T

/
n∑

k=1

(um
ik)

m (2)

while the other is the distance dik between object vector and cluster center
which is computed from

d2
ik = (Rvi)k − (vT

i Rvi)
/

2 (3)

in which vi is the corresponding relational vector. These equations are em-
ployed to update U in relational clustering algorithms RHCM or RFCM when
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input data is Euclidean relational data. But if the relational data are non-
Euclidean their relationships may be out of accord with the triangle inequality.
Such data can result in negative dik when running relational clustering algo-
rithms. To overcome this problem, Hathaway and Bezdek present the NER-
FCM (Hathaway and Bezdek, 1994) method.

NERFCM is a nonparametric approach to group the data into clusters. As
stated, it is developed from RFCM algorithm to avoid the strong limitation
that RFCM can only be used for relational data satisfying the Euclidean
assumption.

A dissimilarity matrix D satisfying the symmetry, positivity and reflexivity
conditions can be used to express non-Euclidean relational data. In NERFCM
the main idea is to find a transformation to convert D to a relational ma-
trix [Dij] = [‖xi − xj‖2], each x is in RN−1, which satisfies the Euclidean
conditions (a) − (d) and then apply RFCM. The so-called β-spread trans-
formation is competent for the task (Hathaway and Bezdek, 1993). That is:
D = D0 → Dβ = D +β ∗ (M − I) where β is a chosen scalar, I ∈ RN×N is the
identity matrix and M ∈ RN×N satisfies Mij = 1 for 1 ≤ i, j ≤ N . Two sim-
ple transformations are used to transfer a similarity matrix to a dissimilarity
matrix if this is how the data are given. Firstly, set Dii = 0 for 1 ≤ i ≤ N ,
then Dij = (1/Sij −min

r 6=t
[1/Srt]), for i 6= j, or Dij = max

r 6=t
[Srt]− Sij,for i 6= j.

The detailed NERFCM algorithm is given by (Hathaway and Bezdek, 1994):

Step1: Given relational data D satisfying (1). Fix c, 2 ≤ c ≤ N, m > 1, and
initialize β = 0 and U (0) ∈ MU . Then for r = 0, 1, 2, ...

Step2: Calculate the c mean vectors vi = v
(r)
i using U = U (r) and the equa-

tions, for 1 ≤ i ≤ c:

vi = (um
i1, u

m
i2, . . . , u

m
in)/(Um

i1 + Um
i2 + · · ·+ Um

in)

Step3: Calculate dik = (Dβvi)k − (vT
i Dβvi)

/
2, for 1 ≤ i ≤ c and 1 ≤ k ≤ N ,

if dik < 0 for any i and k, then:
calculate ∆β = max{−2 ∗ dik

/
(‖vi − ek‖2)}

update dik ← dik + (∆β/2) ∗ ‖vi − ek‖2}, for 1 ≤ i ≤ c and 1 ≤ k ≤ N ,
update β ← β + ∆β

Step4: Update U (r) to U = U (r+1) ∈ MU to satisfy, for each k = 1, ..., n: if
dik > 0 for all i, then:

uik = 1
/

(dik/d1k + dik/d2k + · · ·+ dik/dck)
1/(m−1)

otherwise: uik = 0 if dik > 0, uik ∈ [0, 1], and (u1k + · · ·+ uck) = 1

Step5: Check for convergence using any convenient matrix norm ‖ ‖: if
∥∥∥U (r+1) − U (r)

∥∥∥ ≤
ε, then stop; otherwise: set r = r + 1 and return to step 2.
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(a)   object data 

Fig. 1. original data and its corresponding dissimilarity image

When input data is Euclidean relational data, we can still use NERFCM the
result of which is the same as that for RFCM and in a such situation β = 0.
Therefore, we choose NERFCM as a representative of relational clustering
algorithms because of its universality of practical application which means
not only that it can cluster Euclidean and non-Euclidean relational data but
also that it can be applied for dissimilarity or similarity relational data.

2.2 Visual cluster validity

To determine whether clusters are useful and valid, VCV (Hathaway and
Bezdek, 2003) is reported to estimate the validity of clusters displaying as
an intensity image in order to avoid the disadvantage of losing information
which exists in most cluster validity indices or visualization methods.

For example it is easy to compute a squared Euclidean relational data matrix
D in terms of [Dij] = [‖xi − xj‖2], where xi is the set of six object points in
figure 1(a). The dissimilarity matrix D is

D =




0 181 81 181 1 100

181 0 82 2 164 81

81 82 0 100 82 1

181 2 100 0 162 101

1 164 82 162 0 101

100 81 1 101 101 0




(4)

and its corresponding image is shown in figure 1(b). Each element of the matrix
D corresponds to one intensity or gray level image of pixel (i, j). VCV makes
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Fig. 2. VCV of six object data with FCM when c=2, 3, 4

use of results obtained from prototype clustering algorithms including cluster
centers and membership values and the raw object data itself to execute two
steps of reordering data. The first stage is to reorder the cluster centers. The
distance between cluster centers is defined as the Euclidean distance between
the cluster prototypes (i.e. mean vectors). The first cluster center is chosen
arbitrarily. Then one of the remaining centers is chosen as the next reordered
cluster i + 1 based on which one is closest to the last reordered cluster i. The
rest may be deduced by analogy until all clusters are rearranged in order of
proximity. The second step is to reorder the data in each cluster when the
prototype method is fuzzy (Bezdek, 1981). In this situation, each datum xj

is assigned to cluster i in terms of its largest membership and the data in
each cluster is arranged corresponding to decreasing membership values in U .
Afterwards we can build a new relationship matrix according to the measured
inter-datum distance between two object data. The key process is to define a
so called pairwise dissimilarity R∗

ij which can be calculated through

R∗
ik = min

1≤j≤c
{dij + djk} (5)

The R∗
ij is symmetric and in accord with the triangle inequality although it is

not metric. R∗
ij is displayed as an intensity image I(R∗).

As an example, we assess the cluster validity of the object data mentioned
above. Firstly we select FCM as one generally applicable method of prototype
clustering algorithm to look for any natural clusters in the data set. The
fuzzification parameter m in FCM is set to 2 and the routine will terminate
when the maximum change of all membership values is less than 0.0001. The
experiments use different initial numbers of clusters c equal to 2, 3 or 4 (for
c = 2 and c = 3, each cluster has been assigned an equal number of samples;
when c = 4, two of the four clusters have 2 samples and two have one). The
results of VCV are displayed in figure 2.

In VCV images, dark shading means less dissimilarity between two patterns
in the data set while light shading shows more dissimilarity and corresponding
deep dark diagonal blocks imply high quality clusters in the data. In figure 2,
it is apparent that VCV fails to show three diagonal blocks when c = 2 but
images for c = 3 and 4 bring a very obvious visualization of three clusters
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along the diagonal line which is consistent with the true number of clusters in
the original data. VCV can keep the correct number of clusters even when a
large value of c is predefined and it can also be applied to both spherical and
linear data (Hathaway and Bezdek, 2003).

3 Relational visual cluster validity (RVCV)

The VCV method can only estimate cluster validity for object data with the
help of prototype clustering algorithms because it needs prototype parameters
such as cluster centers v, membership U and the object data x. However if we
only know the relationship between objects without knowing what exactly the
object pattern is we can use NERFCM to partition D. If D is non-Euclidean,
NERFCM can find an appropriate β to make D a Euclidean matrix Dβ by
spread transformation. Therefore all relational parameters produced by NER-
FCM are based on Euclidean relational data which means we can analyze
these parameters through some Euclidean property. Another specially impor-
tant feature of NERFCM is that it can cluster incomplete relational data us-
ing simple triangle inequality-based approximations (TIBA) method to “com-
plete” the relational data matrix (Hathaway and Bezdek, 2002). This is a
particular interest of ours. Suppose R̃ij is a missing value and corresponding
index set Kij is defined as: Kij ={k|Rik and Rkj are available}. Minimax TIBA
satisfies: R̃U

ij = R̃U
ji =min{Rik + Rjk|k ∈ Kij}. Maximin TIBA is: R̃L

ij = R̃L
ji

=max{|Rik − Rkj||k ∈ Kij}. Maximin/minimax average is the average of the
sum of the former two TIBA. These three TIBA schemes replace the missing
values to produce a complete relational data which can be clustered by NER-
FCM. Consequently, RVCV based on NERFCM is convenient to analyze the
cluster validity of nearly all relational data with or without missing values.

VCV cannot deal with relational data using membership U only because it
fails the first step to reorder clusters without information of prototype centers
because these are not produced by NERFCM. Our contribution is to present
relational visual cluster validity (RVCV) to sort clusters depending only on
one critical parameter dik which measures the distance between object data
and cluster centers. Note that this distance can be obtained directly from
NERFCM and is required to update the membership matrix as discussed in
section 2. Suppose d and U are both known; instead of the true distance
between data and cluster we define a pairwise distance as:

d̂ij = min
1≤k≤N

(dik + djk) (6)

for i, j = 1, ..., c and k = 1, ..., N , where c is the number of clusters assumed
and N the unlabeled patterns. Using d̂ij to approximate inter-cluster distances
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satisfies one Euclidean property – triangle inequality.

The RVCV approach is divided into three steps – reordering clusters, reorga-
nizing data and calculating the pairwise dissimilarity matrix. The first step
is very important for intensity image display because it is the basis of the
second step. Without reordering clusters, the corresponding dark shading of
each cluster may be torn into several strips dispersing from the diagonal since
the corresponding membership values of each cluster might stand in the po-
sition of more than one cluster. To realize the first step, the first cluster is
arbitrarily set as the initial reordered cluster. Then every d between the ith
and each of the remaining clusters is calculated through equation (6) and the
index of the smallest d is chosen as the (i + 1)th reordered cluster. Next, the
(i+1)th cluster is removed from the remainder and the remaining clusters are
reordered until all are arranged in turn. To illustrate, we can see from figure 3
examples with spherically and linearly distributed samples both of which have
clearly chained clusters labeled c = 1, c = 2 and c = 3. dij for i, j = 1, ..., c is
used to describe inter-cluster distances which are shown by dot line in figure
3(a). d(xk, ci) for k = 1, ..., N and i = 1, ..., c is used to measure the distance
between object data xk and cluster center ci which is denoted by the solid line
in figure 3(a).

For spherical samples, the first cluster c1 is determined as the initial reordered
cluster. Then we compute pairwise distances d12 and d13 between cluster c1 and
the other two clusters c2 and c3 corresponding to the definition of equation
(6). It is easy to find one point x1 which makes d̂12 = d(x1, c1) + d(x1, c2)
be the smallest distance between all points and clusters c1 and c2, while x2

makes d̂13 = d(x2, c1) + d(x2, c3). Comparing d̂12 with d̂13, we choose c2 as
next reordered cluster after c1 because d̂12 < d̂13 and so c3 is the last one
in this case. According to the triangle inequality, d̂12 ≥ d12 and d̂13 ≥ d13

so it is reasonable to find a minimum distance between object and clusters
instead of the actual inter-cluster distance. It is apparent from figure 3(a)
that d̂13 is roughly equal to d13 because x2 is almost on the dotted line of d13.
For a larger number of samples this is more likely to occur. If the number of
samples is large enough to make some points just fall on the inter-cluster lines,
the d̂ij is exactly dij. For linearly distributed samples, d(xk, ci) is denoted as
the vertical distance in figure 3(b). Through the same reordering method we
get d̂12 = d(x1, c1)+d(x1, c2) < d̂13 = d(x2, c1)+d(x2, c3). Here d̂12 and d̂13 are
defined as the inter-cluster distances of linear samples (Hathaway and Bezdek,
2003). Therefore, the final order of clusters is c1, c2 and c3.

The second step of RVCV is to reorder data in every cluster. Because NER-
FCM gives a fuzzy membership U , we have to find data that belong to the
cluster with the largest membership values and arrange these data in an order
of decreasing membership values. So every datum is assigned to a correspond-
ing cluster and similar points are close together to keep a smoother display
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Fig. 3. Distance between object and cluster: (a) spherically distributed samples and
(b) linearly distributed samples (after ( (Hathaway and Bezdek, 2003)))

in image. It is convenient to get d that is already given in RVCV without
expensive computation in VCV.

The detailed RVCV clustering validity display algorithm is:

Step1: Set N = 1, ..., n, C = 1, .., c, I(1) = 1, structure arrays S
k∈C

.(k) = ∅,
J = 2, ..., c

Step2: For k = 1, ..., c, i = I(k), select (i, j) ∈ arg min
j∈C,p,q∈N

(dip + djq), replace

I ← I ∪ {j} and J ← I − {j}, U
p∈N

(k + 1, p) = U
p∈N

(j, p) Next k

Step3: For p = 1, ..., n, select U(j, p) = arg max
i∈C

{U(i, p)}, for k = 1, ..., c, if

j = k,S.(k) ← S.(k) ∪ {j}, next k; next p
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Step4: For k = 1, ..., c, sort S.(k) in decreasing order of U
j∈S.(k)

(k, j) , next k;

S =
⋃

k∈C
S.(k)

Step5: Calculate R∗
ij = min

k∈C
{dik + djk} using the ordering d(i, j) = d(I(k), S(p)),

for k ∈ C, and p ∈ N
Step6: Display the reordered matrix R∗ as an intensity image I(R∗).

4 Numerical Examples

4.1 2-D Examples

We begin with two simple 2-D examples – the six points given by equation (4)
and a set of three spherically distributed clusters shown in figure 5. Here each
cluster includes 50 samples. We calculate their squared Euclidean distance
matrix by d2

ij = ‖xi − xj‖2 for use as relational data input. We examine the
effect of different initial c values on RVCV through the resulting intensity
images.

The experimental conditions are as follows: the fuzzification constant is m =
2, and the stopping criterion for successive partitions is 0.0001. The initial
number of clusters c of the first experiment using six points is equal to 2, 3
and 4 (for c = 2 and c = 3, each cluster has an equal number of samples;
for c = 4, two of the four clusters have 2 samples and two have one). For
the second experiment of three spherically distributed clusters, c equals to
2, 3, 4 and 10 by proportionately allocating data to each cluster (for c = 4,
the numbers in the clusters are 37, 37, 38 and 38). The results of figure 4 show
that when c = 2 RVCV fails to give the correct data structure. However a
quite explicit diagonal dark shading appears in RVCV images when c is equal
to or more than the true number of clusters.

There are three true clusters in each of these two examples and we can see
clearly three dark blocks along the diagonal in which data with a strong simi-
larity relationship is assigned to each cluster. The light shadings imply strong
dissimilarity between the data in different clusters. RVCV has the same im-
portant property as VCV so that even if c is very much larger than its true
value, RVCV can still show the right number of clusters in the data. We do
not need to worry about which c should be chosen and just increase c until
the main dark structure stabilizes.
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Fig. 4. RVCV of six points data with NERFCM when c=2,3 and 4
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Fig. 5. RVCV of spherically distributed data with NERFCM when c=2,3,4 and 10

4.2 High Dimension Examples

To explain the capability of the proposed method it is necessary to conduct
a systematic study using data with known cluster structure. In a third ex-
periment, three separated multivariate normal distributed clusters are respec-
tively generated in 2, 5, 10, 20, and 30 dimensional spaces while keeping the
Euclidean distances unchanged between any two cluster centers. The two di-
mensional data are shown in figure 6. One of the three clusters has 100 sam-
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ples and the other two have 200 and 300 samples in each. The samples are
randomly arranged in each dataset. All datasets are studied by RVCV with
NERFCM when the initial numbers of clusters c = 3 and relational Euclidean
dissimilarities are used as input. The experimental conditions are the same as
before. It is very clear to see from figure 6 that there are three darkly shaded
diagonal blocks in all intensity images corresponding to the three clusters in
the data. It is easy to identify the size of each block from the axes. The orders
of the dark blocks for 5-D, 10-D and 20-D images are the same but different
from 2-D and 30-D because the final configuration of blocks depends on the
initial choice of sample – this is made at random. No matter which block is
first selected, the following block represents the cluster that is the nearest to
it. When the data dimension increases to 20 or 30, intensity images still show
three clear diagonal blocks.

Next RVCV is applied to a more complicated and overlapped synthetic dataset.
In figure 7 three well-separated clusters are generated by different shape and
distribution. The dot cluster has 300 samples with a spherical distribution.
The square cluster has 200 samples with a square distribution while there
are 100 spherically distributed samples in the circle cluster. The center of the
circle cluster is fixed in figures 8-10 but the centers of the other two clusters
are changed while maintaining their distributions. The squared Euclidean dis-
tance matrix of each dataset is used for relational data input to RVCV. The
experimental conditions and initial number of clusters c are set by the same
method as that of the previous experiment. When c = 2 figures 7 and 8 give an
ambiguous cluster structure. When c = 3 and 4 three dark diagonal blocks are
shown quite clearly in figure 7 with the clearest corresponding to the correct
number of clusters (= 3). When c = 10 the three cluster structure is preserved
but is less coherent. In figure 8 the situation is less clear owning to the overlap
between two of the clusters. When the initial number of clusters is set to the
correct value three dark blocks can be identified but there are strongly shaded
off-diagonal strips between two bigger blocks corresponding to the two over-
lapped clusters. This can be interpreted as suggesting two or three clusters
corresponding to one’s visual impression. If c increases to 4 and 10 clarity
degrades. However the sooth dark blocks when c = 3 still can provide a hint
for cluster validity.

Because the dot cluster mixes extensively with the circle cluster in figure 9
there are only two clusters in this dataset and there are two clear dark diagonal
blocks in each image when c = 2, 3, 4 and 10. However, in figure 10 all three
clusters of different shapes are strongly overlapped and this reflected in the
lack of diagonal structure in the intensity images.
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Fig. 6. RVCV of Iris data with NERFCM when c=2,3,4 and 10
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Fig. 7. RVCV of Wisconsin Breast Cancer data with NERFCM when c=2,3,5 and
10

4.3 Real Example

In the following experiments, we employ two real datasets to test our RVCV
method. One is the well-known iris data and the other is Wisconsin Breast
Cancer Data (WBCD), both of which are available at the UCI Machine Learn-
ing Repository (UCI, 1998). Five widely applicable clustering algorithms: K-
means, Partition Around Medoids (PAM), Hierarchical, Self-Organizing Map
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Fig. 8. RVCV of zero replacement with different missing values

(SOM) and Nuero-Gas, are used to cluster these two object datasets. Then
nine popular internal cluster validity indices are employed to estimate their
performances, comparing with the results of RVCV. These cluster validity
methods can be obtained from Cluter validity analysis platform (Wang, 2007).

Iris data is a record of 150 measurements for three Iris plants with four vari-
ables each of which includes 50 samples. The input relational data is directly
calculated from the iris data by Euclidean distances. We use the same method
to initialize clusters c as for the previous experiment. The four images in figure
6 depict the results. However it is seen that there are only two clear cluster
blocks in all pictures. It should be noted that, while the data are grouped
by three plant varieties, this will not necessarily be reflected in unsupervised
clustering, e.g. there may be insufficient features to permit the separation.
The different ordering of dark blocks is caused by different initial clusters pro-
duced by NERFCM. We can also see vague area in the large dark block with
inconspicuous boundaries which implies the cluster may include two or more
overlapped clusters in it with very close relationship to each other. The valid-
ity indices of the iris data with five clustering algorithms are shown in table
1. The close equivalence of the numbers of 2 and 3 indicates the argument of
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Fig. 9. RVCV of MaxiMin TIBA with different missing values

optimal cluster number between 2 and 3. Proposed RVCV method determines
there are 2 clusters and can imply there is one more overlapped cluster which
should be noted in one of the clusters.

WBCD contains 683 complete instances with 9 attributes from 2 classes: Be-
nign and Malignant. We perform log-transformation to preprocess the data
before computing Euclidean relational data as input. The same initializing
clusters method is also applied. Figure 7 shows that the clear two dark blocks
in each picture keep stable as c increases from 2 to 10. The two dark blocks
prove that, as in most validity indices as shown in table 2, there are two clus-
ters in WBCD. This is consistent with the two true classes in WBCD where
benign group includes 444 samples and malignant group 239. The dark block
size means the number of samples in one cluster. According to the results of
RVCV, 430 benign samples are correctly assigned to the bigger block and 236
malignant to the smaller. The correct rates in each cluster respectively are
96.8% and 98.7%.

Although the cluster validity methods in the tables can give correct optimal
cluster number, these methods can only be used in object data. However our
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RVCV not only gets the same good performance as them but can also deal with
relational data. The result of RVCV shown in a picture is very straightforward
and easily understandable to find out the optimal c and how many instances
in each cluster, or whether there are any overlapping clusters inside.

Data n d c Algorithms S DB CH D C K H W R

Iris 150 4 2/3

K-means 2 2 3 2 3 8 8 4 3

PAM 2 2 3 2 3 8 8 3 3

Hierarchical 2 10 2 2 5 2 3 3 5

SOM 3 6 3 3 3 3 1 3 3

Neuro-Gas 2 2 3 2 3 7 7 5 3

BC 683 9 2

K 2 2 2 2 3 2 8 3 4

PAM 2 2 2 2 4 4 2 5 4

Hierarchical 2 10 2 2 7 2 1 2 5

SOM 2 2 2 2 5 2 5 4 3

Neuro-Gas 2 2 2 2 8 2 2 8 4

Finally, we analyze the RVCV image of incomplete Iris data using NERFCM
and TIBA methods. The complete Euclidean relational matrix Rij is calcu-
lated from the iris data, where i and j are any two samples of the iris data.
Then we randomly delete some off-diagonal values R̃ij in pairs to produce an
incomplete relational matrix. It should be noted that each value in the tridi-
agonal part of Rij can not be deleted in order to keep the relationship in the
subsets of the data (Hathaway and Bezdek, 2002). That is, if the remaining
n2 − 3n + 2 values are deleted we consider that 100% values are missing, and
if 0% value is missing the complete relational data is used in experiment. Two
methods are used to impute the missing values. One is using zero instead of
missing data directly and another is the maximin TIBA method which is the
recommended approximation of the three TIBA strategies when computation
is based on R (Hathaway and Bezdek, 2002). The new estimated complete
matrix R̂ij is clustered by K-means method with real initial clusters k = 3 to
produce hard partitions which are used as the input initial membership U0 of
the NERFCM approach. Figures 12(a-g) show the RVCV images of zero re-
placement with different missing values and figure 13(a-g) are maximin TIBA.
When 0% is missing, both RVCV images of zero replacement and maximin
TIBA mean clustering the complete iris relational data and the results are the
same. It is easy to see that as the missing values increase, both images are
worse. Unsurprisingly, for over 95% cases missing, we can not get any useful
information from these images. Comparing the RVCV images of zero replace-
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ment with that of maximin TIBA under the same missing values, the diagonal
blocks of the latter are clearer than those of the former which are blurred by
some light strips. These light strips caused by the large error between real
value and zero show how much dissimilarity exists between the two samples.
In this situation, the RVCV images of maximin TIBA can show a more true
relationship than the fuzzy images using zero replacement. Therefore, RVCV
is also an easy and valid method to assess the cluster validity of data set with
missing values.

5 Discussion and Conclusion

A visual clustering validity approach for relational data (RVCV) is described
based on the visual cluster validity method (Hathaway and Bezdek, 2003).
We still use the main idea of VCV to reorder inter-cluster distances and inter-
datum distances and display a pairwise dissimilarity R in an intensity image.
NERFCM is selected as a relational clustering algorithm to partition our orig-
inal relational data. We make use of one parameter d and membership U
produced by NERFCM. At first, d is used to reorder inter-cluster distances
which are defined through equation (6) and then used to calculate a pairwise
dissimilarity matrix by equation (5) to save execution time. Our method pro-
vides a visual validity results for relational clustering algorithms correspond-
ing to the object data method. We demonstrate through several synthetic and
real numeric experiments the effectiveness of our method. Overlapped rela-
tional data, incomplete relational data and high dimensional data are tested
to demonstrate that RVCV is a valid method for estimating relational cluster
validity. RVCV only needs U and d as input parameters which are easy to
obtain from relational algorithms. The RVCV method fills a gap in the set of
current VCV methods and both methods provide an integrated visual cluster
validity approach to identify both object and complete or incomplete rela-
tional data. The calculation complexity of RVCV is dominated by the sorting
algorithm. This is achievable in O(n log n) operations and must be done c
times. Hence, for small c, runtime will be manageable even for quite large n.
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