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ABSTRACT 

The overall aim of this paper is to develop a unified design method for the punching 

shear resistance of slab – column connections irrespective of the type of internal 

reinforcement. In the first part of the paper a design model for the punching shear 

resistance of concrete slab-column connections reinforced with fibre reinforced 

polymers (FRP) is proposed. This design model is based on the authors’ theoretical 

analysis for such slabs, which considers the physical behavior of the connections 

under load. The effects of the inherent linear brittle response, the lower elastic 

modulus and the different bond features, as compared to steel, of the FRP 

reinforcement are all accounted for in the present study. The proposed model does not 

incorporate any fitting factors to match the theory to the trend of the available FRP 

slab test results. The excellent agreement between the predicted and published test 

results should give confidence to engineers and designers in using FRP as a sound 

structural reinforcement for slab-column connections. 

 It is then shown that the proposed design model for FRP slabs and the 

previous model of the authors for steel reinforced slabs are both identical in nature 

and structure, thus constituting a unified approach to design for punching shear in 

slabs. On the basis of the unified model comparison and correlation between an FRP 

slab and a reference steel reinforced slab, confirmed by the available test results, are 

presented. The unified model also enables the development of a more rational and 

reliable equivalent steel reinforcement ratio which can be applied to existing code 

equations for steel reinforced slabs to estimate the punching resistance of FRP-

reinforced slabs. 
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INTRODUCTION 

 

The use of FRP reinforcement in practice, especially where the corrosion of steel bars 

is a concern, is very much hampered by the absence of reliable design methods to 

determine the ultimate strength of structural elements, especially flat slabs and bridge 

decks, made with FRP-reinforced concrete. For example, although a few design 

methods exist to predict the ultimate punching shear strength of slab-column 

connections reinforced with internal FRP reinforcement, most of these 

recommendations are either empirically based to fit the available test data [1] or 

constitute a refinement of various code predictions for steel-reinforced slabs on 

account of the lower elastic modulus of FRP bars [1-6]. However, the applicability of 

the above mentioned modified code predictions to FRP- reinforced slabs is 

questionable because of the differences that exist between FRP and traditional steel 

reinforcement. FRP compared with steel, has a brittle linear elastic response, as shown 

in Fig. 1a, but more importantly, it has many different bond features. Punching shear 

test results reported by various investigators [1, 4-5, 7-10] reflect these differences, 

and demonstrate that they affect the ultimate punching load of an FRP slab. 

 In a recent contribution, Theodorakopoulos and Swamy [11] have proposed a 

simple analytical model to predict the ultimate punching shear strength of FRP-

reinforced slab-column connections. The model is based on the physical behavior of 

the connections under load, and determines the depth of the compression zone to 

account for the FRP elastic modulus, tensile strength and bond characteristics. The 

determination of the depth of the compression zone is usually a major obstacle to any 

satisfactory theory for the ultimate strength in shear. 
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 The overall objective of this paper is to present a simple and reliable design 

method, accounting for determining the shear capacity of FRP-reinforced slab-column 

connections at ultimate load. The uniqueness of the proposed model lies on the way it 

is developed, and it is shown that this model is identical in nature and structure to that 

used for the design of steel reinforced concrete slabs failing in punching shear. This 

fact offers engineers an unified design approach for the design of these structural 

members, irrespective of whether the internal reinforcement is made of steel or FRP. 

Based on the unified design model comparisons and correlation between the punching 

shear strengths of an FRP slab and a reference steel slab are presented. In addition, a 

rational and reliable equivalent steel reinforcement ratio to estimate the punching 

shear strength of an FRP slab from existing code provisions for a steel reinforced slab 

is derived. 

 

 

MODIFIED CODE EXPRESSIONS FOR FRP SLABS 

 

To evaluate the punching shear capacity of FRP-reinforced slabs, researchers have 

modified the code equations for steel-reinforced slabs of ACI 318-05 [12] and BS 

8110-97 [13], given below, to account for the lower elastic modulus of FRP 

reinforcement. In what follows, all quantities are in metric units, i.e., strength in N, 

stresses in , elastic moduli in  and dimensions in mm. MPa GPa

 According to ACI 318-05 [12] the punching shear resistance of an interior 

square column steel-reinforced flat slab, in the absence of flexural reinforcement as an 

influential parameter, is given as 

 

 
 

4



dbf'0.33V oc
ACI
c =                               (1) 

 

where f′c is the specified cylinder compressive strength of concrete, bo is the perimeter 

at the critical section located at 0.5 d away from the column face and d is the average 

effective slab flexural depth.  

 In BS 8110-97 [13], for steel reinforced slabs, Vc is calculated as 

 

       (2) db(400/d)/25)(f)0.79(100ρV p
1/41/3

cu
1/3

s
BS
c =

 

where fcu is the cube concrete compressive strength, bp is the rectangular, regardless of 

the column shape, critical perimeter located at 1.5d away from the column face and ρs 

is the steel reinforcement ratio. Based on these equations the following modifications 

have been proposed for FRP slabs. 

El-Ghandour, Pilakoutas and Waldron [2] modified the ACI code equation by 

introducing the term (Ef/Es)1/3, where Ef and Es  are the modulus of elasticity of FRP 

and steel, respectively. Thus, Eq. (1) for FRP reinforced slabs, becomes, 

 

db)E/E(f33.0V o
3/1

sfc
ACI

EL,c ′=       (3) 

 

The Institution of Structural Engineers [3] recommended the use of an 

equivalent area of steel in the BS 8110 equation, Eq. (2), by multiplying the actual 

area of the FRP reinforcement, ρf, by the modular ratio 

 

           (4a) sffs E/Eρ=ρ
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which implies that, given the structure of Eq. (2), the Code equation is again 

multiplied by the term (Ef/Es)1/3.  

El-Ghandour et.al. [4] proposed a new modification of Eq. (2), based on their 

experimental work of FRP flat slabs. According to this approach the equivalent area 

of steel is obtained as in Eq. (4a), multiplied by a strain correction factor, as shown 

below 

 

                (4b) )(0.0045/ε)/E(Eρρ ysffs =

 

where 0.0045 is the proposed strain limit for FRP reinforcement  and εy is the steel 

yield strain. Thus, Eq. (2) for FRP slabs becomes,  

 

[ ] db(400/d)/25)(f))(0.0045/ε/E(E100ρ0.79V p
1/41/3

cu
1/3

ysff
BS
ELc, =   (4) 

 

 Matthys and Taerwe [5] proposed the following equation, for two-way slabs 

reinforced with FRP bars or grids, as a modification of BS 8110 equation 

 

     (5) [ ] db)d/1(f)E/E(10036.1V p
4/13/1

cm
3/1

sff
BS

MT,c ρ=

 

where fcm is the mean cylinder concrete compressive strength at 28 days. 

Furthermore, Ospina, Alexander and Cheng [1] proposed an empirical 

equation, based on Eq. (5), given by 
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       (6) db)E/E()f(77.2V p
2/1

sf
3/1

cfAC0,c ′ρ=

 

It can be seen that in Eq. (6) the effect of modular ratio Ef/Es is taken as the square 

root instead of the cube root, in order to produce better results, whereas the scale 

effect on the punching of slabs with FRP reinforcement is omitted, since this effect 

was reported not to be evident based on the available FRP test results [1].  

A comprehensive review on the reliability of most of the above mentioned 

predictive equations of test results for FRP-reinforced slabs can be found in Ospina et 

al [1]. They reported that among the punching shear strength estimators considered, 

the modified expression (Eq.(5)) of the BS 8110-97 equation is clearly superior with 

an average test-to predicted strength ratio of the available test results of 1.17 and a 

standard deviation of 0.156. However, this equation significantly underestimates the 

strength of the six slabs reinforced with Carbon FRP of series C1, C2 and C3 tested 

by Matthys and Taerwe [5], with the average test-to-predicted ratio being 1.40.  

 More recently, Ospina [6] proposed the following equation for predicting the 

punching capacity of two-ways slabs reinforced with either steel or FRP bars 

 

dkbfNV ocOc, ′=            (7a)  

 

where N is a constant equal to 5/6  (for f′c in MPa, bo in mm and d in mm). The term 

kd is the depth of the neutral axis assuming elastic, cracked conditions, where 

 

ρ
E
Eρ

E
E2ρ

E
Ek

c

1/2

c

2

c
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⎠

⎞
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⎛
=                 (7b) 
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where  E = Es and ρ = ρs for steel slabs, E = Ef and ρ=ρfEf/Es for FRP slabs, and Ec is 

the modulus of elasticity of concrete. It can be seen that Eq. (7), in essence, 

constitutes a modification of the ACI 318 [12] equation through the introduction of 

the factor k, which represents the effect of the slab reinforcement ratio, steel or FRP. 

Nevertheless, Eq (7) is still a conservative predictor when applied to available FRP 

slab test results [6]. 

 

ANALYTICAL MODEL FOR FRP SLABS 

 

According to the theory of Theodorakopoulos and Swamy [11] the ultimate punching 

shear strength of FRP-reinforced concrete slabs, accounting for the scale effect, is 

given as 

 

        (8) fpsctuf )X(bcotfV ξθ=

where 

ffs

ffs
f )(XX

)(X2X(X)
+

=         (8a)  

 

                    (8b) 25.0Xs = d

 

In the equations above, and fcu are the tensile and cube compressive 

strength of concrete, respectively; θ is the mean angle of the failure surface taken as 

30°, ξs=(100/d)1/6 is the scale effect factor, and bp is the critical perimeter of BS 8110 

defined in Eq. (2). Furthermore, Xs, which is independent of the material properties, 

and (Xf)f  are the neutral axis depths for critical shear section and critical flexural 

3/2
cuct f27.0f =
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section, respectively. (X)f is taken as the harmonic mean of Xs and (Xf)f, and 

represents the combined neutral axis depth of the slab as explained in Refs [14, 15]. 

Equation 8(a) for (X)f expresses, in effect, that the governing failure load under 

punching shear is due to the complex moment – shear interaction where punching is 

considered as a form of combined shearing and splitting, occurring without crushing, 

but under complex three dimensional stresses [14]. 

 

PROPOSED DESIGN EQUATION FOR FRP REINFORCED 

SLABS 

 

For the purpose of evaluating the design punching shear strength of FRP-reinforced 

slab-column connections, the calculation of the neutral axis depth of the flexural 

section, (Xf)f,  at failure, can follow a procedure similar to that proposed for the steel-

reinforced slabs in Theodorakopoulos and Swamy [14]. Thus, adopting, for the sake 

of simplicity, the rectangular concrete stress block associated with ACI 318 (Fig. 1b) 

where the term 0.80fcu represents the cylinder compressive strength of concrete and 

using the equilibrium equations, one obtains 

 

d)(0.25
0.145f

εEρd
f

fρ
0.58

1)(X
cu

fff

cu

ff
ff ==       (9) 

 

where εf = ff / Ef  and ff  are the actual strain and stress of FRP reinforcement, 

respectively. 

 To evaluate the FRP strain εf  in Eq. (9) the analysis due to Theodorakopoulos 

and Swamy [11] is employed. This procedure assumes that, because of the bond slip 
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failure that occurs at the final stages of failure of tested flat slabs, the actual FRP 

strain εf is a fraction of the FRP strain ε*
f , calculated on the assumptions of perfect 

bond and strain compatibility, i.e., 

 

                                 (10a) f
*

ff εkε =

or 

fu

*
f

f
fu

f

ε
εk

ε
ε

=   with  kf  = 0.55              (10b) 

 

Thus, the introduction of the coefficient kf in Eq. (10) reflects the bond characteristics 

of the FRP reinforcement whereas the assigned value of 0.55 has been based on 

information reported by Ospina et al [1] from tests on flat slabs reinforced with glass 

fibre polymer reinforcement. Furthermore, based on equilibrium of forces in the 

flexural section, it has been shown [11] that the FRP strain ε*
f , normalized with 

respect to ultimate FRP strain εfu, can be related to the normalized FRP reinforcement 

ratio ρf/ρfb  by 

 

fu
*
ffu

*
ffucu

fucu

fuf

cu

fucu

cu
*
ff

cu
*
fcu

cu

fb

f

/εε
1

/εε/εε
1/εε)

εE
0.58f

εε
ε)/(

εE
0.58f

εε
ε(

ρ
ρ

+
+

=
++

=      (11a) 

 

Thus, solving Eq. (11a) with respect to ε*
f / εfu and making use of Eq. (10b) one 

receives  

2
)/ρ)/(ρ/εε4(1)/ε(ε/εε

ε
ε fbffucu

2
fucufucu

fu

*
f +++−
=             (11b) 
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2
)/ρ)/(ρ/εε4(1)/ε(ε/εε

k
ε
ε fbffucu

2
fucufucu

f
fu

f +++−
=             (11c) 

 

In the above, εcu is the specified value of the concrete compressive strain at ultimate 

and ρfb  is the FRP reinforcement ratio at balanced conditions, that is, an FRP ratio 

where concrete crushing and FRP rupture occur simultaneously. The ρfb ratio, the 

value of which depends on the ultimate FRP strain εfu considered, is calculated on the 

assumptions of perfect bond between FRP and concrete, and strain compatibility 

conditions.  

 The effectiveness of using the normalized ratios εf
*/εfu, εf/εfu and ρf/ρfb in Eqs. 

(11b-c) has been explained in Theodorakopoulos and Swamy [11] and the main 

conclusions drawn are summarized as follows. 

1. The variation of εf
*/εfu versus ρf/ρfb is almost independent for a wide range of εfu 

(0.0105, 0.0150 and 0.0195) and εcu (0.0030 and 0.0035) values considered, for 

the whole range of ρf/ρfb > 1. For ρf/ρfb ≤ 1, under the assumption of perfect bond, 

FRP failure governs and, therefore εf
*/εfu = 1. 

2. Similarly, the variation of εf/εfu versus ρf/ρfb (following the slip behavior between 

FRP and concrete) is again almost independent for the wide range of εfu and εcu 

values mentioned above. This in simple words means that, whereas the values of 

ratio εf/εfu are different for various values of εfu used, the value of the actual FRP 

strain εf is maintained nearly constant. This conclusion is of great importance and 

it will be used in the development of the proposed design model for FRP slabs in 

the next section. 

3. Under the condition of bond-slip, Eq. (11c), the new ratio ρf/ρfb that defines the 

limit of the flexure mode of an FRP-reinforced concrete slab is approximately 
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equal to 0.33, instead of 1.00 for the case of perfect bond, for any value of εfu 

considered (ρf/ρfb ranges from 0.34 to 0.32 for εfu = 0.0105 – 0.0195). 

4. The above mentioned value of ρf/ρfb = 0.33 depends only on the selected value of 

kf = 0.55 and increases with increasing value of kf i.e., if FRP reinforcement with 

better bond features is used. 

 

FRP design equation for punching shear 

The foregoing considerations provide sufficient background to allow the formulation 

of the FRP design model, thus reflecting the structural behavior of the flat slab 

systems and ensuring generality without any loss in accuracy. Thus, the values 

adopted in the present study for the concrete compressive strain at ultimate and for a 

reference value of the ultimate FRP strain (any value could be used) are given as  

 

 εcu = 0.0035  , εfud = 0.0105 (=3 ) and ffud = Ef εfud            (12) cuε

 

Fig. 2, based on these values, shows the relationship between εf
*/εfud or εf/εfud and the 

ratio ρf/ρfb. It can be seen that, as mentioned previously, for ρf/ρfb > 0.33 concrete 

crushing in the flexural section of a flat slab governs, whereas for ρf/ρfb ≤ 0.33 FRP 

rupture governs. 

By introducing the parameters αf and λf  defined as 

 

cu

fudff

cu

fudf
f f0.145

εEρ
f0.145

fρα ==       (13a) 

and 

 
fud

f
f f

fλ =  or  
fud

*
f

f
fud

f
f ε

εk
ε
ελ ==     (13b) 
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the combined neutral axis depth (X)f  Eq. (8a), on account of Eqs. (9) and (13), is 

expressed as 

 

)d25.0(
1
2)X(

ff

ff
f λα+

λα
=                  (14) 

 

The coefficient λf in Eq. (13b) indicates the stress or strain at which the FRP 

reinforcement works at failure stages. It is obvious that λf is always less than unity for 

slabs with ρf/ρfb > 0.33, which means εf < εfud. It is to be pointed out that, even though, 

the calculated values of  and fα fλ  depend on 0105.0fud =ε , their product 

 is independent of any value of cufffff f145.0/E ερ=λα fudε  that could be used. This 

means that the value of  is not an influential parameter of the combined neutral 

axis depth in Eq. (14) and, therefore, of the design punching strength derived below. 

fudε

From the last expression it can be seen that if αfλf  = 1.00, then (X)f  = 0.25d, 

which implies, with the aid of Eq. (8b), that for this particular FRP slab the depths of 

the neutral axis for both the shear and flexural sections are equal to 0.25d. Such a slab 

is defined as an “FRP control slab”. In addition, one can easily conclude from Eq. 

(14) that the combined neutral axis depth of an FRP slab decreases, not in a 

proportional way, with decreasing value of αfλf.  

 

Evaluation of coefficient λf 

On substituting Eq. (13a) into Eq. (11a) and making use of Eq. (12), one obtains that 

the ratio ρf/ρfb is equal to αf, i.e.,  
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f
fb

f α=
ρ
ρ  (for εcu = 0.0035 and εfud = 0.0105)              (15)  

 

and, therefore, in what follows, all comments mentioned previously for ρf/ρfb, are also 

valid for αf.                               

The unknown as yet value of λf  in Eq. (13a) can be calculated for design purposes on 

account of Eqs. (11c) – (12) and (15), as follows  

 

( )f
f

dfu

f
f /4811

6
k

α++−=
ε
ε

=λ  < 1 for αf  > 0.33                (16)  

 

From the above, it is apparent that the adopted value of 0105.0fud =ε  in Eq. (12) is 

fully documented by the simplicity of the relationships between fbf /ρρ  and  in 

Eq. (15) and  and  in Eq. (16). 

fα

fλ fα

In the light of the above considerations, Eq. (8) can take the form  

 

d
1
2b)d/100(f234.0

2
1V

ff

ff
p

6/13/2
cuufd λα+

λα
=   for αf  > 0.33               (17)  

 

which, in conjunction with expressions (13a) and (16), is the design prediction 

equation for the ultimate punching strength of FRP-reinforced concrete slab-column 

connections.  

 Equations (16) and (17), due to Eq. (15), are obviously valid for αf  > 0.33 

since i) for αf  ≤ 0.33 FRP rupture governs and ii) the proposed FRP design model is 

intentionally restricted to the case where the punching shear capacity is less than the 

shear force at the flexural capacity of a slab. However, the application of Eq. (17) to 
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test slabs with αf  ≤ 0.33, and reported to have failed by a mixed failure mode, that is, 

flexure – punching or punching – flexure might be justified. In such a case, the value 

of λf = εf / εfud is obviously calculated on the basis of εf = εfu, irrespective of whether 

the specified FRP strain εfu is less or greater than the reference FRP strain εfud = 

0.0105, since in a real test slab the FRP reinforcement experiences strains up to the 

tensile strain at ultimate, εfu. 

 

Verification of test results and discussion 

The proposed design equation has been applied to predict the punching shear capacity 

of 28 FRP-reinforced concrete slabs reported in the literature. The geometry of the 

tested slabs, the material properties, the analysis and the results are shown in Table 1. 

It can been seen that the slabs analyzed cover many variables that influence punching 

shear behaviour, such as, size of loaded area, effective depth of slab, concrete 

strength, FRP reinforcement ratio and, very importantly, different types of FRP 

reinforcement with varied manufacturing processes, elastic modulus and ultimate 

tensile strength. For the proposed design model the predicted-to test punching shear 

strength ratio is 0.934 with a standard deviation of 0.102. The latter is much less than 

0.150, which is generally acceptable from a structural point of view. Thus, the design 

model appears to be equally reliable and consistent as the authors’ proposed 

theoretical analysis [11], and compares favourably to existing design models for FRP 

slabs [1, 5-6].  

It should be pointed out that the proposed design model, based on the moment-

shear interaction, reflects the physical behaviour of an FRP-reinforced concrete slab-

column connection under load. It is derived entirely from basic engineering principles 

and considers the failure mechanism of FRP-reinforced slabs, and in particular, it 
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incorporates, through the coefficient kf used for the calculations of the actual FRP 

strain εf and the coefficient λf, the bond-slip behaviour between FRP bars and 

concrete. The latter plays a dominant role in the failure process of all FRP-reinforced 

concrete test slabs [1,5,10], and therefore, there is a need for continuing research on 

the quality of bond between each type of FRP reinforcement and concrete to confirm 

the value of kf on a broader basis. For example, referring back to Table 1, it can be 

observed that the proposed design model underestimates considerably the punching 

failure load for series C1, C2 and C3 in Matthys and Taerwe [5] tests, with the 

average of predicted-to-test strength ratios for these six slabs (from No7 to No 12) 

being 0.800. This underestimation may be explained in terms of the possibly better 

bond characteristics of the particular type of reinforcement used in series C (Carbon 

NEFMAC) than those on which the value of kf = 0.55 was based (Glass FRP) [11]. 

Thus, applying the proposed design model to slabs of series C using an increased 

value of kf by 30%, i.e., kf = 1.30 x 0.55 = 0.715, it can be found (not shown here) that 

a much better agreement between predicted-to test strengths for these six slabs is 

obtained with the new average of ratios of 0.945. This indicates an average increase in 

punching strength of only 18% (0.945/0.800 = 1.18), and this is due to the fact that, 

whereas the contribution of the critical flexural section to ultimate punching resistance 

increases proportionally with increasing value of kf (Eqs (9) and (10b)), the 

contribution of the critical shear section remains constant, (Xs=0.25d).   

The proposed design model does not incorporate any empirical factors to 

match the predictions to available FRP slab test results. As a result, the proposed 

design equation (17) is not subject to any limitation as far as the material properties 

and reinforcement ratio are concerned. Indeed, although the available test results are 

limited, it is observed from Table 1 that the design predictions are close to test 
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strengths even for slab H1 made with high strength concrete (fcu = 147.5 MPa) and 

slabs H2/H2′ reinforced with a large amount of FRP reinforcement (ρf = 3.78 %). It is 

also worth stating, based on the development of the model, that any difference 

between the ultimate strength and/or the elastic modulus of the FRP reinforcement 

specified by the manufacturer and test properties of FRP is not a concern for the 

design prediction of the punching failure load, except for slabs with low flexural 

reinforcement, as explained below. 

Thus, it is of interest to mention the design predictions for FRP test slabs 

reinforced with values of αf equal to or less than 0.33. According to the proposed FRP 

design model such slabs must fail in flexure. In fact, most of these slabs in Table 1, 

such as H1, SG1, SC1 and SG2 have been reported to have failed either by a mixed 

(flexure-punching) or by a bond-slip mode. Normally, the comparisons between the 

model’s prediction and test loads for these slabs should not be included in Table 1, 

since the model presented here is intentionally restricted for the cases where punching 

shear capacity is less than the shear force, Vflex, at the ultimate flexural capacity of the 

slab. However, because of the mode of failure of the above mentioned slabs, the shear 

capacities of the slabs can be considered only slightly above the test failure loads, and 

therefore a comparison between design and test results can be made. This is justified 

by the Vufd/Vtf ratios being 0.872, 0.993, 0.942 and 1.010 for test slabs H1, SG1, SC1 

and SG2, respectively. It should be noted that for these slabs, because of their mode of 

failure, the value of λf (column 11, Table 1) has been calculated, as explained in a 

previous section, on the basis of Eq. (13b) and for εf=εfu. Finally, it is worth noting 

that for all test slabs shown in Table 1, the calculated values of αf λf (column 12) are 

less than 1.00, as a consequence of the bond-slip behavior of FRP reinforcement. This 

indicates that the neutral axis depth of their flexural section, on account of Eqs (8e) 
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and (14), is less than that of the FRP control slab, i.e., less than 0.25d, thus verifying 

the fact that flexural crack heights in FRP reinforced members are expected to be 

larger than those in steel reinforced members.  

In what follows, the authors’ design equation for steel-reinforced concrete 

slabs [14] is briefly presented and the two models are compared. In addition, a new 

equation of the equivalent steel ratio is proposed on the basis of equal design 

predictions for two slabs identical in all respects but the type of reinforcement. 

 

 

DESIGN MODEL FOR STEEL SLABS 

 

For the two-way normal concrete slabs reinforced with steel bars, the following 

design equation has been proposed for the ultimate design strength, Vusd 

(Theodorakopoulos and Swamy) [14]. By defining, 

 

cu

ys
s f145.0

fρ
=α

y

s
s f

f
=λ   and                                       (18) 

 

with 

   

1.60 - 0.75 αs  for 0.20 ≤ αs ≤ 0.50 

1.35 - 0.25 αs  for 0.50 ≤ αs ≤ 1.00  
λs = (19) 

1.20 - 0.10 αs  for 1.00 ≤ αs ≤ 2.50 

1.30 – 0.14 αs  for 2.50 ≤ αs  ≤ 5.00 
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then  

 

d
λα1
λ2αb(100/d)f0.234

2
1V

ss

ss
p

1/62/3
cuusd +

=                           (20) 

 

In the above, fs and fy are the steel stress and the steel yield stress, respectively. 

Therefore, the coefficient λs in Eq. (19) indicates the effectiveness of the steel stress, 

i.e., the stress at which the tension steel works (either greater or less then fy) at the 

ultimate stage of punching. Details of the calculation of λs can be found in Ref. [14]. 

It is again worth noting that the design equation (20) for steel-reinforced slabs, based 

on the authors’ theoretical analysis for punching shear of steel-reinforced slabs [15], 

does not employ any factor estimated empirically from test data. Furthermore, as in 

the case of FRP slabs, for the particular steel slab for which αsλs = 1, it is implied that 

both the neutral axis depths of the shear and flexural sections are equal to 0.25d, and 

therefore, such a slab is defined as a “steel characteristic or control slab”.  

 It has been shown that Eq. (20) predicts the steel-reinforced slab test results in 

a better way than Design Codes with a smaller standard deviation [16]. Furthermore, 

Ospina et al (steel slab SR-1) [1] and Matthys and Taerwe (steel slabs R1, R1′, R2 and 

R3) [5], cast these steel reference slabs for comparison purposes to their FRP-

reinforced slabs. Applying Eq. (20) (not shown here) to the above mentioned steel 

slabs one can find predicted-to-test strength ratios of 0.945 for slab SR-1 and 0.850 

(on the mean) for slabs R1, R1′, R2 and R3. It is to be pointed out that these ratios are 

of comparable magnitude to those (on the mean) of the corresponding FRP-reinforced 

slabs of these researchers. 
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A UNIFIED MODEL FOR PUNCHING SHEAR  

 

A comparison of the design expressions (16)-(17) and (19)-(20) for FRP- reinforced 

and steel reinforced slabs, respectively, shows that the two models are identical in 

nature and structure. Both models include all the key parameters that play an 

important role on punching shear behavior, such as, size effect, size of the column 

area, slab effective depth, reinforcement ratio and concrete strength. It is obvious that 

they differ only in the value of αλ – since the parameter αf λf  expresses the different 

engineering properties and bond characteristics of the FRP reinforcement, as 

compared to parameter αs λs  for steel reinforcement. Also, the term 2αλ/(1+ αλ) in 

both equations expresses the interaction of the two critical sections considered in 

developing the proposed equations, namely, shear and flexural. As a result of this 

moment-shear interaction, it can easily be seen from the two design equations that the 

influences of the steel or FRP ratio and concrete strength on punching shear strength 

are not isolated and single contributors, as assumed in code equations. Finally, in 

addition to the above considerations it appears that the design equations (17) and (20) 

retain the structure and simplicity of various code equations for steel slabs or modified 

equations for FRP slabs and, therefore, they are easy to apply by researchers and 

design engineers.  

 Thus, as a conclusion, it can be said that a simple and reliable unified design 

model for punching shear strength of slab-column connections, based on sound 

engineering principles, is possible and applicable to all slabs irrespective of whether 

the internal reinforcement is made of steel or FRP. Based on the unified model, the 

punching strengths of an FRP slab and a reference steel slab are easy to compare and 
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correlate, and a new equation of the equivalent steel ratio is proposed in the next 

section.  

 

Comparison between FRP and steel slabs (experimental evidence) 

Matthys and Taerwe [5], in their systematic FRP reinforced slab tests, given in Table 

1, have compared the strength results with those obtained by the steel reinforced 

reference slabs R1/R1΄, with c = 150/230 mm, d = 90mm, fcu = 41.9 MPa, ρs = 0.58%, 

fy = 500 MPa, Es = 200 GPa, which imply αs = 0.48 and λs= 1.24, and failure loads of 

240/255 kN, respectively. The comparison of test strengths was based on the 

following general characteristics: the flexural strength which is proportional to ρf ffu 

or ρs fy, the equivalent reinforcement ratio ρs = ρf Ef / Es given by Eq. (4a) and the 

flexural stiffness of the section expressed by ρf Ef d2 or ρs Es d2 for FRP and steel 

slabs, respectively. Their general conclusions are briefly summarized here for the sake 

of completeness. 

• FRP-reinforced concrete slabs, such as of series C1 and CS designed with a 

similar flexural strength as reference slabs of series R1, have significantly 

lower punching strengths. 

• Comparing slabs with similar effective depths and different types of flexural 

reinforcement, the obtained failure loads are roughly similar for equal 

equivalent reinforcement ratios ρf Ef / Es, such as slabs of series R1, C2 and 

H2 or of series C1 and CS. 

• FRP-reinforced concrete slabs designed with a similar flexural stiffness as 

steel reference slabs R1/R1΄ have similar or higher punching strengths for 

series C2/C2΄ and C3/C3΄ and slightly lower punching strengths for slabs H2 

and H3. 
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• Comparing FRP slabs with similar flexural stiffness but with different 

effective depths and reinforcement ratios, such as C2/C2΄ and C3/C3΄, the 

effect of increasing the slab depth on the punching resistance (comparing slabs 

C1/C3) seems to be more pronounced than the effect of increasing the 

reinforcement ratio (comparing slabs C1/C2). 

• Comparing slab H2 with the steel reference slab R1 of similar flexural 

stiffness, it is concluded that to obtain similar punching resistance the FRP-

reinforced slabs should have an FRP ratio that is sufficiently higher than steel 

ratio. 

 

Based on the above considerations, it can be said that all three characteristics, 

namely, flexural strength, equivalent reinforcement ratio and flexural stiffness of the 

section used by Matthys and Taerwe [5] constitute a good basis for comparison 

purposes between FRP and steel reinforced flat slabs. However, none of these 

characteristics accounts for parameters that influence, as indicated by experimental 

evidence, the structural behavior of a connection, such as moment-shear interaction, 

slipping of the FRP reinforcement at failure stages and level of the concrete strength 

value. 

 

 

Theoretical comparison between FRP and steel slabs  

The comparison and correlation between FRP and steel reinforced concrete slabs of 

this section have been obtained on the basis of the unified design model presented 

previously. The case of slabs identical in all respects except the type and percentage 

of reinforcement and failing in punching shear is examined. One can argue, based on 

 
 

22



the development of the unified design model, that the expressions of αf and αs are the 

most representative parameters of the problem. Indeed, Eq. (13a) for αf and Eq. (18) 

for αs contain the quantities ρf ffu and ρs fy (for flexural strength), ρf Ef and ρs Es (for 

equivalent reinforcement ratio) and, in addition, the concrete strength fcu. 

Furthermore, coefficients λf and λs account for the bond between concrete and FRP 

(slip behavior) and steel reinforcement (perfect bond), respectively.  

 Figure 3 shows the variation of the ultimate punching shear strengths, Eqs. 

(17) and (20), versus αf and αs for FRP and steel reinforced slabs, respectively. The 

strengths are normalized with respect to strength of the FRP or steel control slab (1/2) 

0.234 fcu
2/3 ξs bp d, and therefore the obtained variations are valid for any level of the 

concrete strength value. It can be seen that both variations are similar, as far as the 

pattern is concerned, and increase monotonically for the whole range of αf or αs 

values, approaching almost a horizontal line at high values of these parameters. This 

configuration has four implications: two are easy to understand, and the other two are 

more obscure. 

 

1. FRP and steel slabs with αf = αs. 

According to the curves in Fig. 3, FRP reinforced concrete slabs designed with the 

same flexural strength (ρf fufd) as the reference steel reinforced slab (ρs fy), which 

implies αf = αs, should have significantly lower punching strengths. This 

conclusion of the theory is due i) to the lower elastic modulus of the FRP 

reinforcement, as compared to steel and ii) to the bond-slip behavior of the FRP 

reinforcement (kf = 0.55). If a higher value is assigned in kf, say 0.715, to reflect 

the use of FRP reinforcement with better bond characteristics, as Carbon 

NEFMAC in slabs of series C1, C2 and C3 [5], the predicted punching strengths 
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increase (not shown in Fig. 3), still remaining lower than the predicted strength of 

the reference steel-reinforced slab. This is fully justified by the test results of 

Matthys and Taerwe [5], as mentioned before, by comparing the slabs of series C1 

and CS with the refernce steel slab R1. 

 

2. FRP and steel slabs with equal punching resistances. 

To obtain equal punching resistances between an FRP slab and a reference steel 

slab, one can follow the arrows shown in Fig. 3. It is clear that the FRP slab 

should have an αf value that is sufficiently higher than αs for reasons analogous to 

those of point 1. An example of this are slabs H2 (αf = 2.49) and R1 (αs = 0.48) 

with comparable magnitude of failure loads, being 231 kN and 240 kN, 

respectively [5]. This aspect will be explained and discussed in detail in the next 

section.  

 

3. Effect of increasing reinforcement ratio. 

Given that αf and αs are proportional to ρf and ρs, respectively, it can be seen from 

Fig. 3 that the punching resistance of a connection increases with increasing 

reinforcement ratio, steel or FRP. It is also observed that for a given increased 

reinforcement ratio either for FRP or steel slabs, its effect on punching strength 

depends on the rank of the initial value of αf (ρf) or αs (ρs) considered. For 

example, and referring to steel slabs, it can be found that the percentage increase 

in punching shear resistance from doubling the steel ratio ρs is 42% and 27% for 

initial values αs of 0.35 and 1.00, respectively. In addition, this conclusion, given 

that different initial values of αs may result from a change of fcu, implies that the 

level of the concrete strength plays a significant role on the effect of increasing 
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reinforcement ratio. Finally, it should be noted, for the sake of comparison, that 

according to BS 8110 [13] design equation, Eq. (2), the percentage increase in 

punching strength when the steel reinforcement ratio is doubled, is constant and 

equal to 26% ( 3 2 =1.26), i.e., independent of the steel ratio the initial slab is 

reinforced with and the level of the concrete strength. 

 

4. Effectiveness of FRP as compared to steel reinforcement.  

A close inspection of two variations of punching resistance in Fig. 3 reveals that 

the increased predicted punching capacity based on equal initial values of αf and 

αs (αf = αs) and associated with the same increase in flexural reinforcement, is 

greater for steel than FRP slabs. This result can be attributed to both the lower 

elastic modulus (Ef < Es) and the bond-slip behavior of the FRP reinforcement, 

taken into account in developing the proposed FRP design model. 

Test results from both FRP and steel reinforced flat slabs fully justify the 

above mentioned conclusion. For example, referring to slabs GFR-1 and GFR-2 in 

Table 1, one can find that the test load increased by 20% (260/217 = 1.20) when 

the FRP reinforcement ratio doubled from 0.73% (initial value of αf = 0.49) to 

1.46%. On the other hand, Base [17] reported that the percentage increase in 

punching resistance from nearly doubling the steel ratio from 0.73% (initial value 

of αs = 0.52) to 1.63% was 30%, whereas Tolf [18] reported the same average 

increase 30% when the steel ratio increased from 0.35% (initial value of αs = 0.47) 

to 0.80%. These test results from steel slabs with comparable values of initial αs 

but different initial values of ρs verify, in essence, the role of concrete strength, 

mentioned in point 3 above. 
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A more in-depth discussion of the effects of flexural reinforcement, reinforcement 

grade (i.e., yield strength, ultimate tensile strength of FRP bars), bond-slip behavior of 

the FRP reinforcement, concentration of reinforcement under the column and concrete 

strength (normal weight and high strength concrete) on punching strength cannot be 

accommodated within the length specifications of this paper, and will therefore form 

the subject matter of another paper.  

 

Equivalent steel ratio 

The equivalent steel reinforcement ratio required to refine the various code 

predictions for steel-reinforced slabs, when the ultimate design punching shear 

strength of an FRP-reinforced slab is needed, can easily be estimated on the basis of 

the above mentioned unified model, as follows. 

 By equating the design predictions from Eq. (17) and Eq. (20), one obtains 

 

 sffsffss //or λλ=ααλα=λα                 (21) 

 

Thus, Eq.(21), with the aid of Eqs. (13a) and (18), after rearranging the terms, yields 
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fs E

E
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λ

ε
ε

ρ=ρ   with εfud  = 0.0105              (22) 

 

Equation (22) indicates that, according to the authors’ proposed design expressions, 

the equivalent area of steel reinforcement can be obtained as in Eq. (4b) (it is noted a 

different value in the strain limit of the FRP reinforcement between Eqs (22) and (4b)) 

multiplied further by a stress correction factor, expressed by λf/λs. 
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 The unknown as yet stress factor sf /λλ , which is equal to ,can be 

determined with the aid of Eqs. (16), (19) and (21), if the value of  is known. 

Figure 4 shows the variation of both 

fs /αα

fα

sα  and fs /αα  with respect to . It is observed 

that, for equal design predictions of an FRP slab and a reference steel slab, the value 

of  increases, as expected, with increasing 

fα

fαsα , although in a much lesser degree. 

As a consequence of this, the ratio fs /αα  decreases from 0.70 for =0.33 to 0.20 

for =4.55 at a rather constant rate of decay for high values of . On the other 

hand, low values of  produce high values of the ratio 

fα

fα fα

fs /αα = sf /λλfα  and this can 

be explained in terms of the yielding behavior of the resulting low value of the 

equivalent steel ratio. Figure 4 also shows that, for the whole range of , the ratio 

=  is lower than unity due to the bond-slip behavior of the FRP 

reinforcement. Furthermore, equations (4a) and (4b) indicate that for given material 

properties  and , the equivalent steel ratio, taken as a percentage of 

the FRP ratio 

fα

fs /αα sf /λλ

sfcuf E,E,f,ρ yε

( fs / )ρρ , is constant. However, in the light of the above discussion, it is 

apparent that, due to Eq. (22), the ratio fs /ρρ  decreases with increasing value of , 

which implies that even different concrete strengths provide different equivalent steel 

ratios.  

fα

 Finally, it can be easily found that to obtain values of comparable magnitude 

for the equivalent steel ratio from Eqs. (4a) – (22) or from Eqs. (4b) – (22) the value 

of αf should be around of 4.5 (slabs H2/H2΄) and 1.0 (slabs C3/C3΄ and H3/H3΄), 

respectively. These results are also shown in Table 2, where the equivalent steel 

reinforcement ratios according to Eqs. (4a), (4b) and (22), for test slabs in Matthys 

and Taerwe [5], are given for comparison purposes. One can see that the results of Eq. 

(22) compare favorably to those of Eqs. (4a-b) for slabs R1 (reference steel slab), C2 
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and H2, designed, as mentioned previously, with similar effective depths and for 

roughly equal equivalent reinforcement ratios, and for which the obtained failure 

loads are of comparable magnitude. It is also of interest to note that for slabs CS/CS΄ 

with a large value of Ef = 148 GPa, the equivalent steel reinforcement ratio according 

to Eq. (22) [0.28% = 0.19% (148/200) x (0.0105/0.0031) x (0.30/0.50)] is higher than 

the initial FRP ratio, ρf = 0.19%, for reasons analogous to those explained above.  

 Taking the above as a whole, it can be said that the calculation of the 

equivalent steel ratio on the basis of the unified model, is more reliable than those 

based on Eqs. (4a) and (4b). In addition to FRP ratio (ρf) and modular ratio (Ef/Es), 

parameters that significantly influence punching strength, such as reinforcement 

ultimate stresses (fy, ffu, through εy and εfud), bond features of the flexural FRP 

reinforcement (kf, through the value of λf) and concrete strength (fcu, through the 

values of αs and αf) are all accounted for. It is obvious that the use of the proposed 

equivalent steel ratio of Eq. (22), to refine the various code predictions for steel 

reinforced slabs, will provide a reliable estimator for the punching shear strength of 

FRP reinforced slabs, only if the code expression used is an accurate predictor for the 

punching strength of the so-called reference steel slab. 

 

CONCLUSIONS 

 

The main conclusions derived from this study may be summarized as follows: 

1. A design equation, Eq. (17),  is developed to predict the ultimate punching shear 

strength of FRP-reinforced concrete slabs. The approach is based on the authors’ 

theoretical analysis for such slabs, which considers the structural behavior of the 

connections under load. 

 
 

28



2. The proposed design model accounts for the mechanical properties of the FRP 

reinforcement, which are sufficiently different from those of steel, such as, elastic 

modulus, ultimate tensile strength and, mainly, the bond characteristics. It, also, 

incorporates no empirical factors to match the theory to the trend of the available 

FRP slab test results. As a result, no limits are placed as far as the material 

properties are concerned. 

3. The proposed predictive equation retains the structure and simplicity of the 

modified code expressions for FRP slabs. In addition, the contribution of the FRP 

reinforcement ratio and concrete strength on the punching shear strength are both 

incorporated in a combined way, thus reflecting the dependence of the punching 

failure load on these interacting variables.  

4. The predictions of the proposed design equation are in excellent agreement with 

the available experimental failure loads of FRP test slabs, reported by various 

investigators. Also, the proposed model compares favorably to existing design 

models for FRP slabs, reported in the literature.  

5. The proposed design model for FRP slabs and the previous model of the authors 

for steel reinforced slabs are both identical in nature and structure, and include all 

the key parameters that significantly influence punching shear behavior. Thus, the 

two models constitute a unified model to design for punching shear, irrespective 

of whether the internal reinforcement is made of steel or FRP.  

6. With the aid of the unified model a new equation of the equivalent steel ratio is 

proposed on account of a stress factor for steel and FRP. In addition, the unified 

model accommodates the comparison and correlation between steel and FRP 

slabs, verified by experimental results, in a reliable and consistent way. 
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7. Given the agreement between predicted and test results, it is concluded that the 

proposed unified model provides a convenient and reliable framework for the 

punching strength design of slabs reinforced with any type of reinforcement, steel 

or FRP. 
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NOTATION: 

 

bo = critical perimeter for punching shear-capacity evaluation, ACI 

bp         = critical perimeter for punching-shear capacity evaluation (BS 8110,   

present study) 

d = effective flexural depth of slab 

Es = elastic modulus of steel 

Ef = elastic modulus of FRP 

fc
'  = specified cylinder concrete strength 

fcm = mean cylinder compressive concrete strength 

fct = tensile concrete strength 

fcu = concrete cube strength, fcu = fc
΄/0.80 

ff = FRP stress 

ffu = ultimate tensile strength of FRP 

ffud        = ultimate tensile strength of FRP for design purposes, equal to Ef  x    

0.0105 

fs = steel stress 

fy = steel yield stress 

k = factor for the neutral axis depth 

k1 = maximum concrete stress block parameter 

kf = reduction factor for FRP reinforcement strain 

N = coefficient 

Vc = nominal shear resistance of a flat slab (codes’ provisions) 

Vflex = shear force at ultimate flexural capacity (FRP slabs) 

Vtf = ultimate test punching strength (FRP slabs) 
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Vuf = ultimate theoretical punching strength (FRP slabs) 

Vufd =  ultimate design punching strength (FRP slabs) 

Vusd = ultimate design punching strength (steel slabs) 

(X)f = combined neutral axis depth (FRP slabs) 

(Xf)
*
f  = depth of compression zone of the flexural section (FRP   slabs-             

                        perfect bond) 

(Xf)f     = depth of compression zone of the flexural section (FRP slabs bond-

slip)       

Xs        = depth of compression zone of the shear section (steel slabs and FRP 

slabs) 

αs = parameter equal to ρsfy /0.145 fcu (steel slabs) 

αf = parameter equal to ρf ffud /0.145 fcu (FRP slabs) 

εcu = ultimate concrete compressive strain  

ε  = FRP strain (perfect bond, strain compatibility) *
f

εf  = FRP strain (bond slip) 

εfu  = ultimate tensile FRP strain 

εfud = ultimate tensile FRP strain for design purposes, equal to 0.0105 

εs = steel strain 

εsc = steel strain of the characteristic slab equal to 0.0105 

εy = steel yield strain 

θ = angle of failure surface 

λs = parameter equal to fs/fy (steel slabs) 

λf = parameter equal to ff/ffud  (FRP slabs) 

ξ s = depth correction factor equal to (100/d)1/6 
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ρs = tension steel reinforcement ratio 

ρf = FRP reinforcement ratio 

ρfb = balanced FRP reinforcement ratio (perfect bond) 
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Table 1. Predicted design loads compared with FRP test punching strengths 

Reference Slab No* c**     
(mm) 

d      
(mm) 

fcu
***    

(MPa)
ρf      

(%) 
ffu      

(Mpa) 
Ef      

(GPa)
εfu  

(x10e3) 
Vtf       

(kN) αf
**** λf αfxλf 

Vufd     
(kN) Vufd/Vtf 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 
CFRC-SN1 1 75 61 53.0 0.95 1330 113.0 11.8 93 1.47 0.44 0.65 88.6 0.953 
CFRC-SN2 2 75 61 55.7 0.95 1330 113.0 11.8 78 1.40 0.45 0.63 90.4 1.160 
CFRC-SN3 3 100 61 48.7 0.95 1330 113.0 11.8 96 1.60 0.42 0.67 93.8 0.977 

Ahmad et 
al7 

CFRC-SN4 4 100 61 45.7 0.95 1330 113.0 11.8 99 1.70 0.40 0.69 91.3 0.922 
I 5 100 55 51.3 0.31 1200 100.0 12.0 65 0.44 0.87 0.38 57.5 0.885 Banthia et 

al8 II 6 100 55 66.1 0.31 1200 100.0 12.0 61 0.34 1.00 0.34 62.6 1.025 
C1 7 150 96 45.9 0.29 1690 91.8 18.4 181 0.42 0.89 0.37 138.5 0.765 
C1' 8 230 96 46.6 0.29 1690 91.8 18.4 189 0.41 0.90 0.37 164.6 0.871 
C2 9 150 95 44.6 1.05 1340 95.0 14.1 255 1.62 0.42 0.67 197.4 0.774 
C2' 10 230 95 45.4 1.05 1340 95.0 14.1 273 1.59 0.42 0.67 235.5 0.863 
C3 11 150 126 42.3 0.52 1350 92.0 14.7 347 0.82 0.62 0.50 243.9 0.703 
C3' 12 230 126 42.9 0.52 1350 92.0 14.7 343 0.81 0.62 0.50 282.4 0.823 
CS 13 150 95 40.8 0.19 2300 148.0 15.6 142 0.50 0.81 0.41 133.3 0.939 
CS' 14 230 95 41.5 0.19 2300 148.0 15.6 150 0.49 0.82 0.40 158.8 1.059 
H1 15 150 95 147.5 0.64 665 37.3 17.8 207 0.12 1.70 0.20 180.5 0.872 
H2 16 150 89 44.8 3.78 555 40.7 13.6 231 2.49 0.32 0.80 198.5 0.859 
H2' 17 80 89 44.9 3.78 555 40.7 13.6 171 2.48 0.32 0.80 165.3 0.967 
H3 18 150 122 40.1 1.21 640 44.8 14.3 237 0.98 0.56 0.54 235.6 0.994 

Matthys 
and 
Taerwe5 

H3' 19 80 122 40.1 1.21 640 44.8 14.3 217 0.98 0.56 0.54 203.6 0.938 
SG1 20 200 142 41.6 0.22 600 45.0 13.3 170 0.17 1.27 0.22 168.8 0.993 
SC1 21 200 142 43.4 0.18 1000 110.0 9.1 229 0.33 0.87 0.29 215.7 0.942 
SG2 22 200 142 58.2 0.47 600 45.0 13.3 271 0.26 1.15 0.30 273.8 1.010 
SG3 23 200 142 37.9 0.47 600 45.0 13.3 237 0.40 0.91 0.37 238.4 1.006 

EL-
Ghandour 
et al10 

SC2 24 200 142 37.0 0.43 1000 110.0 9.1 317 0.93 0.57 0.53 302.6 0.955 
GFR-1 25 250 120 36.9 0.73 663 34.0 19.5 217 0.49 0.82 0.40 210.8 0.971 
GFR-2 26 250 120 36.1 1.46 663 34.0 19.5 260 1.00 0.55 0.55 257.3 0.990 Ospina et 

al1 
NEF-1 27 250 120 46.9 0.87 566 28.4 19.9 206 0.38 0.94 0.36 228.3 1.108 

Zaghloul & 
Razaqpur9 - 28 250 75 56.3 1.00 1700 100.0 17.0 234 1.29 0.48 0.61 195.1 0.834 
* numbering of slabs  *** concrete strength at testing time  Average ratio 0.934
** column width: square or diameter  **** αf=ρf x Ef x 0.0105 / 0.145 fcu  Standard deviation 0.102



Table 2. Equivalent steel reinforcement ratio 

 

Equivalent steel ratio (%) Test 
slabs5 

Type of 
reinforcement 

ρs or ρf 
(%) αs or αf Vt (kN) 

Eq. (4a) Eq. (4b) Eq. (22) 

R1/R1΄ Steel 0.58 0.48 240/255 0.58 0.58 0.58 

C1/C1΄ FRP 0.29 0.42 181/189 0.12 0.17 0.26 

C2/C2΄ FRP 1.05 1.62 255/273 0.50 0.73 0.58 

C3/C3΄ FRP 0.59 0.82 347/343 0.24 0.35 0.39 

CS/CS΄ FRP 0.19 0.50 142/150 0.14 0.20 0.28 

H2/H2΄ FRP 3.78 2.49 231/171 0.77 1.12 0.71 

H3/H3΄ FRP 1.21 0.98 237/217 0.27 0.39 0.39 
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