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Abstract Doremus’ model of viscosity assumes that viscous flow in amorphous materials is mediated by 

broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to 

the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity 

equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear 

nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based 

approach has been developed to fit the equation to experimental viscosity data for a number of glassy 

materials including SiO2, GeO2, B2O3, anorthite, diopside, xNa2O-(1 – x)SiO2, xPbO-(1 – x)SiO2, soda-lime-

silica glasses, salol, and α-phenyl-ο-cresol. Excellent fits of the equation to the viscosity data were obtained 

over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies 

and entropies of formation and motion of configurons in the analysed systems, the activation energies for 

flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A 

direct anti-correlation between fragility ratio and configuron percolation threshold which determines the 

glass transition temperature in the analysed materials was found.  

 
PACS: 66.20.1d, 66.10.Cb, 61.43.-j; 71.55.Jv.  

Keywords: Bond system, enthalpy, entropy, viscosity, amorphous materials   

 

1. Introduction  

The viscosities of fluids are among their most important properties. Viscosity quantifies the resistance of 

fluids to flow and indicates their ability to dissipate momentum. The momentum balance of Newtonian fluids 

is described at the macroscopic level by the Navier-Stokes equations. At the microscopic level, viscosity 

arises because of a transfer of momentum between fluid layers moving at different velocities as explained in 

Maxwell’s kinetic theory. In oxide melts and glasses, viscosities determine melting conditions, working and 

annealing temperatures, rate of refining, maximum use temperature, and crystallization rate. In geology the 

behaviour of magma and hence volcanic eruptions and lava flow rates depend directly on the viscosities of 

molten silicates [1, 2].  

 

It is commonly assumed that shear viscosity is a thermally activated process. Since the pioneering work of 

Frenkel [3] fluid viscosity, η, has been expressed in terms of an activation energy Q by  
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where T is temperature in K, R is the molar gas constant and A is a constant. Two different regimes of flow 

have been identified with melts at high temperature having a lower activation energy for flow than melts at 

lower temperatures. Within the high temperature or low temperature regime an Arrhenius dependence of 

viscosity is observed and an appropriate activation energy, QH or QL respectively, can be defined; 

asymptotically both at low and high temperatures the activation energy of viscosity is independent of 

temperature. This pattern has been observed with a range of melts including silicates, fused salts, oxides and 

organic liquids. [4]. Between the high temperature and the low temperature regimes the activation energy for 

flow changes and cannot be described using an Arrhenius approach. Melts are defined as strong or fragile 

depending on extent of the change in the activation energy for flow with strong melts exhibiting small 

changes in activation energy compared to fragile melts. The classification into strong and fragile melts uses 

the glass transition temperature, Tg, to separate the high and low temperature regimes. A glass transition 

occurs when a melt is rapidly cooled to yield a glassy structure, that has properties similar to those of 

crystalline solid, i.e. a glassy material is an isotropic solid material [5 - 7]. When the temperature, T, is 

greater than Tg an amorphous substance is called a liquid (even if supercooled) but if T < Tg it is called a 

glass. Tg can be obtained by analysing the behaviour of derivative parameters, such as the coefficient of 

thermal expansion or the specific heat [8]. The term glass transition temperature is often used to refer to the 

temperature at which the viscosity attains a value of 1012 Pa s (1013 Poise) [9]. This definition of Tg was used 

by Angell to plot the logarithms of viscosity as a function of (Tg/T). In such a plot strong melts, i.e. melts that 

exhibit only small changes in the activation energy for flow with temperature, such as silica, have a nearly 

linear dependence on the inverse of the reduced temperature whereas fragile melts deviate strongly from a 

linear dependence [10]. The activation energies of fragile liquids significantly change with temperature so 

their viscosity deviates significantly from Arrhenius behaviour. Doremus indicated that the changes that 

occur in the activation energy can be unambiguously characterised by the ratio of the high and low 

temperature activation energies, which can be used as a fragility criterion [1]:  

 
L

H
D Q

QR =  (2) 

The higher the value of RD the more fragile the melt. Doremus’ fragility ratio ranges from 1.45 for silica to 

4.52 for anorthite melts (for more details see Table 2 below).  

 

2. Viscosity equations  

Many different equations to model the viscosity of liquids have been proposed. The most popular viscosity 

equations are those of Vogel, Tamman and Fulcher (VTF), Adam and Gibbs (AG) and Avramov and 

Milchev (AM) [4, 12]. The VTF equation of viscosity is an empirical expression which describes viscosity 

data over many orders of magnitude with accuracy better then 10%:  
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where AVTF, BVTF and TV (Vogel temperature) are constants determined by fitting equation (3) to experimental 

data. The VTF equation can be derived from the free volume model which relates the viscosity of the melt to 

free (or excess) volume per molecule Vf. The excess volume is considered to be the specific volume of the 

liquid minus the volume of its molecules. This molecular volume is usually derived from a hard sphere 

model of the atoms in the molecules. Molecular transport is considered to occur when voids having a volume 

greater than a critical value form by redistribution of the free volume [13]. The flow unit or molecule is 

imagined to be in a structural cage at a potential minimum. As the temperature increases there is an 

increasing amount of free volume that can be redistributed among the cages, leading to increased transport 

and this leads to an exponential relationship between viscosity and free volume [13]:  
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where V0 is the volume of a molecule, η0 and B are constants. In terms of the specific volume V per molecule 

it can be shown that ( ) 0000 /TTTVVVVf −=−= , for some constant and low temperature T0. Clearly 

equation (4) is the same as equation (3) if we define 0lnη=VTFA , 0BTBVTF =  and 0TTV = .  

 

The Adam and Gibbs equation is obtained assuming that, above the glass transition temperature molecules in 

a liquid can explore many different configurational states over time, and that as the temperature is raised 

higher energy configurational states can be explored. In contrast below the glass transition temperature it is 

assumed that the molecules in the glass are trapped in a single configurational state. The resulting AG 

equation for viscosity is similar to the VTF equation [14]:  
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where AAG and BAG are adjustable constants and Sconf(T) is the configurational entropy. Assuming in equation 

(5) that ( ) ( ) TTTCTS Vpconf /−Δ= , where ΔCp is the relaxational part of the specific heat one can see that 

equation (5) is the same as (3) if VTFAG AA =  and RBCB VTFpAG /Δ= . The configurational entropy model 

of Adam and Gibbs fits a large number of viscosity data but like the free volume theory, it does not provide 

an accurate fit over the entire temperature range. At high and low viscosities equation (5) does not describe 

the experimental temperature dependence of viscosity and increasingly large deviations from the 

experimental values are produced. In addition the configurational entropy model gives discontinuities in the 

first differential of the entropy at the glass transition, despite the fact that that there are no discontinuities in 

experimentally measured viscosities in this temperature range.  
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The Avramov and Milchev (AM) viscosity model gives an excellent description of viscosity within the 

temperature range where the activation energy of viscosity changes with temperature. The AM model 

assumes that due to existing disorder, activation energy barriers with different heights occur and that the 

distribution function for heights of these barriers depends on the entropy. Thus viscosity is assumed to be a 

function of the total entropy of the system which leads to the temperature dependence of equilibrium 

viscosity [12]:  
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where in this case Tg is defined by ( ) ( )[ ] 5.13s dPaln =gTη , AAM is a constant and α is Avramov’s fragility 

parameter. Strong liquids have a value of α  close to unity and as α increases the fragility of the melt 

increases.  

 

Priven [15] has developed an empirical equation, which he indicates is superior to the VTF equation, namely 
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where ( ) 5.3log 0 −=η , β and θ0 are fitting parameters and n is a composition dependent parameter. Priven 

reports that for the majority of silicate melts n = 1.0 ± 0.1 and for the majority of borate melts n = 0.9 ± 0.4. 

However for high-silica melts (> 90mol% SiO2) the values of n are reported to be significantly smaller than 

unity and do not exceed 0.5, whereas for high boron oxide melts (> 90mol% B2O3), the values of n are 

reported to be significantly greater than unity range from 1.5 to 2.5 [15]. Priven states this equation 

reasonably describes the temperature dependence of viscosity for silicate and aluminosilicate melts in the 

range 1 ≤ η ≤ 1012 Pa s, but that a limit of applicability is reached for viscosities < 1 Pa s.  

 

All of the above equations can only be used within limited temperature ranges that essentially correspond to 

the range of temperatures where the activation energy for flow changes with temperature. None of equations 

(3) or (5)-(7) correctly describe the asymptotic low and high temperature Arrhenian viscosity behaviour [4]. 

In addition the non-physical character of the fitting parameters does not give a clear understanding of 

changes that occur with temperature or composition. Therefore equations (3) and (5)-(7) may be useful for 

fitting experimental measurements over limited temperature ranges, but they cannot explain the temperature 

dependencies of viscosity.  

 

It is well known [4, 16] that mathematically the viscosity of amorphous materials can most exactly be 

described by  
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where A, B, C and D are all constants. In addition to the fact that equation (8) provides a good fit to the 

experimental data across the entire temperature range, it correctly gives Arrhenian type asymptotes at high 

and low temperatures [4] with DBQH +=  and BQL = . For the low viscosity range ( ( ) 3s dPa/log <η ) 

Volf gives QL = 80-300 kJ/mol and for the high viscosity range ( ) 3s dPa/log >η and QH = 400-800 kJ/mol 

[16]. Within narrow temperature intervals equation (8) can be easily approximated to many types of curves, 

such as those given by equations (3), (5) and (6). However, in contrast to them the equation (8) gives a 

correct asymptotic Arrhenius-type dependence of viscosity with temperature at low and high temperatures 

when the activation energy of viscosity becomes constant.  

 

It can be shown that equation (8) follows immediately from Doremus’ ideas concerning the role of defects in 

viscous flow [4, 6, 17, 18]. Moreover equation (8) has been derived by Douglas for silicate glasses by 

assuming that the oxygen atoms between two silicon atoms could occupy two different positions, separated 

by an energy barrier [19] with flow being limited by the breaking of Si-O-Si bonds.  

 

3. Doremus’ model of viscosity  

 
The Doremus model assumes that viscous flow in amorphous materials is mediated by broken bonds which 

can considered to be quasi-particles termed configurons. Doremus analysed the diffusion and viscosity in 

amorphous silica and showed that viscous flow is mediated by defects of the amorphous silica network such 

as SiO molecular defects [4]. Formation of these defects occurs via breaking of covalent Si-O bonds and 

attachment of an additional oxygen atom which leads to Si being in five-fold coordination with oxygen 

atoms. Experimental evidence for five-fold coordination of oxygen around silicon has been found in silicates 

[4]. Doremus’ approach returns to Mott’s ideas on the role of defects in the viscous flow; Mott suggested that 

the concentration of broken silicon-oxygen bonds in vitreous silica increases as the temperature increases, 

enabling easier flow [20].  

 

Consider a material that forms an ideal disordered network such as amorphous SiO2. In this case the three-

dimensional disordered network is formed by [SiO4] tetrahedra interconnected via bridging oxygens so that 

we have ≡Si•O•Si≡ where • designates a bond between Si and O and thus •O• designates a bridging oxygen 

atom with two bonds. The ideal network can also contain some point defects in the form of broken bonds 

  ≡ Si o O• Si ≡ , where ο designates a broken bond between Si and O. Each broken bond, which is typically 

associated with strain-release and local adjustment of centres of atomic vibration, is treated as an elementary 

configurational excitation in the system of bonds and is termed a configuron [21]. Using Angell’s bond 

lattice model we can represent condensed phases by their bond network structures [6, 7, 21, 22]. Thus we can 

analyse the system of interconnecting bonds of a disordered material rather than the system of atoms. In this 
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approach the initial set of N strongly interacting cations such as Si4+ is replaced by the congruent set of 

weakly interacting bonds of the system. At absolute zero (T = 0 K) the material contains no broken bonds, 

however at any finite temperature (T > 0 K) the material will contain thermally-activated defects i.e. 

configurons. The formation of defects in a network is governed by the formation Gibbs free energy 

ddd TSHG −= , where Hd is the enthalpy and Sd is the entropy of formation of network defects, e.g. broken 

  Si oO bonds. The temperature-induced formation of network breaking defects in a disordered network can 

be represented by the reaction involving the breaking of a covalent bond, e.g. in amorphous silica:  

 ≡•≡⎯→⎯≡••≡ SiOSiSiOSi T o                  (Reaction 1)  

The higher the temperature, the higher the concentration of thermally-created defects including configurons. 

Because the system of bonds has two states, namely a ground state corresponding to unbroken bonds and the 

excited state corresponding to broken bonds, it can be described using the statistics of two-level systems [6, 

7, 18]. The two states of the equivalent two-level system are separated by the energy interval Gd governing 

the reaction (1). The statistics of two level systems leads to the well-known relationship for equilibrium 

concentrations of configurons, )(0 TfCCd = , and unbroken bonds, )](1[0 TfCCu −=  [6, 7, 18, 19, 21, 22, 

23] with  
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where C0 is the total concentration of elementary bond network blocks or the concentration of unbroken 

bonds at absolute zero Cu(0) = C0.  

 

The viscosity of an amorphous material is related to the diffusion coefficient, D, of the configurons which 

mediate the viscous flow via Stokes-Einstein equation:  
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where k  is the Boltzmann constant and r is the radius of configuron. The configuron moving through 

material will perform jumps between different energy minima in a potential energy landscape. In a 

crystalline material these minima are associated with lattice or interstitial sites; similarly in an amorphous 

material these minima are associated with network sites. At each minimum in the energy-distance diagram, 

the configuron is in an equilibrium position. The energy Gm which is required to enable the configuron to 

jump across a barrier equals the difference in energy between the energy associated with the configurons 

being in equilibrium positions and the energy associated with the diffusing configuron (along with its 

neighbours, which must move apart to allow the jump) being in a saddle point configuration at a maximum 

in the energy-distance curve. The probability of the energy gathered is given by the Gibbs distribution [23]:  
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where mmm TSHG −=  is the Gibbs free energy of motion associated with a jumping configuron, Hm and Sm 

are the corresponding enthalpy and entropy of configuron motion. Assuming that the mean jump time of 

configurons is short compared to the mean residence time τ(T) in network sites, the trajectory of a configuron 

is composed of a sequence of elementary jumps with average jump length λ. From these microscopic 

quantities the configuron diffusion coefficient can be defined by:  

 )(2 TfgD νλ=  (12) 

where f is the correlation factor, g is a geometrical factor close to 1/6 and ν(T)=1/τ(T) is the total jump 

frequency. The correlation factor equals unity for purely random hopping, and in general 0 < f ≤1. For defect 

mediated jumps the equation for the total jump frequency is given by:  

 wTfzpT 00 )()( νν =  (13) 

where z is the number of nearest neighbours, p0 is a configuration factor (in simple cases p0 = 1), f(T) is the 

relative concentration of configurons given by Eq. (9), and ν0 is the configuron vibrational frequency or the 

frequency with which the configuron attempts to surmount the energy barrier to jump into a neighbouring 

site. Hence the viscosity of amorphous materials is directly related to the thermodynamic parameters of 

configurons via equation [6]:  

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

RT
DC

RT
BATAT exp1exp1)( 21η  (14) 

where 

 01 6/ rDkA π=  (15a) 

 )/exp(2 RSA m−=  (15b) 

 mHB =  (15c) 

 )/exp( RSC d−=  (15d) 

 dHD =   (15e) 

and 00
2

0 νλ zpfgD = . Experiments show that in practice four fitting parameters suffice [16] and the 

viscosity is well described by Eq. (8), which follows from (14) assuming, as is commonly the case, that 

1)/exp(2 >>RTBA  (see below data from Table 1) and taking A=A1A2.  
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Equation (14) can be fitted to practically all available experimental data on viscosities of amorphous 

materials. Moreover equation (14) can be readily approximated within a narrow temperature interval by 

known empirical and theoretical models such as VTF (equation 3), AG (equation 5), or Kohlrausch-type 

stretch-exponential relationships [12]. In contrast to such approximations equation (14) can be used over 

wider temperature ranges and gives the correct Arrhenian-type asymptotes at high and low temperatures 

namely )/exp()1()( 21 RTBTCAAT +≅η  and ]/)exp[()( 21 RTDBCTAAT +≅η  respectively. Eq. (14) 

shows also that at extremely high temperatures when T → ∞ the viscosity of melts changes to a non-

activated, e.g. non-Arrhenian behaviour TCAAT T )1)(1()( 21 ++⎯⎯ →⎯ ∞→η  which is characteristic of 

systems of almost free particles [23].  

 

The five coefficients A1, A2, B, C and D in equation (14) can be treated as fitting parameters derived from the 

experimentally known viscosity data. By use of equations (15a) to (15e) the thermodynamic parameters of 

the configurons (network breaking defects) can be obtained from the fitting parameters. Hence the 

experimentally measured viscosity-temperature relationships of amorphous materials can be used to 

characterise the configuron thermodynamic parameters.  

4. Thermodynamic parameters from viscosity data  

 

An exact determination of thermodynamic parameters of configurons becomes possible from the known 

viscosity behaviour with temperature using relationships (14) and (15a)-(15e). As the number of parameters 

to be found via the fitting procedure is high (5 parameters when using Eq. (14) or 4 parameters when using 

Eq. (8)) we used a dedicated Genetic Algorithm (GA) [24] to achieve the best fit of theoretical viscosity-

temperature relationships with experimental data on viscosity.  

 

Genetic algorithms are a particular class of evolutionary algorithms that use techniques based on 

evolutionary biology. These techniques are known as genetic operators of which there are 3 main types: 

selection, crossover and mutation. GAs are a powerful search and optimization technique with a diverse 

range of applications. 

 

The first stage of a GA involves encoding the problem and mapping it to a set of abstract chromosomes. In 

our case we have employed a GA to find the best choice of fit parameters in the 5(4)-parameter glass 

viscosity equation. One chromosome is subdivided into 5 (4) parts; one for each of the different parameters 

in the model. Each of these ‘genes’ is then taken to be a sequence of binary digits or bits. An initial  

population of chromosomes is created (typically we used 80 chromosomes) and these contain randomly 

generated bit strings for all 5 genes. It is not necessary to have the same number of bits for each parameter, 

but we used 24 bit encoding throughout for simplicity. Each of the binary bit strings may be converted to 
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their denary equivalent at any stage. These base 10 numbers are then rescaled to a number lying within a 

range chosen for that particular parameter. The wider the allowable range, the larger the search space, and 

the longer it takes for the GA to converge. The narrower the range, the more precision can be given on the 

parameters for a given bit string length. During a typical GA fitting exercise we re-adjusted the range of each 

parameter to gradually narrow the search space and allow greater precision in the values we report. 

 

For each member of the population of chromosomes we calculated a fitness value. This value was 

determined by calculating the residual or sum of the squared errors (SSE), 

 ( )2
1

exp
2 ∑

=
−=

i
fitηηχ , (16) 

which measures the deviation of the fitted viscosity to that of the experimental viscosity. Fitter chromosomes 

were deemed to be those with lower χ2 values. 

 

Having established the initial generation of chromosomes we then applied a selection operator to determine 

which pairs of chromosomes are to ‘mate’. There are a plethora of different selection operators including 

roulette wheel, rank, and steady state selection etc, but we found that the optimum choice for our problem 

involved tournament selection. In tournament selection subgroups of chromosomes are randomly sampled 

from the main population and these compete against each other using a simple stochastic rule. Once a pair of 

‘champion’ chromosomes are selected, these go on to mate. This method of selection allows some of the 

weaker chromosomes a chance to survive to the next generation and maintain diversity. In addition we  

employed ‘elitism’ which ensures that the fittest member of each population always survives to the next 

generation. With one member of the next generation already determined (by elitism) the remaining members 

are then determined by tournament based selection followed by application of the crossover operator. For the 

crossover algorithm we spliced each gene on a particular chromosome at a single randomly determined 

point, creating 2 subsets of binary bits per gene. The rightmost sequence or subset of one gene on one of the 

selected pair of chromosomes is then exchanged with the leftmost sequence on the mating chromosome. This 

is continued for all 5(4) genes and then this newly formed pair of chromosomes is added to the new 

population. The process continues until a full population is achieved. Crossovers do not occur for every 

selected pair of chromosomes; sometimes a chosen mating pair are copied into the new population 

unchanged. For our GA work, we employed a crossover probability of 0.6. Following application of the 

crossover operator we then applied a mutation operator. Our mutation operator consisted of randomly 

choosing bits along a chromosome and changing 1’s to 0’s and vice versa. Mutations were carried out with a 

probability of 0.08333. 

 

With the new population constructed, the fitness of each chromosome is evaluated and the process of 

selection-crossover-mutation is then continued for another cycle. The GA is terminated once the average 



 10 

fitness of the population ceases to change. Our GA runs typically required 2000 generations to achieve a 

limiting value [25]. 

 

An example of such evaluation is demonstrated in Fig. 1, which shows viscosity-temperature relationships 

for amorphous diopside and salol along with the associated best fit curves calculated using equation (14). 

Experimental data for the viscosity of diopside were taken from [26] and for salol from [27]. Similar fits to 

the viscosity-temperature data for amorphous silica and germania were recently presented in [6, 7].  

 

 
 

(a) (b) 

Figure 1. Viscosity-temperature relationships for (a) diopside and (b) salol.  

 

Calculations show that the description of experimental data using equation (14) is excellent with very low 

and uniformly scattered deviations. Although equation (8) is also known to give a very good description of 

viscosity-temperature behaviour of most melts [16] it was recently found that for SLS (mass%): 70SiO2 

21CaO 9Na2O and B2O3 melts at very high temperatures equation (8) gives slightly but systematically lower 

results compared to the experimental data [28]. Thus viscosities of these two materials at very high 

temperatures are better described using the complete equation (14) rather than the approximate equation (8) 

[29].  

 

The enthalpies and entropies of formation and motion of the configurons (bond system) in these amorphous 

materials were obtained from the fitting parameters using equations (15a) to (15e) and the results are given in 

Table 1.  
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Table 1. Thermodynamic parameters of configurons in amorphous materials.  

Amorphous material  Hd, kJ/mol Sd/R Hm, kJ/mol Sm/R 

Silica (SiO2)  237 (220*) 17.54 (16.13*) 522 (525*) 11.37 

Germania (GeO2)  129 17.77 (17.84*) 272 2.49 

B2O3  258 44.2 113 9.21 

75.9SiO2 24.1PbO  262 36.25  234 5.44   

66.7SiO2 33.3PbO 197 25.40  274 7.3  

65SiO2 35PbO 231 30.32  257 8.53  

59.9SiO2 40.1PbO 236 31.12  258 6.55  

80SiO2 20Na2O 155 17.98  207 7.79  

75SiO2 25Na2O  233 30.62  203 4.22  

70SiO2 30Na2O  258 34.84  205 5.22  

65SiO2 35Na2O 300 40.71  186 7.59  

SLS (mass%): 70SiO2 21CaO 

9Na2O  

331 44.03 293 24.40 

52SiO2 30Li2O 18B2O3 420 52.06  194 0.227  

Anorthite (CaAl2Si2O8) 884 79.55 251 0.374 

Diopside (CaMgSi2O6)  834 88.71 240 0.044  

Salol (HOC6H4COOC6H5)  145  68.13 118 0.114  

α-phenyl-o-cresol (2-

Hydroxydiphenylmethane)  

172 83.84  103 0.134  

* Data from [6, 7].  

 

From Table 1 one can see that practically for all materials the entropy of formation is significantly higher 

than the entropy of motion Sd >> Sm. Taking into account the values of Hm this means that Gm/RT >> 1 and 

thus it is legitimate to simplify equation (14) to the simpler equation (8), i.e. four fitting parameters are 

usually sufficient to correctly describe the viscosity-temperature behaviour of a melt. Notable exceptions are 

the SLS glass considered (mass%: 70SiO2 21CaO 9Na2O) and B2O3 which, at high temperatures, can exhibit 

deviations from equation (8) [28, 29].  

 

5. Discussion  

Configuron thermodynamic data obtained can be used to calculate the asymptotic Arrhenian activation 

energies for high and low temperature viscosity. Table 2 gives these data along with the Doremus’ fragility 

ratio which be obtained from   

 
m

d
D H

HR +=1  (17) 
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Melts with a higher enthalpy of formation for defects compared with their enthalpy of motion thus have a 

higher Doremus fragility ratio, conversely melts with a lower Hd have a lower fragility. An ideal strong 

liquid for which RD → 1 would have a very small enthalpy of formation for defects mediating mass transport 

(Hd/Hm) → 0, whereas an ideally fragile material would have an enthalpy of formation of defects 

incommensurably higher than the enthalpy of motion (Hd/Hm)→ ∞. Thus the fragility of melts is a 

thermodynamic parameter that is directly related to thermodynamic parameters of the network defects, i.e. 

enthalpies of formation and motion of network defects Hd, and Hm [11].  

 

Table 2. Asymptotic Arrhenian activation energies for viscosity and corresponding Doremus fragility ratios.  

Amorphous material  QL, kJ/mol QH, kJ/mol RD 

Silica (SiO2)  522 (525*) 759 (745*) 1.45 (1.42*) 

Germania (GeO2)  272 401 1.47 

B2O3  113 371 3.28 

75.9SiO2 24.1PbO  234 506 2.16 

66.7SiO2 33.3PbO 274 471 1.72 

65SiO2 35PbO 257 488 1.9 

59.9SiO2 40.1PbO 258 494 1.91 

80SiO2 20Na2O 207 362 1.75 

75SiO2 25Na2O  203 436 2.15 

70SiO2 30Na2O  205 463 2.26 

65SiO2 35Na2O 186 486 2.61 

SLS: 70SiO2 21CaO 9Na2O  293 634 2.16 

52SiO2 30Li2O 18B2O3 194 614 3.16 

Anorthite (CaAl2Si2O8) 251 1135 4.52 

Diopside (CaMgSi2O6)  240 1084 4.51 

Salol (HOC6H4COOC6H5)  118 263 2.23 

α-phenyl-o-cresol (2-

Hydroxydiphenylmethane)  

103 275 2.67 

* Data from [6, 7].  

 

The thermodynamic parameters of configurons can also be used to estimate the glass transition temperatures 

which are related to changes in the symmetry of topological disorder (Hausdorff dimension of bond system 

[30]) when percolation clusters of configurons are formed. Tg is directly related to the configuron 

thermodynamic parameters via [6, 7, 30]:  

 ( )[ ]ccd

d
g RS

HT
θθ /1ln −+

=    (18) 
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where cθ  is the percolation threshold for configurons in the material. For strong melts such as silica or 

germania 01.015.0 ±== cc ϑθ , where cϑ is the Scher-Zallen critical density in 3-D space [31 - 33]. 

Complex oxide systems are typically fragile and described by a modified random network model comprising 

network modifying cations distributed in channels [34, 35]. The value of cθ  in these systems is significantly 

lower compared strong melts (see Table 3).  

 

Table 3. Glass transition temperatures of amorphous materials.  

Amorphous material  RD  Tg, K cθ  

Silica (SiO2)  1.45 1475 0.15 

Germania (GeO2)  1.47 786 0.15 

SLS (mass%): 70SiO2 21CaO 9Na2O  2.16 870 1.58 × 10–3 

B2O3  3.28 580 9.14 × 10–5 

Diopside (CaMgSi2O6)  4.51 978 6.35 × 10–7 

Anorthite (CaAl2Si2O8) 4.52 1126 3.38 × 10–7 

 

Table 3 shows that the higher fragility ratio, the lower the threshold for the formation of percolation clusters 

of configurons in the material. Thus there is a direct anti-correlation between the fragility ratio and 

configuron percolation threshold which determines the glass transition temperature. Networks that exhibit 

only small changes in the activation energy for flow with temperature form percolation clusters of 

configurons at the classical Scher-Zallen critical density. In contrast fragile liquids, which are characterised 

by a higher density of configurational states, have a very low percolation threshold which decreases with 

increasing fragility.  

 

6. Conclusions  

The Doremus model of viscosity is based on assumption that viscous flow in amorphous materials is 

mediated by broken bonds (or quasi-particles termed configurons). The theoretical equation of viscosity 

resulting from this approach (equation 14) contains four coefficients, which are directly related to 

thermodynamic parameters of the bond system: (i) )/exp(2 RSA m−= , (ii) )/exp( RSC d−= , (iii) B and 

(iv) D, where Sm and Sd, are the entropies of motion and formation, and B and D are the enthalpies of motion 

and formation of configurons. We have analysed the viscosity-temperature relationships for a number of 

glassy materials including SiO2, GeO2, B2O3, anorthite, diopside, xNa2O-(1 – x)SiO2, xPbO-(1 – x)SiO2, soda-

lime-silica glasses, salol, and α-phenyl-ο-cresol. A dedicated genetic algorithm was used to fit the equation 

(14) to experimental viscosity data obtained from the literature. It was found that equation (14) provides an 

excellent description of the viscosity of glassy materials at all temperatures, which enables quantitative 

determination of the enthalpies and entropies of formation and motion of configurons in the analysed 

systems. In addition  the asymptotic Arrhenian activation energies for high and low temperature viscosities 

and the Doremus fragility ratios were determined. It was found that there is a direct anti-correlation between 
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fragility ratio and configuron percolation threshold which determines the glass transition temperature in the 

analysed materials.  
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