This is a repository copy of Comment on "Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems".

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/4033/

Article:
Jung, J., Bokes, P. and Godby, R. W. orcid.org/0000-0002-1012-4176 (2007) Comment on "Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems". Physical Review Letters. 259701. -. ISSN 1079-7114

https://doi.org/10.1103/PhysRevLett.98.259701

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
This is an author produced version of a paper published in Physical Review Letters.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/4033/

Published paper

NB uploaded to arXiv as:

Treatment of electron viscosity in quantum conductance
arXiv:0706.0140v1 [cond-mat.mtrl-sci]
 Treatment of electron viscosity in quantum conductance

J. Jung, P. Bokes, and R. W. Godby

1Physics Division, National Center for Theoretical Sciences, P.O. Box 2-131, Hsinchu, Taiwan
2Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovak Republic
3Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom

(Dated: February 1, 2008)

PACS numbers:

In a recent paper Sai et al. [1] identified a correction \(R_{\text{dyn}} \) to the DC conductance of nanoscale junctions arising from dynamical exchange-correlation (XC) effects within time-dependent density functional theory. This quantity contributes to the total resistance through \(R = R_c + R_{\text{dyn}} \) where \(R_c \) is the resistance evaluated in the absence of dynamical XC effects. In this Comment we show that the numerical estimation of \(R_{\text{dyn}} \) in example systems of the type they considered should be considerably reduced, once a more appropriate form for the shear electron viscosity \(\eta \) is used.

Sai et al.’s expression for \(R_{\text{dyn}} \), based on electron-liquid theory [2], is a one-dimensional integral between the two electrodes

\[
R_{\text{dyn}} = \frac{4}{3 \varepsilon_0^2 A_e} \int_e^b \eta (\partial n)^2 n^4 dz \tag{1}
\]

where \(A_e \) is the cross-sectional area, \(\eta \) is the shear viscosity of the electron liquid, and \(n \) is the electron density. The example system we have considered is the metal-vacuum-metal (MVM) junction that can be formed by two jellium surfaces separated by a distance \(d \) [3]. Since this system is translationally invariant parallel to the surface, the electron density \(n(z) \) is defined unambiguously. We have chosen \(r_S = 3 \) for the jellium electrodes, to allow comparison with the gold-electrode systems presented in Ref. 1. The density is calculated within the LDA.

Sai et al. used a constant shear viscosity \(\eta_c = \hbar k_F / (\pi a_0)^{3/2} / 120 \) corresponding to formula (4.7) of Ref. 2, appropriate only in the high-density weakly inhomogeneous limit, and based on the bulk electrode density. Here the quantities \(k_F = (3\pi n)^{1/3} \) and \(a_0 \) are the Fermi wavevector of the bulk electrodes and the Bohr radius respectively. We make two changes to this. First, we use Formula (4.10) of Ref. 2, \(\eta_c \sim n/(60r_S^{-3/2} + 80r_S^{-1} - 40r_S^{-2} + 62r_S^{-1/3}) \), more appropriate for realistic densities \(r_S = 0...20 \) a.u., [2] in recognition of the fact that \(r_S = 3 \) is not a high density. This alone reduces the dynamical resistance by a factor of 5.37 for a density corresponding to \(r_S = 3 \). Second, in Eq. (1) we evaluate this viscosity at the local density rather than taking the bulk viscosity to apply outside the bulk region. This further reduces the dynamical resistance by a \(d \)-dependent factor of 1.16–18.4 (see Table I), particularly for larger \(d \) when the dominant contribution to the integral in Eq. (1) comes from the low-density region in the vacuum (see Fig. 1). Thus a more appropriate choice of the shear electron viscosity \(\eta \) reduces the dynamical resistance by a factor between 6 and 98, causing it to become

\[
\begin{array}{cccc}
d & R_c & R_{\text{dyn}} & R_{\text{dyn}}^{\eta} \\
1 & 117 & 1.71 & 0.275 \\
3 & 241 & 48.5 & 5.01 \\
5 & 712 & 530 & 29.4 \\
9 & 14900 & 59600 & 604 \\
\end{array}
\]

TABLE I: Non-interacting and dynamical resistances per unit area (a.u.) as a function of the separation \(d \) (a.u.). The interpolated local formulation of the viscosity, \(\eta_c \), considerably reduces the dynamical resistance \((R_{\text{dyn}}^{\eta}) \) relative to the high-density bulk formulation of Ref. 1 \((R_{\text{dyn}}^{\eta_c}) \).

![FIG. 1](color-online) MVM junction separated at \(d = 3 \) a.u. The electron charge density and the background positive charge density are represented by thin discontinuous lines. Important contributions to the integral of Eq. (1) (green thick dashed line) arise within the vacuum junction, where the electronic viscosity (solid line) is lower, tending to reduce the dynamical resistance. The value of viscosity used in Ref. 1 is indicated by \(\eta_c \).

Very small compared with the single-particle resistance in all cases studied.

This work was partially funded by the EU Nanoquanta NoE (NMP4-CT-2004-500198). P. Bokes acknowledges support from the Slovak grant agency VEGA (project No. 1/2020/05) and the NATO Security through Science Programme (EAPRIG.981521).