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Abstract

State-of-the-art simulation tools for non-equilibrium quantum transport systems typically take

the current-carrier occupations to be described in terms of equilibrium distribution functions char-

acterised by two different electro-chemical potentials, while for the description of electronic ex-

change and correlation, the local density approximation (LDA) to density functional theory (DFT)

is generally used. However this involves an inconsistency because the LDA is based on the homo-

geneous electron gas in equilibrium, while the system is not in equilibrium and may be far from

it. In this paper we analyze this inconsistency by studying the interplay between non-equilibrium

occupancies obtained from a maximum entropy approach and the Hartree-Fock exchange energy,

single-particle spectrum and exchange hole, for the case of a two-dimensional homogeneous electron

gas. The current-dependence of the local exchange potential is also discussed. It is found that the

single-particle spectrum and exchange hole have a significant dependence on the current which has

not been taken into account in practical calculations. The exchange energy and the local exchange

potential, however, are shown to change very little with respect to their equilibrium counterparts.

The weak dependence of these quantities on the current is explained in terms of the symmetries of

the exchange hole.

PACS numbers: 71.10.-w, 71.10.Ca, 71.70.Gm, 73.23.-b
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I. INTRODUCTION

One of the uncontrollable approximations introduced in ab initio calculations of the trans-

port properties of nano-scale conductors consists in the application of DFT, a ground state

theory, outside the equilibrium regime. An immediate consequence of this approximation

is that these properties are typically calculated at the level of the LDA, which is derived

from the case of a homogeneous electron gas in equilibrium. The extent to which these ap-

proximations might affect the calculated electronic structure of the non-equilibrium systems

remains largely unknown and thus a comparison between electronic properties calculated

exactly for an admittedly highly idealised non-equilibrium system and those of the same

system in equilibrium constitutes a particularly simple way of approaching and illustrating

this problem.

In order to put these ideas into practice we will consider a two-dimensional electron gas

in equilibrium and in a model non-equilibrium state. To model a homogeneous electron

gas outside equilibrium we will assume that the non-equilibrium steady-state of the two

dimensional electron gas can be characterized by the average total energy of the electron

gas and by different average numbers of left- and right-moving electrons and that the non-

equilibrium steady-state is given by the density matrix that maximises the entropy of the

electron gas with constraints on the above mentioned averages.

Such an assumption leads in the non-interacting case to a momentum distribution charac-

terized by two Fermi hemispheres of different radii ; we take a pragmatic approach here and

ignore the problems associated with the discontinuous character of this momentum distribu-

tion for the time being since we are interested in the question of how these current-inducing

constraints affect the electronic properties of the two dimensional electron gas. Note that

this type of momentum distribution is precisely of the form used in Landauer-Büttiker-type

of approaches and thus familiar to the ab initio quantum transport community1,2,3,4 which

constantly makes use of it. Similar momentum distributions are predicted by semi-classical

transport theories in two dimensional quantum point contacts5. Alternatively, and per-

haps also more physically, a current-constraint may be used instead of the above-mentioned

constraint to search for the non-equilibrium maximum entropy density matrix6,7,8,9.

To summarise, we will maximize the entropy of a two-dimensional homogeneous electron

gas with constraints on the average numbers of left- and right-moving electrons to obtain
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a description of a steady-state at the Hartree-Fock level of approximation, which can then

be used to obtain the electronic structure of the gas in the presence of a current and to

compare it with the usual approximations. The rest of the paper is organized as follows:

in the next section we discuss our theoretical approach to the problem and its numerical

implementation; in Section III we discuss the current-dependence of the Hartree-Fock pair

probability distribution, single particle spectrum, total energy and local exchange potential.

We conclude with a discussion of the relevance of our work for practical calculations.

II. THEORY

In order to proceed let us consider the entropy per unit area of the two dimensional

electron gas to be a functional of the electronic occupancies given by10:

S [f(k )] = −

∫

ℜ2

d2k

2π2
[f(k) ln f(k) + (1 − f(k)) ln (1 − f(k))] . (1)

The electronic occupancies are written as:

f(k) =





fL(k) if kx < 0

fR(k) if kx > 0

where k = (kx, ky) and fL/R are the occupation functions to be varied independently in order

to maximise Eq. (1) with constraints on the average total energy per unit area and different

average numbers of left- and right-going particles per unit area. In the finite-temperature

Hartree-Fock approximation the average total energy is given by:

〈E〉 = 2

∫

ℜ2

d2k

(2π)2 f(k)
k2

2
−

∫

ℜ2

d2k′

(2π)2

∫

ℜ2

d2k

(2π)2f(k)f(k′)v(k,k′) (2)

where v(k,k′) = 2π/ |k − k′| is the Fourier transform of the Coulomb interaction in two

dimensions. The number of left- and right-going electrons per unit area can be written as:

nL(R) =
2

(2π)2

∫

kx<(>)0

d2k fL(R)(k) (3)

In order to maximise the entropy functional with respect to fL/R subject to the above-

mentioned constraints we use the method of Lagrange multipliers and consider the auxiliary

functional

L [f(k )] = S − β (〈E〉 − µLnL − µRnR) , (4)
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together with the extremal condition

δL

δfL/R

= 0. (5)

A straightforward calculation shows that the occupation functions that maximise the entropy

functional with constraints in the above-mentioned averages are given by:

fL,R(k) =
1

1 + exp [β (k2/2 + ǫx(k) − µL,R)]
(6)

where

ǫx(k) = −
1

(2π)2

(∫

kx<0

d2k′ fL(k′)v(k,k′) +

∫

kx>0

d2k′ fR(k′)v(k,k′)

)
(7)

i.e., the occupations that maximise the entropy are similar to the ones of the Landauer-

Büttiker approach but with a modified exchange part of the spectrum. In the calculation we

fix the ratio nL/nR, that together with the charge neutrality condition nL + nR = 1/(πr2
s)

completely determines both nL and nR. With the equilibrium spectrum as a trial ǫx(k) we

solve Eqs. (3) for µL and µR. With these values of µL,R a new spectrum is constructed using

Eq. (7) and the iteration is completed and subsequently repeated until the input and output

spectra are identical to each other within the desired tolerance. All the results presented here

are obtained in the β → ∞-limit, where our approach is equivalent to that of Hershfield11

in the Hartree-Fock approximation14. Once the self-consistent spectrum and occupation

factors are obtained, other quantities like the exchange-energy and exchange hole can be

easily obtained. From these we can study how the local exchange potential of the electron

gas depends on the current density15.

III. RESULTS

A. Hartree-Fock pair distribution function

Let us begin by discussing the current dependence of the Hartree-Fock pair distribution

function for spin-like electrons, which is given by:

g(r, r′) = 1 −

∣∣∣∣
1

n

∫
d2k

(2π)2
exp [−ik · (r − r′)] f(k)

∣∣∣∣
2

(8)

and shown for nL/nR = 0.5 in Figure 1-(a). For nL = nR, g is spherically symmetric while

for nL 6= nR is elongated in the direction of the current. Similar phenomenology has been
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FIG. 1: (Color online). (a) Pair distribution function for like spins in the non-equilibrium regime

(nL/nR = 0.5). In the non-equilibrium regime the exchange-hole is elongated along the direction of

the current. The contours are at g =0.5, 0.75, 0.9 and 0.95. (b) Difference between the equilibrium

and non-equilibrium holes, ∆g (see text). The contours are drawn at 0.1 (dashed), -0.1 (dotted)

and 0 (dotted). ∆g is oscillating, integrates to zero and has a marked antisymmetric character.

Thus the current dependence of the local exchange potential and exchange energy is expected to

be weak.

reported previously by Skudlarski and Vignale for the three dimensional electron gas in

the presence of a magnetic field12, where the exchange hole is elongated in the direction of

the field. In Ref. 12 the elongation arises from the change of occupancies associated with

the Zeeman splitting due to the externally applied magnetic field. In the present case the

elongation of the hole can be understood in terms of the change in the electronic occupancies

that result from our constrained maximization of the entropy functional. In both cases the

elongation of the hole is the result of the change in the polarizability induced by the change

in the occupancies12.

Note that the difference between the equilibrium and non-equilibrium exchange holes,

∆g = geq − gneq, shown in Figure 1-(b), has a strong antisymmetric character, i.e., defining

R = r−r′ = (X, Y ) then ∆g(X, Y ) ∼ −∆g(Y, X). We shall return to this point later in the

text when discussing the weak dependence of the exchange energy on the current density.
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B. Single-Particle spectrum

Figure 2 shows the self-consistent single-particle energy spectrum. Fig.2-(a) shows the

total (kinetic + exchange) spectrum while in Fig.2-(b) we plotted only its exchange part on

the ky = 0 line as given by Eq. (7) for nL = nR and nL/nR = 0.5.

The combined effect of the constraints and the exchange interaction shifts the spectrum

towards higher values of kx. Note also that, when compared to the equilibrium spectrum,

the minimum of the non-equilibrium spectrum is less negative. Hence we expect the total

non-equilibrium exchange energy to increase with respect to the equilibrium one. Note that

the constraints alter the total kinetic energy of the system but do not change the kinetic

contribution to the single particle spectrum, since this contribution does not depend on

the electronic occupancies. Hence the changes in the single particle spectrum are entirely

due to the exchange interaction, which raises (lowers) the single particle energy of electrons

with kx < 0 (kx > 0). The anomalous behaviour in the kx = 0 plane inherited from the

discontinuous character of the maximum entropy momentum distribution can be seen clearly

in Fig.2-(a), between µL and µR.

The interplay between non-equilibrium occupancies and the single-particle spectrum ob-

served here is just a consequence of the orbital dependence of the Fock operator and will

also be seen in any practical calculation that combines a non-equilibrium theory such as the

Landauer-Büttiker approach or the Keldysh-NEGF formalism, with an orbital-dependent de-

scription of the interactions between the electrons, such as the Hartree-Fock approximation.

We would like to point out that practical implementations of NEGF formalism typically

take the electronic structure of the leads to be that of the equilibrium system (see Ref.13

and references therein), and hence the dependence of the single-particle spectrum on the

non-equilibrium current (and vice-versa) is commonly ignored. The validity of this approx-

imation is geometry dependent: it works in quantum point contact geometries while it does

not in planar electrode geometries at high currents. As a consequence under the “non-

interacting equilibrium lead approximation” the distribution of incoming electrons would be

current-independent, while, as this example shows16, the unavoidable presence of interac-

tions in the leads induces a current dependence in the non-equilibrium occupancies through

the exchange part of the single particle spectrum. Unless the geometry is adequately chosen

the distribution of incoming electrons will be that of a non-equilibrium lead such as ours.
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FIG. 2: (Color online). (a) Contour plots of the total single particle energy spectrum of the

model non-equilibrium electron gas for nL/nR = 0.25 and rs = 4. The contours corresponding to

µL = −1.1 10−2 a.u. and to −9.2 10−2 a.u. are labelled. The other contours shown correspond

to (µL + µR)/2 (short dashes), µL − 0.5 10−2(a.u.) (solid), µR + 0.5 10−2(a.u.) (dot-dashed). (b)

Exchange contribution to the single particle energy spectrum, ǫx(k), evaluated on the ky = 0 line

calculated for nL = nR (solid) and nL/nR = 0.25 (dashed). The main effect of the non-equilibrium

constraints used in our variational approach is to shift the exchange part of the single-particle

spectrum towards higher values of kx.

C. Total energy

Once the self-consistent single-particle spectrum is calculated the total exchange energy,

Ex, can be obtained from the second term in the right hand side of Eq. (2). Figure 3 shows

the dependence of the rs-invariant quantity −Ex/E
eq
x on (1 − nL/nR). For nL/nR = 0.25,

the exchange energy deviates by about 1− 2% from its equilibrium value. We also see that,

even though the non-self-consistent results provide a good estimate to the self-consistent

ones, full self-consistency is needed in the non-equilibrium case, even for a homogeneous

gas. The error bars in the self-consistent results are estimated by comparing the exact

exchange energy in equilibrium with the exchange energy obtained from our code for nL = nR

and different values of rs. Therefore, the exchange-energy depends on the current-density,

but this dependence is extremely weak in our model system. One could now proceed to

calculate this current density explicitly and work out a current dependent local density

approximation, from the dependence of Ex on the current density. However, the weak
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dependence of the exchange energy on the current density deduced from Fig. 3 means that

the current dependence of the local exchange functional is also very weak, and the changes

it will induce in the associated LDA-Kohn-Sham effective potential will be well within the

error bar of the LDA itself.

1 − nL/nR

−
E

x
/
E

e
q

x

0.80.70.60.50.40.30.20.10

-0.984

-0.986

-0.988

-0.99

-0.992

-0.994

-0.996

-0.998

-1

-1.002

FIG. 3: (Color online). Exchange energy (in units of the equilibrium exchange energy) versus

1 − nL/nR. In equilibrium 1 − nL/nR = 0. The dashed line shows the self-consistent results with

estimated error bars. The non-self-consistent results are also shown with points calculated for

different values of rs showing that the exchange energy scales with rs as 1/rs. The lines are fits to

parabolic functions.

D. Local Exchange Potential

The weak dependence of the local exchange potential on the current density can be seen

clearly in terms of the symmetries of the exchange hole. Consider the expression for Slater’s

exchange potential, vs
x, in terms of the Hartree-Fock pair distribution function:

vs
x(r) =

∫
d2r′

[g(r− r′) − 1]

|r− r′|
n(r′) (9)

where n(r′) is the electron density and g(r − r′) is the exchange hole. Then, the differ-

ence between equilibrium and non-equilibrium exchange potentials is, for our homogeneous

system, given by:

∆vs
x = n

∫
d2R

∆g(R)

|R|
(10)

where R and ∆g are defined as above. From Eq. (10) follows that:

∆g(X, Y ) = −∆g(Y, X) ⇒ ∆vs
x = 0 (11)
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and hence only the symmetric part of ∆g(X, Y ) contributes to the deviation of exchange

potential with respect to its equilibrium value. Note that ∆g(X, Y ) is an oscillatory function

that integrates to zero which also has a marked antisymmetric character shown in Fig. 1-(b).

This explains the weak dependence of Ex and vx on the current-density.

IV. CONCLUSIONS

In conclusion we have maximised the entropy of a two-dimensional homogeneous electron

gas with constraints on the average total energy and average numbers of left- and right-

going electrons to obtain a simplified description of the steady-state within the Hartree-Fock

approximation. Our results show that both the single-particle spectrum and the exchange

hole depend significantly on the current density while averaged quantities like the local

exchange potential or the exchange energy do not.
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