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Abstract

Electrical currents flowing in ferromagnetic materials are spin-
polarised as a result of the spin-dependent band structure. When
the spatial direction of the polarisation changes, in a domain struc-
ture, the electrons must somehow accommodate the necessary change
in direction of their spin angular momentum as they pass through the
wall. Reflection, scattering, and a transfer of angular momentum to
the lattice are all possible outcomes, depending on the circumstances.
This gives rise to a variety of different physical effects, most impor-
tantly a contribution to the electrical resistance caused by the wall,
and a motion of the wall driven by the spin-polarised current.

Historical and recent research on these topics is reviewed.
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1 Introduction

For many decades the interaction between electric currents and magnetism
has been fully described classically by the Maxwell equations. Nevertheless,
when one considers the solid state with the full understanding of many-
body quantum systems, many interesting and unusual results can be found.
Particularly rapid progress has been made in the last few years with the
vast upsurge in activity in the area of nanomagnetism and spin-dependent
transport. In part this has been driven by the tremendous improvements in
the technology available for the deposition and characterisation of ultrathin
films and multilayers of magnetic materials, as well as the capabilities to
pattern these films into nanoscale devices, and in part by the appearance
of applications in the data storage industry where the scaling of bits to few
nm dimensions required a detailed understanding and control of magnetic
materials at the nanoscale.

A general review of nanomagnets was given in this journal a few years ago
by Himpsel et al. [1]. More recent reviews of nanomagnetism and patterned
nanomagnets have been given by Dennis et al. [2] and Martin et al. [3]. Much
interest in these systems concerns their electrical transport properties, and
both giant magnetoresistance (GMR) [4] and tunnelling magnetoresistance
(TMR) [5] have been reviewed by Tsymbal et al. The exploitation of these,
and other, effects to create spin-based electronic (so-called “spintronic”) de-
vices was reviewed by Žutić, Fabian and Das Sarma [6].

This review is concerned with the way that the presence of domain walls
interacts with the transport properties of a ferromagnet. In Stoner ferromag-
nets, where the moment is itinerant and delocalised throughout the crystal,
the electrical current is strongly coupled to the spin system. When the
magnetisation vector field M is uniform throughout the sample, then it is
necessary only to separate the Fermi sea into two parallel spin sub-systems
to treat the transport properties, at least so long as the spin-flipping is weak
enough. However, when there are inhomogeneities in the direction of M, com-
plications are introduced, as the component of the spin operator along the
magnetic axis Sz is no longer a good quantum number throughout the whole
system. One might easily anticipate different transport properties when the
sample enters this new state, and a change in overall electrical resistance is
the most obvious. A general review of electron transport in ferromagnets was
given by Campbell and Fert [7]. The transport properties of magnetic oxides,
including domain wall effects, were reviewed by Ziese [8]. There is also a re-
view of work on domain wall resistance in epitaxial nanostructures by Kent,
Yu, Rüdiger and Parkin [9]. Domain walls can also have effects on adja-
cent layers in proximity systems: various esoteric effects have been observed
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[10, 11, 12], or predicted [13, 14, 15, 16], in ferromagnet/superconductor
hybrid layer stacks. Resistance is caused by the scattering of electrons into
different momentum states, and so the scattering centre will also experience
a reaction force. For high enough current densities this reaction force can be
strong enough to move the scattering object, and domain wall motion caused
by the application of a current is also possible.

In this article I will first review the basic properties of spin-polarised
currents (Section 2) and magnetic domain walls (Section 3). The effect of
a wall on the conduction of spin-polarised electrons, giving rise to changes
in electrical resistivity will be examined in Section 4. The inverse effect, the
motion or deformation of a wall as a spin-polarised current is driven through
it will be reviewed in Section 5, before finally some conclusions will be drawn
and prospects for the future given in Section 6.
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2 Spin-Polarised Currents

At the birth of metals physics, Mott introduced the idea of a spin-polarised
current to explain the kink in the resistivity at the Curie temperature TC of
itinerant ferromagnets [17]. The essential idea is that in a Stoner ferromag-
net the exchange-split band structure means that quantities related to the
transport properties such as the Fermi velocity vF and the density of states
g(EF) will depend on the electron spin. The two populations of electrons,
spin-↑ and spin-↓ will carry the current in parallel, as usual, but the imbal-
ance in their ability to do so in a ferromagnet means that the majority of the
current will be carried by one spin or other. Above TC the current is unpo-
larised, whilst below TC one spin sub-band will be more conducting, causing
an overall drop in the resistivity. The key is this idea of parallel current car-
rying populations, which relies on the assumption that the spin channels are
completely separate. In practice this assumption is usually weakened to be
that the spin-flip scattering time τsf is much longer than any other relevant
timescale in the problem.

The polarisation, P , of a ferromagnet is in general given by:

P =
n↑ − n↓

n↑ + n↓

, (1)

where n is some spin-resolved quantity related to the property being mea-
sured. It measures the excess of carriers or current density of the majority
spin over the minority spin as fraction of the total number of carriers (see
Ref. [18] for cautionary notes on the use of these terms). When a current
flows, P is therefore the ratio of the spin current Is to the charge current
I, so Is = P (µB/e)I. For a nonmagnetic metal P = 0, whilst for a per-
fectly polarised material P = 1. Materials with this latter property are
termed half-metals [19], and not to be confused with semimetals, which are
something entirely different. Several materials have been predicted to show
half-metallic behaviour on the basis of band structure calculations [20], but
perfect polarisation has never been observed. At the time of writing, the
highest measured polarisation is some 98 per cent observed in CrO2 [21, 22].
The fact that real measurements have to be carried out at finite temperature,
and can only measure the polarisation at a surface or interface, mean that it
is still not clear whether a total polarisation of unity can ever be attained –
although Bowen et al. have recently shown that La0.7Sr0.3MnO3 can exhibit
a fully spin-polarised pseudogap at 10 K, a finite temperature [23].

The most straightforward definition of P simply takes account of the
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number of carriers at the Fermi level in the two spin sub-bands, such that

P =
g↑(EF) − g↓(EF)

g↑(EF) + g↓(EF)
, (2)

as might be measured in a photoemission experiment, for instance. An ex-
ample of the detection of a half-metallic system, La0.7Sr0.3MnO3, using pho-
toemission [24], is shown Fig. 1. In transport experiments though, it is
necessary to take account of the fact that not all electrons are equally mobile
under the influence of an electric field: ferromagnets generally have quite
complex electronic structures, with several bands crossing the Fermi level,
each with a different Fermi velocity, effective mass, etc. The way in which
this will influence the transport will depend upon the experimental regime in
which the experiment is carried out. The various appropriate definitions for
the polarisation in different experimental regimes have been given by Mazin
[25], and we will review them below.

2.1 Tunnelling current spin polarisation

The basic definition of P in Eq. 2 proved problematic when attempts to
explain tunnelling data were made. Over three decades ago Meservey and
Tedrow began to study the spin polarisation of electrons in ferromagnets
using tunnelling techniques. An extensive review of their work is given in
Ref. 26.

Their measurement geometry, still widely used today, was to form a planar
tunnel junction from the ferromagnet under study with a superconductor.
In practice the superconductor is always Al, or an Al rich alloy. This is
because Al is a very light element, resulting in minimal spin-orbit mixing
of the spin channels, which can distort the result, and it is comparatively
easy to form a tunnelling barrier by oxidising the Al surface. The resulting
barrier is a thin layer of amorphous alumina, AlOx, usually close to the
composition Al2O3. The crux of the technique is to exploit the energy gap
∆ in the one-electron density of states that develops in the Al electrode
when it is cooled below its superconducting transition temperature. This
is easily visible in tunnelling measurements of the differential conductance
Gdiff = dI/dV as a function of applied bias V , as in the Nobel prize winning
experiments of Giaever [27, 28]. The junction is cooled to well below the
superconducting transition and then an applied field is used to Zeeman split
the density of states in the superconductor – the field must not be so large
that the superconductor is driven normal but must exceed a few times kT
for energy resolution reasons. Fields of a few tesla are usually sufficient
for the junction at the base temperature of a 3He refrigerator, ∼ 300 mK.
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Figure 1: Spin-resolved photoemission spectra of a thin films of
La0.7Sr0.3MnO3, near the Fermi energy (EF), at temperatures far below (a)
and above (b) TC. The majority (↑) and minority (↓) spins represent the spin
directions respectively parallel and anti-parallel to the magnetisation direc-
tion. The lower panels of (a) and (b) show the difference spectra between the
majority-spin and the minority-spin spectra. The polarisation that would be
inferred from this data would be given by Eqn. 2. The inset in (a) shows the
magnetisation (M) versus applied magnetic field (H) hysteresis loop. After
Park et al. [24].
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This field offsets the energy gap for electrons of different spin, so that at the
gap edges perfectly spin-polarised states are generated. Electrons from the
ferromagnet can then be injected into these states by applying an appropriate
bias, and a fit to the resulting Gdiff(V ) data yields the spin polarisation of
the ferromagnet. An obvious disadvantage of this technique is that it only
gives the value of P at values well below 1 K, although it gives the absolute
value and the sign of the polarisation. Examples of measurements employing
this technique are given in Fig. 2, using MgO barriers to probe Fe and CoFe
electrodes.

A problem that was rapidly encountered was that the results of applying
this method to even the elemental ferromagnets Fe, Co and Ni gave very
surprising results – in many cases even the sign of P was not what was antic-
ipated. This problem was treated theoretically by Stearns [31], who realised
that the tunnelling is dominated by the most itinerant electrons. Stearns in-
troduced a simple model with spin-split free-electron-like bands, and arrived
at an intermediate definition of P in terms of the Fermi wavevectors of the
different spin sub-bands:

P =
kF↑ − kF↓

kF↑ + kF↓

. (3)

It is now known that in general to correctly explain tunnelling data it is
necessary to weight the density of states by the appropriate tunnelling matrix
elements T [25]:

P =
g↑(EF)|T 2

↑ | − g↓(EF)|T 2
↓ |

g↑(EF)|T 2
↑ | + g↓(EF)|T 2

↓ |
, (4)

where we are tacitly assuming an average over all bands that are available to
tunnel. In general, the values of T are much larger for s-like bands than for
d-like ones as s states are less tightly localised around the ionic cores, and
hence will have longer evanescent decay lengths in the insulating barrier –
this is the basic justification for making the approximation of free electron-
like parabolic bands in the Stearns picture. Tunnelling primarily occurs for
s electrons, which are polarised at energies in the vicinity of the d bands in
transition metal ferromagnets by hybridisation effects. Properly taking these
considerations into account leads to an explanation of the measured positive
polarisations for metals such as Co and Ni when negative ones would be
anticipated on the basis of Eq. 2. The importance of these matrix elements
to determining the overall tunnelling rate and tunnelling spin polarisation
was underlined in a recent careful study of alloy layers by Kaiser et al. [32]
– it is even possible to exploit this effect to have finite spin polarisation
for a ferrimagnetic material with zero magnetisation [33]. The full energy
dependence of polarisation in CoFe and NiFe was recently determined by
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Figure 2: Measurement of tunnelling spin-polarisation. Conductance ver-
sus bias voltage curves (symbols) and fits (solid lines) for superconducting
tunelling spectroscopy junctions with counter electrodes of Al96Si4 and: (a)
and (b), Fe, and (c) and (d), Co70Fe30 ferromagnetic electrodes. (a) and
(c) correspond to the as-deposited junctions (no anneal), and (b) and (d)
to junctions annealed at 380 ◦C and 410 ◦C, respectively. On either side of
the superconducting gap are peaks in conductance corresponding to the tun-
nelling of electrons from the two different spin-sub-bands: the spin-↓ peaks
are slightly shifted to more negative bias voltage with respect to the spin-↑
ones by the applied field. The values for the spin-polarisation were extracted
by fitting the data curves with the following fitting parameters indicated in
the figure: superconducting gap ∆, depairing parameter ζ, and spin-orbit pa-
rameter b, as defined in a model given in Ref. 29. The results of 85 per cent
in panel (d) results in almost total suppression of the spin-↓ peaks in the con-
ductance, and is the highest recorded for a conventional room temperature
magnetic metal at the time of writing. After Parkin et al. [30].
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Valenzuela et al. using a mesoscopic double junction device [34].
A further complication is that the matrix elements T do not depend solely

on the ferromagnetic material in question, but also on the choice of barrier
material. The Meservey-Tedrow technique can be extended to the use of
barrier materials other then alumina (as in e.g. Fig. 2), but much of the ex-
perimental evidence for this assertion has been acquired from measurements
of magnetic tunnelling junctions, where both electrodes are ferromagnetic
materials, recently reviewed by Tsymbal et al. [5]. The tunnelling magne-
toresistance ratio is given in the now-famous Julliere formula [35]

∆G

G
= − 2P1P2

1 − P1P2

, (5)

where the subscripts 1 and 2 refer to the two electrodes, which may not be
identical. Certain caveats apply to the application of this phenomenological
formula.

Some of the most important of these caveats concerns the choice of barrier
material and the barrier thickness. Slonczewski extended the Stearns model
to take account of a rectangular barrier of height U [36], and obtained the
following expression for the polarisation by solving the Schrödinger equation
and matching the wavefunctions at the boundaries:

P =
kF↑ − kF↓

kF↑ + kF↓

× κ2 − kF↑kF↓

κ2 + kF↑kF↓

. (6)

Here κ = ℑk =
√

(2m/~2)(U − EF) is the imaginary part of the wavevector
k of the evanescent wave as it decays exponentially within the barrier.

There are several examples of the effect of the choice of barrier/electrode
combination changing the polarisation of a particular ferromagnetic elec-
trode. Since TMR ratios can vary somewhat from junction to junction ac-
cording to sample quality the most compelling evidence comes from instances
where it is possible to change the sign of the polarisation. Sharma et al. ob-
served this effect in a systematic study using different samples with Al2O3,
Ta2O5 and Al2O3/Ta2O5 barriers [37]. Another well-known example of this
effect is the use of Al2O3 and SrTiO3 barriers to invert the apparent polar-
isation of a Co electrode in a junction formed with a perovskite electrode
[38].

The most remarkable instance of this barrier choice effect is to be found in
epitaxial (001) junctions with bcc electrodes combined with an MgO barrier.
Fe/MgO/Fe junctions were predicted to show giant tunnelling magnetore-
sistance theoretically [39, 40]. This is due to the fact that only bands with
so-called ∆1 symmetry can propagate for any distance through the MgO bar-
rier. In bcc Fe such bands are only found at the Fermi level for one spin,
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giving an effective half-metallic character to the material, although conven-
tional Meservey-Tedrow measurements with alumina barriers consistently re-
port polarisations of roughly 40 per cent. In the past year unprecedentedly
large TMR ratios have been reported by a few groups using MgO barriers.
Yuasa et al. used pure Fe electrodes grown by MBE techniques[41], whilst
Parkin et al. used textured samples grown by magnetron sputtering, with
a TMR exceeding 220 per cent at room temperature [30]. This use of CoFe
electrodes by Parkin et al. was predicted to have even greater scope for large
TMR ratios than pure Fe electrodes [42]. The most recent developments at
the time of writing are a 230 per cent room temperature magnetoresistance
in an ultrasmooth junction with a crystalline (001) MgO barrier but using
amorphous CoFeB electrodes [43], rapidly followed by a 260 per cent room
temperature result in similar junction structure, but where the CoFeB was
shown to become crystalline after annealling [44].

2.2 Ballistic current spin polarisation

A recent variation on the Meservey-Tedrow measurement is to form a point
contact junction between a ferromagnet and a superconductor. The polari-
sation is then measured using a technique that has become known as point
contact Andreev reflection (PCAR). This was first performed independently
by Soulen et al. [45] and Upadhyay et al. [46]. This is an experimentally
more straightforward proposition, as no thin film fabrication is required: al-
though the Cornell group did make use of nanofabricated point contacts,
the NRL group used bulk pieces of material. Nevertheless, it is still a low
temperature technique, since a superconducting contact is needed. There is
also no applied field needed, meaning that the absolute value of P can be
determined, but the sign cannot be. The measurement is again to take a
curve of Gdiff(V ), which is fit with a modified Blonder-Tinkham-Klapwijk
(BTK) model [47].

The basic principle is the following: for applied biases within the gap
of the superconductor it is not possible to inject or extract single electrons,
only Cooper pairs. For conventional BCS superconductors, the pair is a spin
singlet and so the two carriers are constrained to have opposite spins. As an
electron crosses the boundary between a normal metal and a superconductor
it must form a pair and so captures another electron of opposite spin from the
normal metal. The Andreev reflection process is the reflection of the hole so
generated back into the normal metal where it must travel back in a manner
coherent with the injected electron over the coherence length in the normal
metal. This effect is therefore intimately related with the superconducting
proximity effect. In ballistic junctions, BTK were able to show that since
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pairs are injected or extracted at sub-gap energies, whilst single electrons can
be injected above or extracted below the gap, the differential conductance at
sub-gap voltages is double that at high biases.

This picture is modified when the normal metal is a ferromagnet and
its electronic structure is spin-polarised. It is no longer possible for every
injected electron to find a partner of opposite spin with which to form the
Cooper pair. This reduces the sub-gap differential conductance. For the
extreme case of a perfect half-metal, it is not possible to form any pairs of
opposite spin electrons at all and the sub-gap conductance is zero. This is
rather a counter-intuitive result as both the half-metal and the supercurrent
are capable of carrying current individually, transport is only blocked at the
interface between them. Measuring the ratio of the sub-gap to the high bias
conductance can therefore be related to the polarisation. The effect on the
conductance of the junction as the polarisation is varied is evident in the
data shown in Fig. 3. Although within this simple picture the relationship
between the two seems direct, in fact fitting of a model to the Gdiff(V ) data is
required, as the result can be affected by finite temperature, scattering from
disorder at the interface [48, 49], spin-orbit mixing in the superconductor,
proximity effects [50], and inelastic scattering processes. Indeed parameter-
free calculations of the transmission and reflection matrices for clean and
dirty interfaces show that the BTK model fails to describe some important
cases correctly [51].

It has been shown that in the ballistic regime it is necessary to weight
the densities of states with the Fermi velocity [25]:

P =
g↑(EF)vF,↑ − g↓(EF)vF,↓

g↑(EF)vF,↑ + g↓(EF)vF,↓

. (7)

Measurements of the polarisation of variety of NiFe alloys made by this tech-
nique showed a weak dependence of P on the alloy composition, contrary
to expectations based on Eq. 2 [52]. This is however in accord with the
predictions of Eq. 7 with the Fermi velocity of the s and d bands in the NiFe
taken into account in the proper way.

2.3 Diffusive current spin polarisation

In the diffusive regime it is straightforward to define the polarisation of a
current as the difference over the sum of the spin-resolved current densities.
From Ohm’s Law, J = σE, it is easy to see that

P =
J↑ − J↓
J↑ + J↓

=
σ↑ − σ↓
σ↑ + σ↓

. (8)
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Figure 3: The differential conductance for several spin-polarised metals show-
ing the suppression of Andreev reflection and hence the sub-gap conduc-
tance, with increasing P . The vertical lines denote the bulk BCS gap of Nb:
∆(T = 0) = 1.5 meV. After Soulen et al. [45].

It is easy to see that since the spin current density Js = (µB/e) × (J↑ − J↓),
and the charge current density J = J↑ + J↓, the polarisation represents the
ratio between the two quantities. Since the dc conductivity σ will depend on
the band structure characteristics ∝ g(EF)v2

Fτ within the Drude formula, we
obtain a polarisation for the current that involves the densities of states, the
square of the Fermi velocity and the relaxation time

P =
g↑(EF)v2

F,↑τ↑ − g↓(EF)v2
F,↓τ↓

g↑(EF)v2
F,↑τ↑ + g↓(EF)v2

F,↓τ↓
. (9)

It is not immediately obvious from this expression how P can be measured
in the diffusive case, as there is no way to filter separately the spin-resolved
diffusive currents as was done for the tunnelling and ballistic cases. Nev-
ertheless the current polarisation affects the transport properties in many
ways, as we shall see, and a variety of different indirect measurements are
possible.

There are a great many different galvanomagnetic effects in ferromagnetic
metals [7], which will affect the electric field E when a current density J flows
whilst a magnetic field is applied. The following expression for E(J,B) is
given by Viret (see e.g. Ref. 53 for a variant of this expression):

E = ρ(B)J + ρAMR[M̂ · J]2/|J| + ρOHE[B× J] + ρEHE[M̂× J] + ρsdiffJ, (10)
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where M̂ is a unit vector in the direction of the magnetisation, and there is
an implicit temperature dependence in every term.

Taking the terms in order, we have first of all ρ, the ordinary resistivity,
which will be B-dependent in general. This term takes account of impu-
rity scattering, as well as scattering from excitations such as phonons and
magnons. The field dependence is due both to the ordinary Kohler mag-
netoresistance, as well as a reduction in magnon scattering. The Kohler
magnetoresistance is caused by the Lorentz force acting on the electrons,
which curls up their trajectories and reduces the average distance between
scattering events. In most cases this MR ∼ B2 [54], although other forms
may be found in special circumstances, such as very thin films or very pure
crystals [55]. This type of magnetoresistance can be identified by the fact
that measurements at different temperatures should obey Kohler’s rule:

∆ρ

ρ(0, T )
=
ρ(B, T ) − ρ(0, T )

ρ(0, T )
= f

(

B

ρ(0, T )

)

, (11)

where B = µ0(H+M) and f is some unknown but temperature independent
scaling function. This equation means that the magnetoresistance for differ-
ent scattering times (controlled by temperature) can be related by rescaling
the field with the zero field resistivity, since 1/ρ(0, T ) ∝ τ the scattering
lifetime. This is because the quantity B/ρ(0, T ) ∝ ωcτ , where ωc is the
cyclotron frequency.

Another contribution of a high magnetic field in a ferromagnet is to open
up a gap in the spin-wave spectrum. This gapped spectrum supports a
smaller overall number of magnons, and hence the scattering rate is reduced.
At higher temperatures the fractional reduction in the number of magnons is
greater, leading to a steeper ∂ρ/∂B. Raquet et al. [56, 57, 58] have built on
the original work of Goodings [59] to derive a theory for the full temperature
and field dependence of magnon resistivity in a multi-band system.

The next term in Eq. 10 is the anisotropic magnetoresistance (AMR).
The resistivity anisotropy in ferromagnets was discovered in the 19th cen-
tury by Lord Kelvin, and is now known to arise due to spin-orbit effects[60].
The resistivity of a ferromagnet differs for current density perpendicular or
collinear with the magnetisation, with the difference in most metals being
∼ 1 per cent. According to the basic theoretical formulations, the AMR
in ferromagnetic metals can also be used as a probe of the sign of the spin
polarisation. McGuire and Potter [61] predict that a minority spin metal is
expected to have a negative AMR (i.e., resistivity with the field perpendicular
to the current is larger than with the field parallel), and vice versa. Measure-
ments of Fe, Ni and Co reveal them all to have positive AMR, indicating that
they are majority spin systems. Attaching contacts to a magnet in a Hall

14



geometry will detect potential differences due to the planar Hall effect if the
magnetisation is at an angle to the current flow, as the different resistivities
will mean that the potential drop from the current injection (or extraction)
contact to the two voltage probes will be different. This will be detected in
the absence of a perpendicular field (or magnetisation component).

The third and fourth terms in Eq. 10 are the ordinary (ρOHE) and extra-
ordinary (ρEHE), or spontaneous, Hall effects [62]. The well-known ordinary
Hall effect is simply another result of the Lorentz force on the electrons,
which deflects them to one side when they flow perpendicular to a magnetic
field. As they build up in density on one side of the conductor a transverse
electric field is set up, which is detected as a Hall voltage. The Hall voltage
is proportional to B and the Hall resistivity ∝ (ne)−1. It depends only on
the density and charge of the carriers. Many metals have negatively charged
carriers as expected, but a few – e.g. Al, W – appear to have positive carri-
ers. This was a mystery until the notion of holes was proposed, understood
in terms of the shape of the Fermi surface of these metals. The ordinary
Hall effect occurs in all metals and semiconductors. Ferromagnets show ad-
ditional Hall effects due to the spontaneous magnetisation (B = µ0(H+M)),
which contributes to the ordinary effect, and side-jump and skew magnetic
scattering relative to the magnetisation direction, which tend preferentially
scatter electrons to one side – these lead to the extraordinary terms, which
can be relatively large.

The final term is for additional scattering due to so-called “spin diffusion
terms”. This includes all effects related to spin accumulation, spin-dependent
scattering and spin diffusion. Giant magnetoresistance and domain wall re-
sistance both fall into this category. It is often this term that the experi-
menter wishes to determine, and it must somehow be distinguished from all
the other effects that have been listed in the previous paragraphs. This is
easy to do when the signal is relatively large, as the GMR often is, with this
final term leading to the largest field dependent voltages by at least an order
of magnitude. Terms associated with domain walls tend to be much smaller
in common materials and geometries, and so careful experimental protocols
need to be devised to isolate them from all the others.

This term comes into play when the material is magnetically inhomoge-
neous in some way. It is in this case that the related phenomena of spin
accumulation and diffusion arise. These have largely been considered in the
case of a current being driven driven from a ferromagnet into a nonmagnetic
metal, although the case of driving spins into superconductors [63, 64], or
nanoscale objects such as carbon nanotubes [65, 66, 67] has been treated by
a few groups. Of course, there is enormous activity at present in injecting
spins into semiconductors and their heterostructures [68, 69] for spintronics
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applications [6].
Once the current is injected into a non-magnetic materials the polarisation

must relax back to zero, and the typical distance over which it does so is
termed the spin diffusion length, ℓsd. Aronov was the first to attempt a
theoretical treatment of such spin-injection processes in metals [70]. Further
theoretical work was done by van Son et al. [71], Johnson and Silsbee [72, 73]
(who also performed early spin injection experiments [74, 75]), Valet and Fert
[76], and Hershfield and Zhao [77]. A synthesis of these various approaches
was recently set out by Rashba [78].

The basic principle is that in a ferromagnet the conductivity is (of course)
spin polarised (the spin quantum number s = 1

2
for ↑, and = −1

2
for ↓), so

that the charge current density

Js = σs∇µs (12)

depends on the gradient of the full electrochemical potential µs for a given
spin s as

µs =
eDs

σs

δns + φ, (13)

with δns the deviation from the equilibrium electron number density for spin s
and φ the electric potential. The spin-resolved diffusion coefficients are given
in terms of the scattering lifetime τs and mean free path ℓs by Ds = ℓ2s/τs. Of
course, both µ↑ and µ↓ must obey the continuity equation. Taking account
of spin-flip processes through the principle of detailed balance, g↑(EF)/τ↑↓ =
g↓(EF)/τ↓↑ (where 1/τss′ is the average flipping rate from spin s to spin
s′), and making use of the Einstein relation σs = e2gs(EF)Ds, this can be
expressed as

∇Js = se
g↑(EF)g↓(EF)

g↑(EF) + g↓(EF)

µ↑ − µ↓

τsf
. (14)

The s at the beginning of this expression is the spin index which deter-
mines the sign of the overall expression. The spin-flip relaxation time τsf =
τ↑↓τ↓↑/(τ↑↓ + τ↓↑) has been defined. This expression implies that the charge
current is conserved, since J↑ +J↓ is constant, whilst the spin current J↑−J↓
will be position dependent. At this point one can define various differ-
ent polarisations as required. For instance, the current polarisation PJ =
(J↑ − J↓)/(J↑ + J↓) will be different to the spin density polarisation Pn =
(n↑ − n↓)/(n↑ + n↓). Although PJ is still the ratio of spin current to charge
current, it is no longer identical to the conductivity polarisation Pσ = (σ↑ −
σ↓)/(σ↑+σ↓) as it was in the homogeneous case in Eqn. 8. The spin accumu-
lation now plays a role and introduces a correction leading to the expression

PJ = 2
σ↑σ↓
σ↑ + σ↓

∇(µ↑ − µ↓)

J↑ + J↓
+ Pσ. (15)
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Figure 4: A sketch of the spatial dependence of various quantities described in
the text in the vicinity of a F/N interface at x = 0 as a charge current flows.
The top panel shows the electrical φ and spin-dependent electrochemical
potentials µ↑, µ↓, which split near the interface as spins accumulate there.
The middle panel shows the spin-resolved current densities J↑, J↓. The lower
panel shows the various different carrier polarisations defined in the text:
the conductivity polarisation Pσ, the carrier density polarisation Pn, and the
current density polarisation PJ.

The relationships between these various quantities are sketched in Fig. 4.
From Eqns. 13 and 14 one can show that the splitting in chemical po-

tential δµ = µ↑ − µ↓ obeys the diffusion equation ∇2δµ = δµ/ℓsd, where

the relevant length scale is the spin diffusion length ℓsd =
√

Dτsf . Here the
average diffusion constant D = σ↓D↑ = σ↓D↑. A final useful result is that
δµ ∝ Pn, and the term spin accumulation can be used interchangeably to
describe the local spin splitting in the chemical potentials and the local spin
number density.

Scattering at the interfaces of the ferromagnets will introduce additional
(almost certainly spin-dependent) resistance and hence a discontinuity in µs

at the interface. The decay of δµ away from the interface can be shown to
be exponential with the decay length given by the appropriate spin diffusion
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length, which will probably differ in the materials on either side. The nonzero
value for δµ on the nonmagnetic side implies a non-equilibrium magnetisation
that is proportional to the current density. This means that the polarisation
of the current PJ (and of the carrier density Pn) can be nonzero, even in
nonmagnetic materials where Pσ = 0. This is the phenomenon of current
driven electrical spin injection.

Several groups have recently demonstrated spin injection from metals[79,
80, 81], ferromagnetic semiconductors [82, 83, 84] and tunnel and hot elec-
tron injectors [85, 86, 87] into a semiconductor by using a so-called spin-LED
as a detector. This device is a semiconductor quantum well, often in Al-
GaAs/GaAs, in which the recombination of carriers leads to electrolumines-
cence (EL). There are quantum mechanical selection rules that directly relate
the degree of circular polarisation of the EL light to the spin-polarisation of
the recombining carriers [88]. This technique measures the polarisation of
the carrier density Pn in the well. An exciting recent result is the detection
of spin injection into a lateral GaAs channel from Fe Schottky contacts, with
the accumulated spins detected using the Kerr effect [89]. Spin accumulation
occurred over a few tens of microns away from the edge of the Fe.

In principle, spin-diffusion and spin-accumulation effects can occur at
domain walls as well as at ferromagnet/nonferromagnet interfaces. This is
because the walls form a sort of magnetic interface and the spin polarised
current injected from one domain must relax to the equilibrium value in the
other domain. Such spin accumulation effects were invoked to explain the
unexpectedly large magnetoresistance observed in a Co nanowire [90]. In
general one would only expect significant spin accumulation effects to occur
for walls with a thickness D that satisfies D ≪ ℓsd.

Let us now review the properties of these magnetic domain walls.
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3 Magnetic Domain Walls

3.1 Basics of domain walls

A domain wall is a topological defect in the magnetically ordered state of
a solid. Famously, the idea of magnetic domains was first postulated by
Pierre Weiss [91] (although the term ‘domain’ was not introduced until much
later [92]). The idea was essentially an abstract one required to explain
certain experimental facts about ferromagnets, principally their extremely
high permeabilities. How could an applied field of a few Oe fully saturate a
piece of soft Fe when an internal field of a few kOe was not enough to explain
the value of the Curie temperature? How did the internal (“molecular”) field,
some tens of MOe, not fully saturate the material? The development of the
Weiss molecular field, really a manifestation of the exchange interaction, was
part of the answer, but the other part was to suppose that the sample was
made up of various fully magnetised regions, called domains.

Confirmation of their presence was hinted at experimentally by the work
of Barkhausen [93], but was not experimentally confirmed until the 1930s
with the work of Sixtus and Tonks [94] and Bitter [95]. The physical prin-
ciple of minimising magnetostatic energy that gives rise to the formation of
domains was put forward by Landau and Lifschitz in 1935 [96], along with
the famous Landau-Lifschitz wall profile (where θ ∝ tanh(x/D) where x is
the position cordinate and D is the wall thickness parameter), a refinement
of the original proposal of Bloch [97]. The basic ideas of magnetic domains
were reviewed by Kittel [98], and there is a recent text giving a thorough
treatment of magnetic domains by Hubert and Schäfer [99].

This physical basis of domain formation is the competition between the
various energy terms that describe a magnetic object: exchange, anisotropy,
Zeeman and magnetostatic. The total energy is simply a sum of these terms:

E = Eexch + Eanis + EZeeman + Emag. (16)

As for all physical systems, the magnetic system seeks to minimise its overall
free energy. Since the magnitude of the magnetisation vector is fixed, the
way to do so is to vary its direction. The first three of these terms align the
spins with each other (Eexch), with an easy axis (Eanis) or with the externally
applied magnetic field (EZeeman). Some compromise may be found between
these to determine the overall lowest energy direction for the magnetisation.
Minimising these terms alone will not give rise to any non-uniformity in the
magnetisation as this will mean that some spins will no longer be pointing
along this optimal direction.
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It is the magnetostatic dipole-dipole interaction that gives rise to the
formation of domain structures. Any uniformly magnetised body will have
lines of M that terminate on its surfaces. These sources and sinks of lines of
magnetisation will give rise to a nonzero divergence at these points. Using
the basic relationship B = µ0(H + M) we can express the divergence of M

as

∇ · M =
∇ · B
µ0

−∇ · H,

and since we know from the Maxwell equations that ∇ · B = 0 we are left
with

∇ · H = −∇ · M. (17)

Hence these sources and sinks of magnetisation at the sample surfaces will
give rise to a field H that ensures the continuity of lines of B. This field is
known as the demagnetising field, as it acts to reduce B inside the material
to be less than the µ0M that might näıvely be expected at zero applied field.
A comparison with the first of the Maxwell equations for the divergence of an
electric field shows that the divergence of M acts as the analog of a magnetic
“charge density”. It is worth stressing that these magnetic charges are simply
a convenient mathematical fiction.

The energy associated with this stray field H is expressed in the form of
two equivalent integrals:

Em =
1

2
µ0

∫

all
space

H2dV = −1

2
µ0

∫

sample

H · MdV. (18)

Notice that the first of these two expressions is always positive as it contains
H2 – evidently, as they are equal, the second must also be always positive as
well. The system will try to minimise this energy term as much as possible
of course, and so in practice this means making the stray field as small as
possible, as the stray field energy can never be less than zero. The second
integral is perhaps more physically transparent. The integrand can be seen
to express the energy of a dipole MdV in the field created by all the others.
The factor of 1

2
is there to avoid double counting over the dipoles. By forming

non-uniform, flux-closed magnetic states it is possible to reduce the number
of lines of M that terminate on the sample surfaces and hence reduce the
magnetostatic energy.

The formation of domains therefore proceeds until the fall in magnetosta-
tic energy is balanced by the exchange and anisotropy energy costs associated
with the twists and deviations in the magnetic structure. The Zeeman energy
will also play a role if a field is applied. This field may be large enough to
erase the domain state and produce a uniform, magnetically saturated state
again.
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Figure 5: Sketches of the internal structure of simple 180◦ Bloch (on the left)
and Néel (on the right) walls.

In general one observes large uniformly magnetised regions – the domains
themselves – separated by narrow regions where the magnetisation rotates
from the direction of one domain to the next. These are termed the domain
walls. The reason for this state of affairs, as opposed to long, continuous
sweeps of magnetisation direction, is related to the different ranges of the
various energy terms. The magnetostatic energy falls off as a power law, and
so is relatively long ranged when compared with the exchange interactions
(exponential falloff) and the anisotropy, which is entirely local. It is therefore
energetically favourable to confine twists away from uniformity and local easy
axes to relatively small volumes.

The magnetisation vector can rotate in two ways at a planar domain wall
– the vector can either rotate in the wall plane or through it. These two
possibilities are referred to as either a Bloch wall or a Néel wall, respectively,
and are illustrated in Fig. 5. The Bloch wall is the one originally proposed
by Felix Bloch, and its properties were later worked out in some detail by
Landau and Lifshitz. It is the one seen in bulk materials as even though
the magnetisation vector rotates, ∇ · M = 0 everywhere, even in the wall.
This means that there is no charge associated with the wall, so there is no
stray field, and there is no cost in magnetostatic energy associated with the
presence of the wall. Of course there is a cost in exchange energy, as the
spins are no longer all parallel: there is some degree of misalignment within
the wall. The magnetisation within the domains is also likely to lie along
an easy axis, so there will be some anisotropy cost to the wall as well, as
the magnetisation must rotate through a hard direction. It is only if the
magnetostatic energy associated with the stray field is reduced sufficiently to
offset these costs that a wall will be formed.
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In a thin film, an experimentally important geometry, the picture is some-
what different. The magnetisation will generally lie in the film plane for de-
magnetising energy reasons, and must rotate out of it if a Bloch wall is to
be formed. This must lead to surface charges, or stray field, and the energy
costs associated with out-of-plane magnetisation are large. In a sufficiently
thin film Néel walls may be formed – although volume charges are associated
with such a wall, this energy cost is proportional to the area of the film,
which is itself proportional to the film thickness. Other, more complex wall
profiles in higher dimensions have been predicted in systems with anisotropic
exchange [100].

3.1.1 Domain wall thickness and energy

There are detailed calculations for the energy cost and thickness of wall
based on numerical micromagnetic models, but it is possible to capture the
physics in a fairly simple estimate. Since these quantities are of fundamental
importance in many of the results we shall examine, we shall perform the
calculation in some detail.

Suppose that we have two semi-infinite domains separated by a wall which
is N planes of spins thick - the distance between neighbouring planes is the
lattice constant a. The magnetisation will rotate by 180◦ or π radians from
one domain to the next, and we’ll assume that we have a uniaxial anisotropy –
each domain occupies one of the easy axes. Here we are imagining a structure
rather similar to that shown for the Bloch wall in Fig. 5.

We need to take account of the exchange. We’ll use the Heisenberg Hamil-
tonian, and define a very simple version – the exchange energy associated
with a pair of neighbouring spins S1 and S2 is just

−2JS1 · S2 = −2JS2 cosφ, (19)

where φ is the angle between them, and J is the value of the exchange
integral. We know that the exchange is very strong on short length-scales,
so we will say that the angle φ between one spin and the next can only ever
be small, so our formula approximates to

JS2φ2 + const.

This is analogous to an elastic energy, with φ taking the place of a strain. In
physics one can often define such a generalised elasticity, and the theory of
spin waves can be recast in the form of deformations of an elastic medium
with the exchange providing the restoring force. We will therefore define an
exchange stiffness

A =
n

a
JS2, (20)
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where n is the number of atoms per unit cell. We’ll take n = 1, so we have
a simple cubic lattice, just as in Fig. 5.

In our domain wall the magnetisation rotates over N planes of spins.
There will be 1/a2 atoms per unit area in each plane, so the number of spins
per unit area of wall will be N/a2. The angle φ between neighbouring planes
must be π/N . Putting all this together the cost in exchange energy per unit
area of wall will be

Eex =
N

a2
JS2φ2 =

N

a2
JS2

( π

N

)2

=
Aπ2

aN
. (21)

Notice that Eex ∼ 1/N – the exchange wants to make N as large as possible
so that the rotation is as gradual as can be. The exchange energy will attempt
spread the wall out to be infinitely thick.

However the domains occupy easy axis orientations, so that within the
wall the spins are in a hard direction. This costs energy of order the anisotropy
constant K per unit volume of wall. This leads to an energy

Ean = K
(N

a2

)

a3 = KNa, (22)

per unit area of wall due to the anisotropy. In this expression Ean ∼ N , so
the anisotropy wants to compress the wall to be as thin as possible, in order
to keep all the spins it can in easy directions. We shall see that narrow walls
are a prerequisite for observing most domain wall resistance effects, and so
high anisotropy materials are often sought. (It is worth noting that although
the exchange stiffnesses of most ferromagnets do not vary by much more than
about an order of magnitude, the variation in the anisotropy constants covers
several orders of magnitude and offers more choice for the experimenter to
select an appropriate material for their purposes.)

The total wall energy per unit area σwall is going to be the sum of these
two terms:

σwall = Eex + Ean =
Aπ2

aN
+KNa. (23)

The equilibrium wall will find a value for N where Ewall is a minimum,

∂Ewall

∂N
= −Aπ

2

aN2
+Ka = 0.

Solving this expression for N we get

N =
π

a

√

A

K
.
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The wall thickness D will be given by

D = Na = π

√

A

K
. (24)

Substituting this back into the expression for the wall energy per unit area
we get

σwall = 2π
√
AK. (25)

This is the cost of the creation of a unit area of domain wall in terms of
the exchange and anisotropy contributions only. Whether or not the wall
forms, and the type of wall if it does, will be determined by comparing this
to the possible reduction in magnetostatic energy. As the wall energy is
proportional to the area of wall, there is something like a surface tension
that will tend to make walls appear as flat sheets so far as is possible. This
property is used to great effect to pin walls in mesocopic wire structures,
where notches or constrictions will reduce the wall area as it enters them,
giving rise to a highly controllable pinning potential.

It is interesting to note that the magnetostatic term, which gives rise to
domains and hence the walls between them, does not really have anything
to do with setting the spatial scale or energy cost of forming these walls.
This is done by the exchange and anisotropy. Exchange is a short ranged
interaction – in this calculation we have not put in any exchange interaction
beyond nearest neighbours in our lattice. Anisotropy is completely local in
this model, closely mirroring reality: this is the case for materials exhibiting
so-called single ion anisotropy, whilst only nearest neighbour interactions are
important in those showing double ion anisotropy. Skomski and Coey give
an enlightening discussion of these two effects [101].

3.1.2 Micromagnetic calculations

These energy terms form the basis of the various micromagnetic models that
are now widely used in this research field. A good introduction to ideas of
micromagnetics can be found in the book by by Aharoni [102]. The highly
nonlocal nature of the magnetostatic energy term means that these are nu-
merically intensive calculations, but the advent of cheap computing power in
the last few years, coupled with freely available and rigourously tested codes
such as OOMMF [103], means that a basic capability to simulate domain
structures is now within the reach of every laboratory.

In practice most modern micromagnetics codes work by dividing the sam-
ple into finite elements dV , each containing a magnetic moment MdV . Some
initial state for all of these moments is defined. If one knows nothing of what
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the final state might be like then it is simplest to place each moment pointing
in a random direction. One then proceeds by integrating the Landau-Lifshitz-
Gilbert (LLG) equation forward in time for each element, taking into account
the interactions between all the elements, until some convergence criterion is
reached. The LLG equation is an equation of motion for the magnetisation
(a vector field M) and has the following form:

∂M

∂t
= −γM × Heff − γα

|M|M × (M × Heff). (26)

Evidently, we can split the time (t) evolution of M into two terms which sum
together. The first is the gyroscopic reaction of the angular momentum asso-
ciated with the magnetisation with an effective field Heff . The magnetisation
will tend to precess around the field, and the coefficient γ is the gyromagnetic
ratio. This is defined as

γ =
µ0ge

2me

,

where g is the Landé factor and is close to 2 for many ferromagnets, in
particular the 3d series. With just the first term we will have an infinite
precession of the magnetisation, since no losses are included.

The second term is the one that dissipates energy, and the dimensionless
α is called the damping coefficient. Physical materials have α in the range
0.004 to 0.15. This term is introduced phenomenologically simply in order to
get the system to settle down into an equilibrium state instead of precessing
endlessly. The real meaning of the α parameter and more intelligent ways of
incorporating the damping into the model are active research topics. These
two torque terms are shown in Fig. 6.

The simplest scheme, numerically, is to split the sample into many small
cuboids (voxels), which need to be small enough to accurately represent the
smallest magnetic object in the sample – typically a domain wall – since we
are carrying out numerical discretisation of a continuum model. In particu-
lar, a common approximation for the exchange interaction (the one which is
shown below in Eqn. 27a) is only valid for small differences in angle between
neighbouring moments. A rough criterion to see if any calculated domain
structure is valid is to see what is the largest angle between neighbouring
moments. Anything smaller than ∼ 10◦ is usually taken to be reliable. Any-
thing higher than ∼ 30◦ is almost certainly not.

The field driving the motion of the moments is described as an effective
one since the applied field is only one of the terms that contributes to it. In
fact we can describe applied field, demagnetising field, anisotropy, exchange
and anything else we care to introduce into the problem into this effective
field. There are two steps to this process: first of all we need to write down
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Figure 6: The different torques experienced by a precessing moment m in an
effective field Heff , related to the two terms in the Landau-Lifschitz-Gilbert
equation (Eqn. 26). The first term, ∝ −m × Heff , induces the precession of
the moment m around the effective field Heff . The second term, ∝ −m×(m×
Heff), gives rise the damping torque that causes the moment to eventually
settle pointing along the effective field direction.

the free energy density E of our system. This will be defined as a scalar field,
and the various energy densities are written down like this:

Eexchange =
A

M2
s

(

|∇Mx|2 + |∇My|2 + |∇Mz|2
)

(27a)

Eanisotropy =
K1

M4
s

(

M2
xM

2
y +M2

yM
2
z +M2

zM
2
x

)

(27b)

Edemag =
µ0

8π
M(r) ·

(

∫

V

∇ · M(r′)
r − r′

|r − r′|3d
3r′ −

∫

S

n̂ · M(r′)
r − r′

|r − r′|3d
2r′

)

(27c)

EZeeman = −µ0M · H (27d)

It’s worth taking a moment to see what these expressions mean physically.

• The first term Eexchange is fairly straightforward. A is the exchange
stiffness, as defined in §3.1.1, and any change in the direction of M will
result in some of the gradients in the bracket being nonzero and so will
cost energy.

• The second term Eanisotropy will take different forms depending on the

26



type of anisotropy we use. The example given is for a system with
cubic symmetry.

• The magnetostatic energy density Edemag is just sum of dipole-dipole
interactions with a factor of 1

2
to avoid double counting.

• Finally the Zeeman energy densityEZeeman contains the interaction with
the applied field and has a very simple form. Notice that we haven’t
assumed a uniform applied field here, but this is often done.

In the finite element (or more commonly finite difference) schemes im-
plemented numerically, the derivatives and integrals become differences and
sums.

The effective field is then defined by

Heff = − 1

µ0

∂E

∂M
. (28)

It is something akin to a force, in that it is a gradient of a scalar energy
field – however the thing that is subjected to the force is not a particle but
a vector field, the magnetisation. It is a “field” in the sense that it acts to
exert a torque on the magnetisation, and with the appropriate coefficient
(the reciprocal of µ0 as in the above expression) we can arrange for it to have
same dimensions as a field as well.

In order to calculate a static domain state one can begin from an appro-
priate starting state, for instance uniform magnetisation, a vortex, or total
randomness, and iterate until the torque |M×Heff | is smaller than some tol-
erance. An example of the use of this approach is shown in Figure 7, where
a random initial magnetic state is rapidly converged to a typical closure do-
main structure. It is usual to make the damping parameter α artificially large
to get the system to settle down quickly and make efficient use of computer
time.

On the other hand an important advantage of this technique is that it can
naturally handle magnetisation dynamics and the response of the system to
time-varying fields, as it is based on the correct equation of motion. In this
case accurate knowledge of α is necessary to reproduce the correct behaviour.
The most important shortcoming is that it is not simple to incorporate the
effects of finite temperature and thermal activation, which can be treated
with molecular dynamics type schemes (see Ref. 104 for an example of this
approach used to study vortex matter). There have been attempts to do
this phenomenologically by introducing an additional stochastic term into
the effective field, with statistical properties that depend on the temperature
[105].
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Figure 7: Results of a simple micromagnetic calculation performed using
the OOMMF code [103]. The simulation is of a 2 µm×0.5 µm permalloy
bar patterned from a film that is 20 nm thick, using a 20 nm cell size.
Standard OOMMF materials parameters for permalloy were used. In each
panel the colour scale represents the magnetisation direction: blue pixels
are magnetised to the left, whilst red pixels are magnetised to the right.
The top panel shows the initial random magnetisation configuration. In the
centre we show the formation of the nascent domain structure after 1 ns of
simulation time, whilst at the bottom the converged magnetic state is shown,
with a simple closure domain structure found at each end – after 19.8 ns of
simulation time.
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Figure 8: A magnetic force micrograph of the remanent domain structure in
a {Co (5 Å)/Pd (10 Å)}×19 multilayer with a strong out-of-plane anisotropy
grown by sputter deposition. The labyrinth domain structure with a well-
defined period of about 200 nm is evident from the image.

3.1.3 Tailoring domain structures for measurements

In order to study domain wall resistance it is necessary to have a well-defined,
well-known, and ideally quite simple, domain state. This can be achieved in
one of two ways: either by tuning material properties or by patterning a mag-
netic film into some micro- or nanostructure that controls the domains using
shape-related magnetostatic effects. We will discuss this latter possibility in
the following subsection.

An important geometry used in many experiments on domain walls is
that of a thin film with a perpendicular anisotropy large enough to lift the
magnetisation vector out of the film plane. This can be arranged in one
of two ways. The first is to choose a material with a strong enough mag-
netocrystalline anisotropy and preparing a suitable crystal or epitaxial thin
film. The other is to take advantage of the strong anisotropies present at
interfaces between different magnetic metals and prepare multilayers with
a high density of such interfaces: an example is shown in Fig. 8. Much
early work in the field of magnetic multilayers concerned the study of such
anisotropies [106, 107]. An example remanent domain structure for an out-
of-plane magnetised multilayer sample is shown in Fig. 8.

Such systems do not readily remain in a single domain state at rema-
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nence, as this is a highly demagnetising configuration for the magnetisation
to take up: both surfaces of the film will be covered with the highest possible
density of magnetic charge available for a given value of M. (In the language
of demagnetising factors, the factor for this magnetic configuration is unity.)
Hence dense domain patterns are formed, typically a stripe or labyrinth do-
main structure, with equal numbers of narrow domains magnetised along
the two easy directions perpendicular to the film plane. The magnetisation
subdivides until the density of walls means that the associated energy cost of
creating new walls exceeds the drop in magnetostatic energy. It is possible
to construct analytical expressions for the various energy terms, in particular
the magnetostatic term, if simple geometries are assumed [108], which can
be solved to give the domain structure in the sample as a function of applied
field. These lead to prescriptions for determining the relevant anisotropy con-
stants in such materials from macroscopic measurements of hysteresis loops
which can be be used to infer the domain structure [109]. The Kooy and Enz
model of Ref. 108 was generalised by Draaisma and de Jongh to the case of
multilayers such as Co/Pt or Co/Pd that have out-of-plane anisotropy [110].

It is the high density of walls in the stripe domain state that makes it
so useful for domain wall resistance studies. The walls are separated by the
strip domains which have a characteristic size that was derived by Kaplan
and Gehring as [111]

d = t×
[

exp

(

πd0

2t

)

exp

(

1 − 0.66π

2

)

]

, (29)

where the dipolar length d0 = 2π
√
AK/µ0M

2 and t is the film thickness.
The temperature dependence of this domain structure was discussed in Ref.
112.

An important parameter for stripe domains is the so-called quality factor,
Q = 2K/µ0M

2, defined as the ratio of anisotropy to demagnetising energy
densities. For Q < 1 the demagnetising energy is the dominant term and
for very thin films the magnetisation will lie in the plane. For thicker films
the interior will form perpendicularly magnetised domains but the surfaces
will be magnetised in the plane, as the anisotropy is too weak to overcome
the large demagnetising fields there. At the top and bottom of the walls the
magnetisation will curl over to lie parallel to the surface in structures that are
known as Néel flux-closure caps. This complex multidirectional wall structure
can prove problematic for the interpretation of transport data, where simple
wall models are usually assumed. For Q > 1 the anisotropy energy will be
the dominant term and a sharply defined domain state results, with domain
walls extending right up the surfaces of the film with negligible Néel caps, as
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Figure 9: A micromagnetic simulation of stripe domain structure through
the thickness of an FePd film. The domain width is ∼ 60 nm with weak
Néel caps of similar size at the extrema of the Bloch walls. After Viret et al.
[113].

shown in Fig. 9.
The wall will have the strongest effects upon the resistance when the

change in direction of magnetisation is abrupt on the length-scales associ-
ated with transport, such as the mean free path ℓ. Since the wall thickness
D ∼

√

(A/K), it is obvious that high anisotropy materials best satisfy this
desideratum. Very high resolution techniques are needed to observe such
narrow walls. Aitchison et al. used Lorentz mode transmission electron mi-
croscopy to observe the maze-like structure in high anisotropy FePd (001)
films, and a wall thickness below the resolution of the microscope, ∼ 20 nm
[114].

To observe thinner walls, the only available technique is spin-polarised
scanning tunnelling microscopy. This was used by Ding et al. to observe
ultra-narrow walls at the surface of a Co (0001) film [115]. In this version of
the technique an ultra-soft magnetic tip has its moment modulated by a tiny
coil, and the TMR between sample and tip is measured using phase-sensitive
detection to give the magnetic signal. A related version of the method has
been refined to a high art by the group of Bode and Wiesendanger, who use
it in a spectroscopic mode where there is magnetic sensitivity at a particular
energy in the band structure of the tip, accessed by selecting the appropriate
bias voltage. Typically W tips coated with Fe, Gd or Cr are used. Atomically
abrupt domain walls were observed in Fe nanowires grown by epitaxial step-
edge decoration of a vicinal W substrate [116]. Subsequent experiments
showed that the wall orientation follows the lattice not the wires themselves
[117], showing the importance of the intrinsic anisotropy of the Fe in this
system. The use of spectroscopy in this method means that underlying band
structure of wall in the Fe nanowires can be probed, and subtle differences
in the electronic structure within the wall were found experimentally [118],
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Figure 10: Micrograph of a generic device used to inject domain walls from a
pad into a wire, with various current, Hall and resistance contact probes. The
device was formed by an e-beam lithography lift-off process, whilst the Au
contacts were patterned using conventional optical lithography. The width
of the wire part of the structure is 2.5 µm.

which can be compared with the electronic theory of domain walls [119].
Meanwhile extremely high spatial resolution of wall position was achieved by
Novoselov et al. who detected the motion of a domain wall in the Peierls
potential of a garnet crystal [120].

3.2 Domain walls in nanostructures

The patterning of magnetic microstructures is a large and growing field.
There are many different techniques that can be used and a wide-ranging
review of magnetic nanostructures has been given by Martin et al. [3]. For
studying the interactions of electronic transport with domain structures the
natural geometry to use is a wire, and we will see numerous examples of this in
Sections 4 and 5. Most commonly these devices are patterned using electron
beam lithography, although the use of focussed ion beams is becoming more
popular. In general measurements are made with current contacts at either
end of the wire (which is not necessarily straight) and measurements are
made using various voltage probes, either in a longitudinal or Hall geometry,
to detect either electrical resistance or magnetisation reversal by wall motion.
A typical device of this sort is shown in Fig. 10. Wall motion may also be
detected by the usual imaging techniques of Kerr, magnetic force, or Lorentz
microscopy.

At this point it is enough to mention some of the basic ways in which
domain walls can be controlled and positioned in such structures. There are
two aspects to this: the controlled nucleation of a wall at a specific point
in the nanostructure, and then positioning the wall relative to the voltage
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probes that are used to make the electrical measurements.
Wall nucleation generally happens at the ends of the nanostructured wire,

and is strongly affected by the details of the shape there [121]. Certain
shapes, in particular the commonplace square wire end, are difficult to sat-
urate magnetically and so a vortex or partial wall structure may be there
even at high fields. This will rapidly expand when the field is removed to
give an uncontrolled reversal. There have been various studies of the effects
of the shape and size of nanoscale magnetic elements on switching properties
[122, 123, 124, 125, 126, 127]. A commonly used geometry was introduced by
Shigeto et al. [128], who positioned a large pad at the end of the narrow wire
of interest. The larger scale of this so-called nucleation pad means that it
has a much smaller coercivity than the wire itself, and a wall is reproducibly
nucleated at the point where the pad joins onto the wire [129]. This built
on the concept of Chen et al. [130], who studied the propagation of walls
down sub-micron wires from so-called “reservoirs” that were a few hundred
µm in size. The walls were detected at the other end using conventional
magneto-optic Kerr microscopy to study collector pads a few µm in size. An
alternative nucleation strategy is to use an overlying current-carrying wire to
generate the localised magnetisation reversal [131]. Corners in wires can also
be used to reproducibly create head-to-head or tail-to-tail walls by applying
a field that bisects the two arms of the structure on either side of the corner.

Propagation of a single wall in sub-micron wire was monitored in real
time with µs resolution using the GMR effect by Ono et al. [132]. In this
case a thick featureless permalloy wire was found to reverse completely in
around 0.5 s for a 5 nm thick layer and only 10 µs for a 40 nm thick film.
Some feature needs to be inserted into the wire in order to locate and pin
the wall. Commonly this is a constriction or notch. Since the wall surface
energy is reduced when the wall enters the notch it forms an effective energy
well in which the wall can reside. Such a structure is useful in creating low
coercivity memory cells that permanently contain a domain wall [133].

Wunderlich et al. detected free propagation of a domain wall in a wire
patterned from a perpendicularly magnetised Pt/Co/Pt sandwich, but ob-
served variations in wall shape and velocity as it traversed a Hall cross
[134, 135, 136]. The EHE was used to clearly measure the entry and exit
of a wall in the cross, which contained only 4 × 10−3 µm3 of Co – only a
few million atoms. Direct atomic force microscope (AFM) lithography has
been used to create point and line defects in Pt/Co/Pt out-of-plane magne-
tised thin film systems [137, 138]. Focussed ion beam (FIB) lithography has
been shown to create reproducible pinning centres in permalloy wires [139]
and GaMnAs systems [140]. (At very low temperatures domain wall motion
and depinning will be controlled by quantum tunelling effects [141, 142].)
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Asymmetric notches give rise to direction dependent depinning fields [143],
whilst Allwood et al. also have fabricated a magnetic domain wall “diode”
using different sized wires connected to a triangular object [144]. Multiple
magnetic configurations are possible in such notch structures [145]. Alterna-
tive schemes for controlling wall propagation include the use of corners and
rotating fields [146] and wire junctions [147]. The engineering and control of
domain wall motion in nanostructures is now sufficiently refined that rather
complex circuits capable of performing the full suite of logic operations, with
magnetisation directions representing the Boolean zeroes and ones, can be
reliably fabricated [148].

3.3 Domain wall dynamics

Since domain wall motion is a very common mechanism of magnetisation
reversal, it is useful to have an understanding of the dynamic, as well as static,
properties of domain walls. A rigourous but unpublished exact analytical
treatment of a moving 180◦ wall in a uniaxial material was found by Walker
(a description of these results can be found in Ref. 149). The LLG equation
(Eqn. 26) can be re-expressed in polar co-ordinates θ, φ with the polar axis
along the easy axis. We now have a wall that gives a transition of θ from −π/2
to π/2, with the wall angle φ giving the wall character, φ = 0 for a static
Bloch wall (and φ = 90◦ for a static Néel wall). Inserting the appropriate
version of the energy density, with the field applied at θ = 0, and assuming
a constant velocity v to convert the time derivatives into spatial derivatives
using d/dx = −v−1d/dt one obtains the results

v = −γM sinφ cosφ
√

A/Keff (30a)

µ0H = αµ0M sinφ cosφ (30b)

where Keff = K + 1
2
µ0M

2. During motion the torques within the wall mean
that it acquires some Néel character, giving a nonzero value of φ. This wall
structure is sketched in Fig. 11. Eqn. 30a relates the wall velocity to this
angle, whilst Eqn. 30b gives the applied field needed to obtain this angle.
With these solutions the driving and dissipative terms balance exactly, giving
the constant velocity motion that was assumed. A comparison of the two
expressions shows that v ∝ H, up to the point where φ = π/2, which gives
the maximum wall velocity

vmax = γ

√

2AQ

µ0

(

√

1 +
1

Q
− 1

)

, (31)
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Figure 11: The distortion undergone by a Bloch wall during motion. An
applied field along the x-axis will cause the wall to travel along the z-axis.
After Chikazumi [154].

at an applied field of

Hmax = α
2µ0K

M

(

√

1 +
1

Q
− 1

)

4

√

1 +
1

Q
. (32)

This maximum velocity can be exceeded with the application of a transverse
field, or in the presence of certain anisotropies [150]. For fields exceeding
Hmax no steady state solution is possible. Oscillatory solutions can be found
[151] where the wall moves back and forth as it switches between Bloch and
Néel states. There are also chaotic solutions where the wall moves inho-
mogeneously [152]. Numerical results for various oscillatory cases, including
transient and non-periodic responses, were reported by Schryer and Walker
[153].

It was first pointed out by Döring that a domain wall will exhibit inertia
even though there is no mass displacement of any sort [155]. This so-called
“Döring mass” arises as a direct result of the fact that the spins forming the
wall have an associated angular momentum. The canonical situation used
to derive the wall mass is to consider a Bloch wall normal to the z direction
with spins confined in the x-y plane. A field applied along the x-axis will
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exert a pressure on the wall and cause spins to rotate – the key point is
that the spins must precess and so depart from the x-y plane, giving the
wall the Néel character described above, and an associated demagnetising
field Hz = −Mz along the wall normal. There is, of course, demagnetising
energy associated with this field. The spins will then precess with frequency
dφ/dt = −vHz = −vMz in the x-y plane around this wall normal causing a
displacement of the wall along z at a velocity v. Evaluating the energy of the
moving wall, σw = −1

2
µ0

∫ ∞

−∞
M · Hdz, we find an additional demagnetising

energy due to the motion induced z components of M and H. Since both
Mz and Hz are proportional to the wall velocity, this additional energy is
proportional to v2. The constant of proportionality must therefore have
dimensions of mass, and we can call this additional energy a “kinetic energy”,
1
2
mwallv

2, with the mass defined as:

mwall =
µ0σstatic

2v2A
. (33)

This is the Döring mass of the wall. Although the idea of associating a mass
with an object that is not “matter” in the conventional sense seems counter-
intuitive, it has been experimentally shown that walls do move as if possessing
some inertia [156]. A more careful analysis leads to a velocity dependent mass
parameter [102]: Eqn. 33 actually only gives the zero velocity limit of the
wall mass.

In the discussion above all dissipation is “intrinsic” in the sense that it is
due to the Gilbert damping, and we have tacitly assumed a perfectly homo-
geneous, insulating material. In bulk metallic samples it is usual for this to
be exceeded by eddy current effects, and micromagnetic calculations taking
these into account have been made [157, 158], but these are usually unim-
portant in thin film or nanostructured samples. Much more important in
these cases are the effects of magnetic friction at defects, particularly edge
roughness in patterned structures, which can affect the coercivity of these
structures substantially [159]. The recent activity in magnetic nanostruc-
tures has seen accompanying activity studying dynamics in these systems.
Atkinson et al. achieved very high wall velocities in sub-micron permal-
loy wires [160], and micromagnetic calculations by Nakatani, Thiaville and
Miltat confirm the role of edge roughness in achieving this [161]. The prop-
agation velocity measurement of a magnetic domain wall in a sub-micron
magnetic wire was recently measured by Himeno et al. [162]. There have
also been recent measurements of domain wall motion in the undriven creep
regime [163].
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4 Domain Wall Resistance

The main purpose of this section is to review recent results in the study of
domain wall resistance (DWR). However we will begin with a brief historical
perspective in order to give some context to the more recent work. Somewhat
arbitrarily, the modern era is defined as starting at some point in the 1990s, as
it was at this time that the improvements in thin film growth, nanofabrication
and advanced characterisation that made the development of GMR devices
possible were applied to the problem of DWR.

4.1 Early results

The subject of the variation of electrical resistance in a ferromagnet with
domain structure was first studied as early as the 1930s, with Gerlach re-
porting that Barkhausen jumps in that magnetisation do not influence the
electrical resistance in 1932 [164]. The efforts of Steinberg and Miroschnis-
chenko in 1933 to detect changes in resistance associated with Barkhausen
discontinuities – now known to be domain wall motion – also failed to detect
any effect [165]. In the following year such effects were detected by Heaps
in a strained Ni wire [166]. The improvement came about as a result of bet-
ter experimental resolution of the very tiny resistivity changes involved, the
fractional change in resistance being ∼ 6× 10−5. The resistance jump of the
sample was interpreted in terms of the AMR within the domains, rather than
arising from the walls themselves. These experiments were carried out when
the study of domains was very much in its infancy, with the the first experi-
mental observations of these structures being more or less contemporaneous
[94, 95].

There was a burst of interest in the topic of the magnetoresistance of pure
ferromagnetic metals as the 1960s became the 1970s [59, 167, 168]. One of
the most important series of papers of this era reported experimental studies
of the magnetoresistance of Fe whiskers by Taylor, Isin, Coleman, Shumate
and Fivaz [169, 170, 171]. Such samples are very high quality single crys-
tals and hence have very long mean free paths and well defined magnetic
anisotropy axes. This type of crystal can be grown by the hydrogen reduc-
tion of FeCl2 at 700◦C, and they tend to grow along low index directions such
as 〈100〉 and 〈111〉 [172]. In particular in Ref. 170, the changes in resistance
on going to a multi-domain state were enormous at helium temperatures,
with the resistivity rising by well over an order of magnitude in several cases,
shown in Fig. 12. The hysteresis observed made it clear that the changes
were associated with magnetic domains, but an interesting feature was the
fact that in this regime the resistance of the sample was highly non-Ohmic.
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Figure 12: The magnetoresitance of an 〈100〉 oriented Fe whisker sample
measured at 4.2 K. The fractional increase in resistance upon entering a
multidomain state is more than an order of magnitude. After Taylor et al.
[170].

The large changes were only observed for large currents, of the order of a
few Amperes flowing through a whisker of diameter a few hundred µm. The
Oersted field generated by these currents is strong enough to generate a
vortex-like domain structure along the length of the whisker at moderately
low fields. Key to understanding these structures is to note the very high de-
gree of crystallographic perfection in the whiskers (residual resistance ratios
of a few thousand are observed on cooling to helium temperatures), which
corresponds to mean free paths ∼ 10 µm. This means that the value ωcτ ∼ 1
for fields of the order of µ0M ≈ 2.2 T in the whiskers. Since the magnetore-
sistance for M ⊥ J is well-known to be much higher than for M || J, the
current-driven transition from a longitudinal flux-closed state to a transverse
vortex state causes the enormous increase in resistance. Although the large
changes in resistance are coupled to the domain structure, it is the ordinary
Kohler magnetoresistance that is the underlying mechanism. This effect was
further elucidated in Ref. 171 where applied stress was used to manipulate
the domain structure through the inverse magnetostriction effect.

A few years later some reports on experiments on thin films were pub-
lished. Anticipating many of the so-called “modern” experiments these stud-
ies used thin films with a perpendicular anisotropy, and hence a dense stripe
domain structure. Okamoto et al. studied Gd-Co alloy films [173], mea-
suring both the extraordinary Hall efffect and the magnetoresistance. They
concluded that the magnetoresistance of this system was closely related to
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the domain structure, although no attempt to separate different possible
mechanisms was made at this stage.

Two years later both this and another group published data on MnBi
films [174, 175]. Thin films of this material show a very large EHE and
a strong out-of-plane anisotropy, although this rapidly becomes weak upon
cooling the sample below room temperature[174]. In this experiment a mag-
netoresistance associated with the generation of walls roughly ten times larger
than that observed in Gd-Co. Masuda et al. [175] used a much thicker film of
MnBi (300 nm rather than 100 nm), and it is clear from the EHE hysteresis
loop they present that the sample took up a stripe domain state at rema-
nence. This group presented a model that could reproduce their results using
a modified form of the Kooy and Enz [108] model to calculate the details of
the stripe domain pattern as it varied with field. The basis of the model for
the magnetoresistance is the combination of the resitivity anisotropies associ-
ated with the hexagonal crystal structure and the ferromagnetism [176]. All
the stripe domains will be magnetised along the crystallographic c-axis, but
within the wall the local magnetisation direction must rotate away from this
axis. Using these assumptions the main features of the form of the experi-
mental magnetoresistance loop were recovered by the model – the resistivity
within the 11 nm thick walls was found to be ∼ 100 µΩcm higher than in
the domains, where the resistivity was ∼ 7000 µΩcm.

None of these experiments detected the actual domain wall resistance
itself, only other resistance effects that depend upon the domain state of
the sample: generally the first two terms on the right hand side of Eq. 10,
the ordinary and anisotropic magnetoresistances, which are modified by the
changes in the domain structure.

4.2 Theory

In this section various theoretical models describing the electrical resistance
of a domain wall will be described, in something approximating chronological
order. For a long while there was very little theoretical work on the resistance
of the domain walls as in general the signals were so small and experimentally
difficult to deconvolute from all the other galavanomagnetic effects present
in ferromagnets (Eq. 10): there was too little information to be able to
quantitatively test any model. It was not until the 1970s that serious efforts
to calculate the direct resistance associated with a domain wall were made.

One of the earliest to be published was the theory of Cabrera and Falicov
[177, 178]. The first of these papers dealt with the so-called ‘paramagnetic
effect’ of scattering due to an interaction with the electron spin, an effect
suitable for inclusion in the ρsdiff term of Eq. 10. The second deals with the
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‘diamagnetic effect’ of Lorentz force deflection of the electron orbits, which
is part of the ordinary ρ(B) in that equation. The first is the one which
will interest us most here. Remarkably, it seems that no-one attempted
a calculation of domain wall resistance until these authors did so in 1974,
although the idea of a spin-polarised current had existed for roughly forty
years at that time.

The basic thrust of the paramagnetic, spin-scattering model was the fol-
lowing. Electrons travelling in one domain will experience a different poten-
tial upon entering an oppositely magnetised domain since the band minimum
will differ by the exchange energy splitting. The basis of their model was to
calculate the reflection coefficients of the electronic wavefunctions at the po-
tential steps that domain walls will represent within this picture, as sketched
in Fig. 13. Spherical free electron-like Fermi surfaces were used, with rigidly
shifted parabolic bands. Two cases were considered: weak (2µBB0 ≪ EF)
and strong (2µBB0 ≈ EF) exchange splitting of the bands, defined by com-
paring the exchange energy 2µBB0 with the Fermi energy: B0 is the molecular
field, not a real magnetic field. In the case of weak splitting, the magnetore-
sistance of the wall ∆ρ/ρ ∼ exp(−πkFDζF), where D is the wall thickness
and ζF = µBB0/EF. By definition, for weak splitting ζF < 1, but for all
commonplace systems the Fermi wavelength 2π/kF is orders of magnitude
smaller than D. This implies a wall resistance that is vanishingly small, be-
cause of the exponential dependence. For the example of iron, 2π/kF is only
1 or 2 Å, depending on which band is in question, whilst the wall thickness
is some thousands of Å. This leads to a ∆ρ/ρ ≈ 10−4. The physical reason
for this is that waves are only scattered very much by potential steps that
are abrupt on the scale of the wavelength of that wave, as sketched in Fig.
13.

For strong splitting (ζF ≈ 1), it was found to be necessary to restrict
the calculation to a very narrow wall, viz. assume kFD ≪ 1. In prac-
tice this means atomic abruptness. In this case a variable v = kF↑/kF↓ =
(

g(EF↑)/g(EF↓)
)1/3

, trivially connected to the definitions of P in Eqs. 2 and
3, determines the DW resistance. The obvious relationship with the Stearns
definition of polarisation, Eq. 3, emphasises that the theory is essentially one
of tunnelling between one domain and the next. The DW resistance vanishes
as v → 1, as might be expected. As v → ∞ (equivalent to P → unity), the
material becomes half-metallic and the wall resistance also → ∞. A multi-
domain half-metal, with no opportunity for spin relaxation, is an insulator,
no matter how high σ is.

Cabrera and Falicov satisfied themselves that, once the diamagnetic Lorentz
force effects that give rise to additional resistance at the wall were prop-
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Figure 13: Spin-resolved potential profiles V↑,↓ and resulting wavefunctions
ψ↑,↓ at abrupt and wide (adiabatic) domain walls. The wavefunctions are
travelling from left to right. In the adiabatic case, the wavelengths of the
two wavefunctions are exchanged, but the change in potential energy is slow
enough that there is no change in the amplitude of the transmitted wave.
When the wall is abrupt the wavelength change is accompanied by substantial
reflection, resulting in a much lower transmitted amplitude (the reflected part
of the wavefunction is not shown). This gives rise to domain wall resistance.
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erly treated [178], their theory could account for the results found in the Fe
whiskers. However, it does not describe most cases encountered experimen-
tally because the condition of D . kF, necessary to generate a measurably
large signal, is never met. It probably was not in the whiskers, but the very
high degree of crystallographic perfection means that the diamagnetic am-
plification can take place. Even the best epitaxially grown thin films are far
more disordered than this, and so one has to rely on the wall thinness alone.
However, during the recent bout of activity in measuring ballistic nanocon-
tact structures (discussed in §4.4), the idea of an atomically abrupt wall has
often been used to explain the large effects that are observed.

Cabrera and Falicov commented in their concluding remarks of Ref. 177
that the rotating component of the magnetization within the wall “opens up
a channel for adiabatic spin change”. Luc Berger treated exactly this issue
in a theory that drew an analogy with the propagation of microwaves in a
twisted rectangular waveguide [179]. The polarisation of the microwaves is
easily rotated by the waveguide so long as the twist happens over a distance
appreciably greater than the wavelength. The principle is that slow enough
changes in a polarisation state (be it microwaves, spins etc.) can take place
adiabatically, so that the polarisation changes to a new direction without loss
of energy and without disruption of the propagation of the wave.

In this paper Berger treated the eddy current loops that run around each
wall caused by the Hall effect. The fields generated by the eddy currents ap-
ply a force to the walls that will tend to drag the whole domain structure in
the direction of the current drift velocity. Moreover, energy will be dissipated
by these eddy currents by the usual Joule heating mechanism. This dissipa-
tion will manifest itself as additional Ohmic resistance that will not appear
when the domain structure is removed, giving another mechanism that can
give rise to small magnetoresistances, with δρ/ρ ≈ C|β|2. In this formula β
is the tangent of the Hall angle and C is a coefficient taking into account the
geometry of the domain structure. For a stripe domain structure with the
current flowing perpendicularly through the walls, C = 1. Berger applied
this model to the experimental results on Gd-Co and MnBi of Okamoto et
al. [173, 174] and Masuda et al. [175]. He argued that the Masuda model,
where the resistivity anisotropy was used to make the wall a higher resistivity
phase, cannot be made to work except by assuming an unrealistically small
domain size, and proposed that this alternative mechanism can adequately
describe the results.

Berger also discussed the possible torques exerted on the moments within
the wall, which are proportional to the polarisation of the current. We shall
discuss such effects more extensively in §5. It is also interesting to note that
this paper represents the first suggestion that the interaction of a current
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with a magnetic domain wall can be used to measure the degree of spin-
polarisation of that current.

More recently Berger gave a new calculation where he showed that AMR
and planar Hall effects modify the electric field and current density distribu-
tions when domain walls are present in thin films - the example of permalloy
was used in a model calculation [180]. These give rise to detectable voltages.
In order to detect these effects the probes must be placed very close to the
domain walls, since much larger voltages are generated within the domains
themselves. Berger estimated the Néel wall thickness in such a film to be
55 nm, this implies probe positioning to better than at worst 10 nm. This
might be possible now with scanning probe methods – needle probe methods
such as those used to measure the Hall fields with a stripe domain sample
[181] do not have the necessary resolution.

In recent years the idea of an intrinsic wall resistance arising from the spin-
polarisation of the current has been returned to. Even small departures from
adiabaticity ought to give rise to effects which can be sought experimentally.
Two models were given by different groups predicting the magnitude of this
effect: one semi-classical and one more fully quantum mechanical.

The pseudo-Larmor precession of the electron spin around the rotating
exchange field in a wall was at the heart of a semi-classical model of domain
wall resistance given by Viret et al. [182], and was used to explain small
deviations from a pure AMR behaviour in the magnetoresistance of Ni and Co
thin films. As the spin enters the wall the local exchange exchange field will
begin to cant away from the spin direction. Suppose, for the sake of argument
that the majority spins are the highly conducting population. Majority spin
carriers will have a degree of minority character in the new rotated exchange
field, and will begin to undergo more rapid scattering. Minority spins will
begin to undergo slightly less rapid scattering, but upon adding the channels
in parallel the overall resistance will be slightly higher. Treating the spin
vector classically, the scattering rate varies linearly with the cosine of the
angle between the carrier spin and the local magnetisation, cos θs. The mean
free path was then written by Viret et al. as

ℓ(θs) =
ℓ

1 + P 2 + 2P cos θs

, (34)

where ℓ is the angle-averaged mean free path and P is the polarisation of the
current.

The additional resistance given by the wall can be derived from this ex-
pression by considering the angle of the spins as they pass through the wall.
As the spins deviate away from the local exchange field an extra resistance,
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Figure 14: Numerical simulation of the canting of the conduction electron
spin as it attempts to follow the local magnetisation during transversal of
the domain wall in the laboratory frame of reference. After Viret et al.[182]

given by
∆R

R
=

2P

(1 − P )2
(1 − 〈cos θs〉), (35)

will be measured per domain wall. The part of this formula that relates to
the polarisation P bears a very close similarity to the Julliere formula, Eq. 5.
An important feature of this formula is that the additional scattering caused
by the wall happens at a rate proprotional to the scattering in the uniformly
magnetised material, so that the magnetoresistance ratio is directly related
to the polarisation of the current.

Viret et al. estimated the angle needed in this formula by considering the
way that a spin will precess in a canted field. The small angle between spin
and magnetisation will give rise to a torque on the spin which will cause it
to precess around the moving exchange field. This precession will allow the
spin direction to track the local exchange field direction to a greater or lesser
extent depending on the timescales of the precession and the wall rotation.
As the electron traverses the wall of thickness D the exchange field will rotate
around it with an angular frequency ωwall = πvF/D. Meanwhile the Larmor
frequency of the spin in the canted exchange field is given by ωLarmor = J/~,
with J the exchange energy. The maximum angle θ0 will develop once every
Larmor precession and can be estimated as the angle that the exchange field
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rotates through in half a Larmor precession

θ0 =
π2

~vF⊥

EexchangeD
, (36)

which reduces to

θ0 =
2π~vF

EexchangeD
(37)

after averaging over the Fermi surface, assumed to be spherical. Since we have
assumed that ωLarmor > ωwall, θ0 will in general be small, so that sin θ0 ≈ θ0.
It then follows that the magnetoresistance within the wall can be written as

∆R

R
=

2P

(1 − P )2

( 2π~vF

Eexchange

)2 1

D2
. (38)

In practice the entire sample, both domains and walls, is measured. In order
to account for the dilution effect of the domains on the actual measured MR
it is necessary to multiply this result by D/d, where d is the average domain
size.

The following year, Levy and Zhang published a fully quantum mechan-
ical version of essentially this model [183]. The Hamiltonian they used is

H0 = −~
2∇2

2m
+ V (r) + Jσ · M̂(r), (39)

where V (r) is the non-magnetic periodic potential and σ is the carrier spin
vector. (We’ll use a notation where the other symbols will have the same
meanings as in the Viret model as far as possible.) This is the same Hamil-
tonian that is used to describe the GMR in magnetic multilayers and the
eigenstates of this Hamiltonian are referred to as the spin-dependent band
structures of ferromagnetic metals. Whenever the magnetisation is uniform
it is always possible to diagonalise this Hamiltonian along any chosen axis by
making a rotation of the spin operator σ to be parallel to M̂ , using the rota-
tion operator Rθ = exp(−i θ

2
n̂ ·σ), where n̂ represent the axis about which the

magnetisation rotates. For uniform magnetisation one can always recover a
Hamiltonian of the form

Hθ = R−1
θ H0Rθ = −~

2∇2

2m
+ V + Jσz. (40)

However when the magnetisation is not collinear, i.e. a domain wall is
present, then, rather than diagonalisation taking place, extra terms are gen-
erated in the Hamiltonian. This is because the rotation required is a function
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of position within the wall. Position and momentum are noncommuting vari-
ables and so the rotation operator will not commute with the kinetic energy.
Levy and Zhang found that

R−1
θ

~
2∇2

2m
Rθ =

~
2∇2

2m
+ Vpert, (41)

where the Vpert = R−1
θ [p2/2m,Rθ] contains terms in ∇θ and ∇2θ. This extra

term represents the perturbation of the wavefunctions due to the twisting of
the magnetisation in the wall. It does not have pure spin eigenstates, the
rotating exchange field in the wall mixes the spin channels, destroying any
highly conducting shunt channel. This is the source of extra resistance in the
wall.

Levy and Zhang evaluated this additional resistance using the Boltzmann
equation formalism for a simplified one-dimensional wall structure where
θ(x) = πx/D for 0 < x < D. For such a wall ∇2θ = 0, leaving Vpert =
(~2/2m)(σ · n̂)∇θ · p. Working up to first order in Vpert, additional terms
appear in the eigenstates of H0 + Vpert which have a leading coefficient of

ξ =
π~

2kF

4mDJ
, (42)

which represents departures from adiabaticity and is the spin-mixing pa-
rameter. (If the wall rotation is slow enough that perfect adiabaticity is
maintained then the spin channels remain completely decoupled.) To obtain
a large domain wall resistance it is necessary to make ξ as large as possible –
one way that this can be achieved is to have a narrow wall, since ξ ∼ 1/D. By
calculating the matrix elements of the perturbed wavefunctions with a stan-
dard spin-dependent scattering potential, two useful formulae were found.
These correspond to two basic measurement geometries, named after the
corresponding geometries for GMR measurements: current in wall (CIW)
where the current density lies in the wall plane; and current perpendicular
to the wall (CPW), where the current flow is normal to the wall. The for-
mulae give the magnetoresistance ratios of the wall in terms only of ξ and
the spin-resolved resistivities of the metal ρ↑ and ρ↓. The formulae are:

MRCIW =
ρCIW − ρ0

ρ0

=
ξ2

5

(ρ↑ − ρ↓)
2

ρ↑ρ↓
(43)

and

MRCPW =
ρCPW − ρ0

ρ0

= MRCIW

[

3 +
10
√
ρ↑ρ↓

ρ↑ − ρ↓

]

, (44)

where ρ−1
0 = ρ−1

↑ + ρ−1
↓ is the magnetically saturated resistivity of the metal.

In fact, it can be seen after some manipulations that the formulae actually
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depend only on the spin-asymmetry ratio α = ρ↓/ρ↑ [184], so that the MR
depends only on ξ and the polarisation of the current given by Eq. 8. This
model has been widely used since Eqs. 43 and 44 are so closely linked to
experimentally measureable quantities.

Both the Levy and Zhang quantum model and the Viret et al. semiclas-
sical model share some important features. In both cases the MR ratio is
independent of the overall scattering rate – it is the degree of spin-polarisation
of the current that determines the size of the effect, so one would desire that
this is large in order to obtain measurable effects. Also in both cases the
MR ratio within the wall is inversely proportional to the square of the wall
thickness, so that narrow walls are required to obtain a large MR. The length-
scale is set not by the randomisation of the momentum of the electrons by
scattering since the scattering rate is not important. Hence there is no need
for the electrons to traverse the wall in a ballistic manner, they may scatter
many times as they do so. It is set instead by the rate at which the spin of
the electrons can relax to track the changing magnetisation direction in the
sample.

Not all theories predict that the presence of a wall will increase resistance.
For instance the linear response theory of Tatara and Fukuyama describes
the manner in which the spatially inhomogeneous magnetization within the
wall can contribute to the decoherence of the electrons, reducing the quantum
contributions to the resistance [185]. This is predicted to be a measureable
effect in a sufficiently narrow nanowire, where the quantum part of the resis-
tance may dominate over the classical Boltzmann part. (Similar physics was
studied numerically by Jonkers [186].) The same authors used a similar for-
mula to treat magnetoresistance effects in mesoscopic spin-valve type devices
[187]. Tatara has also calculated the resistance of a domain wall based on the
Landauer formalism [188], and recovered the linear response result, at least
for a four-terminal measurement geometry. Using this formalism the density
of states in the sample and leads appears transparently in the formula for
the resistance. In a similar publication oscillations in conductance with mag-
netisation variations are predicted in mesoscopic systems by Lyanda-Geller,
Aleiner and Goldbart [189], due to geometric gauge and phase effects.

Like Levy and Zhang, Tatara and Fukuyama described their ferromagnet
as a simple two-band system. Real ferromagnets are complex multiband sys-
tems, and the use of a realistic band structure is needed to really describe
the electronic properties in detail. Brataas, Tatara and Bauer have treated
scattering in domain walls in the diffusive limit if transport for a multiband
system with a state dependent scattering lifetime [190]. A ballistic calcula-
tion, in the spirit of a model of band structure effects on the GMR [191], was
given by van Hoof et al. [192] using realistic band structures of Fe, Co and
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Ni. These two approaches were synthesized in a longer article by Brataas,
Tatara and Bauer [193]. In the ballistic case the predicted magnetoresis-
tances for a two band model are so small (∼ 1 part in 105) that experimental
deconvolution from other signals will be all but impossible. The use of re-
alistic d-band structures can enhance this effect substantially, up to sizable
fractions of a per cent change in resistivity. Calculations were also made for
the magnetoresistance of an atomically abrupt wall, which was found to be
several tens of per cent. In all cases it was found that domain walls increase
the resistivity.

In the diffusive case, some simple formulae are derived in different limits
by Brataas et al. [193] for normal incidence of the current density. A dia-
grammatic approach similar to that of Tatara and Fukuyama [185] is used,
and the Kubo formula is used to obtain the conductivity. For a small ex-
change splitting, the magnetoresistance of the wall is given as

∆R

R
≈ 3EwEF

20J2

(τ↑ − τ↓)
2

τ↑τ↓
, (45)

where the symbols used by Brataas et al, have been translated into those used
in the Levy-Zhang expressions, Eqs. 43 and 44. These expressions have a
great deal in common, although they are not identical: the magnetoresistance
∝ 1/J2, and does not depend on the overall scattering rate – only the ratio
τ↑/τ↓ is important. The wall energy term EW = ~

2
∑

q |a(q)|2/2m contains
the square of an inverse length related to the wall thickness, just as the
Levy-Zhang formula gives MR ∝ 1/D2.

For a very large exchange splitting, such as that found in a half-metallic
material, the magnetoresistance was given as

∆R

R
≈ Ew

µ

[ µ

2J
− 3

5

( µ

2J

)2(

1 − τ↑
τ↓

)]

, (46)

where µ is the chemical potential. Here the first term is additional intraband
scattering of majority spin carriers caused by the wall, whilst the second is so-
called virtual transport by minority carriers which can give rise to a negative
contribution when τ↓ > τ↑, although the total MR is always positive. Again
a 1/D2 proportionality is implied by the wall energy term. Using these
formulae Brataas et al. predicted a measureable signal in the diffusive case
for cases where the spin dependent lifetimes differ substantially.

An alternative approach was given by van Gorkom, Brataas and Bauer
[194], who estimated the change in resistivity within the Drude formula for
a change in magnetization, i.e. a redistribution in number density of carriers
from one spin channel to the other. In this model it is possible to obtain a
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domain wall resistance of either sign, depending on the ratio of the relaxation
times in the spin-↑ and spin-↓ channels. In practice these effects are likely to
be small, although changes in the local band structure in a domain wall in
Fe have been detected experimentally using spin-polarised STM techniques
[118].

Dugaev et al. have treated the problem of transport through a domain
wall taking full account of possible spin and charge accumulation [195]. A
proper description of the electron-electron interactions modifies these dis-
tributions, as they are screened off by the interacting electron gas. These
accumulation effects, shown in Fig. 15, modify the local transport parame-
ters at the wall such as relaxation times and spin-resolved conductivities.
Subsequently the same authors discussed how these effects will give rise to a
domain wall resistance [196, 197]. Dzero et al. also looked at the role of spin
accumulation in generating domain wall resistance (in the limit of a ballistic
wall) and found even-odd effects in the number of walls in a nanowire, so
long as all the walls are within a spin diffusion length of their neighbours
[198]. This type of spin accumulation was put forward as a possible expla-
nation for the very large MR observed by Ebels et al. in a Co nanowire [90],
although the calculation of S̆imánek showed that a large part of the spin-
accumulation is suppressed by the spin tracking the rotating magnetisation
[199]. (Dzero et al. also examined the depolarising effects of a wall–either
Bloch or Néel–of finite thickness and found that the results of Ebels et al.
could not be explained by their theory: as a result they proposed a new type
of wall geometry, which they dubbed the linear wall, details of which remain
unpublished.) The same formalism was used by these authors to look at the
effects of laterally constraining the system in a nanojunction geoemtry: large
magnetoresistances were found [200]. To examine very thin walls, it is nec-
essary to cross over to a scattering matrix approach [201], where even larger
effects were predicted – the development of these models was in response
to the very large MR effects found in nanocontacts of the type that we will
discuss in §4.4.

The problem of an ab initio calculation of domain wall resistance is a
difficult one, involving as it does a non-collinear spin structure, hence all the
theories discussed up to this point have taken a phenomenological point-of-
view to a greater or lesser extent. Gallego et al. have built upon a detailed
calculation of the band structure of NiFe alloys [202] to perform first princi-
ples calculations of the structure and resistivity of domain walls in walls in
an alloy close to the permalloy composition: fcc Ni85Fe15 [203]. The Kubo-
Greenwood formula was used to determine the conductivity tensor: compar-
isons of σxx and σyy then naturally contain information about the AMR in
the material: these authors found that the wall resistivity was higher (up to
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Figure 15: The calculated spin (left panel) and charge (right panel) accumu-
lation at a domain wall for different values of the spin coupling constant. The
spin coupling constant gs is given in units of erg

1

2 cm
3

2 , whilst L is the char-
acteristic Landau-Lifschitz wall width. Due to screening effects and charge
conservation, the integrated charge at the wall vanishes. After Dugaev et al.
[195].

a factor of ∼ 2 for unrealistically thin walls) than in a uniformly magnetised
state for all geometries and wall thicknesses, whilst the AMR is substantially
reduced within a wall – roughly an order of magnitude less.

The geometry of a narrow wire is a common one for many calculations.
For instance, Bergeret, Volkov, and Efetov presented a quasiclassical, ma-
terials independent model for calculating the conductance changes due to a
domain wall in a mesoscopic magnetic wire [204]. They considered both the
cases of a thin and a thick wall in the diffusive limit, which can also be viewed
as the cases of weak or strong exchange: the significant ratio is J/(D/D2),
where J is the strength of the exchange field, D is the diffusion constant and
D is the thickness of the wall. In the weak exchange/narrow wall limit, the
conductance can be calculated for any wall profile, and is found to always be
larger than for an abrupt wall but less than a uniformly magnetised state.
In the strong exchange/wide wall limit, the wall is still found to always be
a source of additional resistance, with the excess conductance ∼ 1/w2, as in
the Levy-Zhang picture. Again the magnetoresistance ratio depends only on
the spin polarisation of the current.

Yavorsky, Mertig, et al. modelled the effect of non-collinear magnetisation
in single crystal Fe using ab initio band structure calculations to provide
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input to a linearised Boltzmann equation [205]. Narrow walls of less than 10
monolayer thickness were required to give an appreciable MR in this system,
much thinner than in typical bulk Fe. In a similar study, the Landauer-
Büttiker approach to calculating the conductivity was used to treat band
structures for fcc crystals of elemental ferromagnets by Kudrnovský et al.
[206]. Again, only walls a few monolayers thick showed a large effect. A free
electron, empty sphere, model was used as a reference which reproduced the
1/D2 domain wall thickness dependence, but for the realistic band structures,
other results were found: in Ni the DWMR goes as 1/D, whilst in Co a
1/D1.3 dependence was computed. These results were generated for clean
crystals, and so are essentially in the ballistic regime. Disorder was studied
using lateral supercells: Co doped with 16 per cent Cu (non-magnetic), Ni
(parallel moments to the Co matrix) and Cr (antiparallel moments). In all
cases the conductance drops when a domain wall is present, and the drops
are most substantial for the magnetic impurities, regardless of the coupling
of the moment. In the extreme one-dimensional limit of a nanowire at low
temperatures, where a Luttinger liquid picture must be used, Pereira and
Miranda predict that the introduction of a domain wall can switch a ballistic
conductor into a spin-charge insulating state [207].

Koma and Yamanaka reported an interpretation of results published on
DWMR measured in nanowire geometries (a specific example they cite is
that of Otani et al., reference 208), based on the novel principle of the cur-
rent distribution taking the form that leads to minimum heat generation in
the wire. They looked in detail at the interaction of domain wall pinning
potentials and electron scattering potentials [209]. For instance, the pres-
ence of a wall at the position of a certain impurity scattering potential may
decrease the overall scattering at that point – in this case it is favourable
from the point of view of heat generation for the wall to occupy that site
when a current flows. It is the same structural defects that give rise to both
the electron scattering and also the pinning of a domain wall. If the wall
occupies a pinning site that happens to be associated with strong scattering,
the local temperature will be high, and it will be able to fluctuate to a po-
sition where the scattering is less. This principle is able to explain why the
presence of a wall might increase the conductivity, although other, extrinsic
effects are not considered. There are also some interesting corollories of these
ideas, for instance a depression of the Curie point under current flow. The
interaction of walls with pinning potentials was also addressed by Nakamura
and Nonoyama [210]. The trapping of a wall in a pinning site will reduce the
degree of spin fluctuation around it, suppressing of the increase in resistance
that might otherwise arise.

The more complex geometry of a zigzag wire was treated by Zhang and
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Xiong: a micromagnetic model was used to determine the equilibrium domain
structures, which can be controlled by the direction of the external field,
followed by a transfer matrix approach to calculation of the zero temperature
conductance [211]. The use of a micromagnetic model was an important
advance, as this meant that it is no longer necessary to make the drastic
simplifications in the form of the domain wall that most analytical theories
do: although as with all numerical techniques, there is a certain loss of
physical transparency. The mechanism of domain wall resistance was found
to be spin channel mixing (just as for the Viret [182] and Levy-Zhang [183]
models), but there was a less simple dependence on the thickness of the
domain wall. An increase in conductance is found for very thin walls, whilst
conductance is reduced for thicker walls – naturally this leads to a crossover
thickness where the presence of the wall has no effect on conduction. The
final results were in accord with experimental findings in a Co zigzag wire
[212, 213], where negative domain wall magnetoresistance was observed.

Gopar et al. examined the quantum wire geometry within a two-band
model in order to examine carefully the degree of adiabaticity in the spins
traversing the wall [214]. The important parameter was the longitudinal
kinetic energy of the electron: for low values of this energy (as compared to
the exchange splitting in the ferromagnet) the process is almost adiabatic.
Only electrons with a longitudinal energy large compared to the exchange
will show significant scattering at the wall due to spin mistracking. This
provides a justification for only considering carriers with velocity vF in the
derivation of Eq. 38 [182]. Extending this work, Falloon et al. have made
use of the magnetoelectronic circuit theory of Brataas, Nazarov, and Bauer
[215, 216] to examine both the domain wall magnetoresitance and the spin-
transfer torque at a domain wall [217]. The latter will be dealt with in §5.
They derive the following formula for the magnetoresistance of a single wall
in a wire

MR =
ℓsd +D/2

Lwire

2P 2

1 − P 2

1 − f

1 + γf
, (47)

where Lwire is the length of the wire, γ is the ratio of sum of the spin resolved
resistances R↑ +R↓ to the ballistic resistance of the wire R0 = h/Ne2, and f
is the fraction of spin flip scattering. This last term accounts for the degree
of adiabaticity. The first term simply gives the dilution of the signal for a
long wire containing uniformly magnetised domains separated by the wall
which will not contribute to the MR signal. The relationship of the central
term containing the polarisation P to the Julliere formula for tunnelling (Eq.
5) and the Viret semiclassical formula for the domain wall MR (Eq. 38) is
striking. An order-of-magnitude agreement with the results of Ebels et al.
[90] was achieved for a reasonable choice of the various parameters.

52



Returning to ferromagnetic semiconductors, a domain wall in such a ma-
terial may not simply be a source of resistance: it can give rise to non-linear
transport similar to that observed in a p-n diode [218]. Vignale and Flatté
make their calculation using expressions very similar to the conventional
Schockley formulae. This result makes strikingly clear the analogy between
spin-↑ and ↓ carriers in these materials and electrons and holes in conven-
tional materials.

It is clear that the problem of domain wall resistance – simply stated but
difficult to solve – has an obvious appeal to theorists, with many different
models and mechanisms proposed, and a wide variety of different results ob-
tained from them. The predictions are diverse: even the sign of the effect
is not clear. Experiments are obviously necessary to decide which models
are the more accurate descriptions of the effects that actually obtain to real
systems. Recent experimental progress is reviewed in the next section. Nev-
ertheless, it will perhaps be helpful to make a short summary of this section
on theory before moving on. Of all the theories that have been presented, the
spin mistracking models of Viret [182] and Levy and Zhang [183] were dwelt
on in some detail. That is because this physical picture was based on the
models of giant magnetoresistance that were convincingly established in the
early years of the 1990s. Both models predict a rise in resistivity when the
magnetisation becomes non-uniform, that this rise is proportional to the sat-
urated resistivity (so that ∆ρ/ρ is independent of the overall scattering rate),
and that the rise is larger for higher current polarisations and narrower walls.
As we shall see the experimental picture is superficially rather murky, with
many reports of measurements of resistance changes associated with domain
walls, but only a few experiments succeeded in truly detecting the intrinsic
domain wall resistance that the theories seek to describe. Amongst this set
of results there is a degree of consistency. In the view of the author, all of
this subset of experimental results can be convincingly interpreted within the
spin mistracking model, and lend strong support to it. Let us now move on to
review the large number of experimental results that have recently appeared
in the literature.

4.3 Recent experimental results

There has been an explosion of interest in the transport properties of do-
main walls in roughly the last decade. In this rather lengthy section, the
various experimental results obtained by the various groups involved will be
reviewed. As there is a great deal of relevant literature to be discussed, the
material has been broken into three sections: results on homogeneous thin
film samples; results from multilayer heterostructures; and finally results
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from mesoscopic samples where the film in question has been patterned into
a nanoscale device, the small size of which has an effect on either the mag-
netic domain structure or the transport properties – or both. A discussion
of the growing volume of literature describing the work on magnetic point
contacts is deferred until §4.4.

4.3.1 Homogeneous materials

In this section we will review recent results on thin film samples which are
neither patterned to mesoscopic dimensions nor contain complex multilayer
heterostructures. All the results show a increase of resistivity when domain
walls are introduced.

The semiclassical model of Viret et al. given above was accompanied by
experimental data on polycrystalline, in-plane magnetised Co and Ni films
in the first “modern” study of domain wall resistance [182]. Due to the com-
paratively wide walls in these materials (15 nm in Co and 100 nm for Ni were
assumed) and also the very large typical domain sizes (4 µm in Co and 50
µm in Ni) the measured signals are rather small – the magnetoresistance is
dominated by the AMR. The symmetry properties of this effect were used
to subtract it from the measured signal: it can be seen from Eq. 10 that the
AMR ∼ cos2 θ, where θ is the angle between M and J. A pair of measure-
ments were performed where the current flow is along and across the field
direction, which must be carefully chosen so that magnetic anisotropies in
the sample do not affect the reversal mechanism. These will generate AMR
signals that are ∝ cos2 θ, and ∝ sin2 θ respectively. If there is no other effect
than AMR in the sample these two terms should add to a constant. Any
deviations from this reveal a magnetoresistance of other origin: in the mea-
surement of Viret et al. a small (∼ 10−5) effect was found for the entire film,
including the effect of domain dilution. This is due to the fact that the walls
only occupy a small volume fraction of the film, and so one must account for
this volume fraction when calculating the total MR that will be measured.
An order of magnitude agreement was found between the experimental re-
sults and the model encapsulated in Eq. 38, as well as the fact that the Ni
signal was slightly higher than that of Co. The data obtained for the Co film
is displayed in Fig. 16.

In the same year, a related group of authors published results on the MR
of a single epitaxial film of (0001) hcp Co that had a magnetic easy axis
along its crystallographic c axis, normal to the film plane [219, 220]. This
lead to a dense stripe domain state, with a large number of Bloch walls pass-
ing through the film. One might anticipate that this is a favourable state for
the observation of a domain wall MR signal, as the walls are comparatively
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Figure 16: On the left, magnetoresistance measurements in longitudinal (ρ||)
and transverse (ρ⊥) geometries for a 28 nm thick Co film. The peaks occur at
±Hc. On the right, the domain-wall-scattering induced resistivity obtained
by adding transverse and longitudinal magnetoresistance curves. The very
small signal is due to the dilution caused by the small volume fraction of the
sample occupied by the domains. After Viret et al. [182].

narrow, and the effects of dilution will not be so great as in the previous
in-plane magnetised case. Indeed, an resistivity reduction of ∼ 1 per cent
was measured when a perpendicular field large enough to saturate the film
was applied. In this case the authors claimed that since they are able to
prepare a stripe domain state it is possible to arrange that the current will
flow perpendicularly through every wall, and since they are Bloch walls the
magnetisation will always be orthogonal to the current direction, precluding
the presence of any AMR contribution to the measured signal. With hind-
sight it is possible to find two flawed assumptions in this argument. In the
original paper the MR signal did not depend on whether or not the special
in-plane demagnetising procedure required to obtain the well-aligned stripe
state had been carried out. In the isotropic maze domain pattern that was
more usually obtained the current will be flowing along, not normal to, half
of the walls on average, giving rise to a resistivity enhancement through the
usual AMR mechanism, as in these regions M and J will be parallel to one
another. This enhancement will be removed when the film is brought into a
saturated perpendicular state.

Moreover, the assumption that the walls have a perfect Bloch character is
also hard to justify. The Q factor of the Co films was in fact only ∼ 0.35, not
high enough to prevent the formation of Néel caps that occupy a substantial
fraction of the height of the film (see §3.1.3), as demonstrated experimentally
using ferromagnetic resonance by Ebels et al. [221]. These caps will introduce
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a resistivity enhancement through the AMR even in the fully aligned stripe
state. A thorough study of the micromagnetics and related MR of epitaxial
Co films by Rüdiger et al., that will be discussed in more detail in §4.3.3,
showed that there is in fact no discernible domain wall MR in this system,
and the measured signal is in fact related to the AMR that occurs in the Néel
caps [222]. This interpretation was also questioned by Knittel and Hartmann,
who claimed that it is necessary to take into account surface scattering to
explain the temperature dependence of the MR in these films [223], followed
up with a later experimental study of permalloy [224]. Nevertheless it was
the original, albeit misinterpreted results, that inspired the model of Levy
and Zhang [183], subsequently supported by many other experimental results
in more controlled geometries.

Much higher Q factors are required to unambiguously remove the AMR
signal in this geometry: Q > 1 is the the minimum requirement. Klein et
al. measured the MR of thin films of SrRuO3 with a Q factor exceeding
10 [225]. This is due to the huge magnetocrystalline anisotropy possessed
by this material, a metallic perovskite and 4d itinerant ferromagnet with a
Curie point of ∼ 150 K. Again a well-defined stripe domain structure was
obtained, which was extensively characterised by Lorentz mode transmission
electron microscopy [226]. In this case the very high value of Q meant that
the walls had a very pure Bloch character, and one can be confident that
the AMR signal will be small. Again a stripe domain state was obtained,
and the sample was patterned into an L-shape in order to have arms where
the current flows parallel and perpendicular to the stripe domains. The
wall MR could then be measured, shown in Fig. 17. Complex and differing
temperature dependences for the two directions were observed, although in
both cases the DW resistivity dropped abruptly at the Curie point of the
material. The domain wall thickness was estimated to be only 3 nm due to
the very high anisotropy, and so large effects are to be expected. Indeed, after
domain dilution had been taken into account, the low temperature resistivity
presented by a wall to a perpendicular current is ∼ 35 µΩcm, very high when
compared with the ∼ 5 µΩcm resistivity of the saturated film. Klein et al.,
not unreasonably, questioned whether the models based on wide walls and
spin tracking can describe results where the wall is so thin. It is clear that
this is a borderline case, as the 30 Å wall width will still be much larger than
the Fermi wavelength, and so the Cabrera and Falicov abrupt wall picture
[177] will fail to predict the ∼ 600 per cent effect that was observed. Treating
the wall as an abrupt interface within the Barnaś and Fert model [227] for
scattering at a magnetic interface yields an interfacial specific resistance ∼ 1
fΩm2, just what was measured. In a follow-up paper the same group of
authors examined the effect of domain dilution by cooling the sample in
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Figure 17: Hysteresis loops of resistivity vs. applied field for current parallel
and perpendicular to the domain walls at T = 5 K. At the starting point with
H = 0 (marked by full circle), the sample is in its domain structure. The Q-
factor of this domain structure exceeds 10. Increasing the field annihilates the
DW, and when the field is set back to zero the magnetisation of the sample
remains saturated. The difference between the initial zero-field resistivity
and the subsequent zerofield resistivities is identified as the domain wall
resistivity. After Klein et al. [225].

different fields to obtain different stripe widths [228] – the wall thickness
is a material specific quantity and will not be changed. They found that
the temperature dependence of the domain wall MR in the perpendicular
current geometry was simply diluted to a greater or lesser degree, indicating
that the scattering at different walls is uncorrelated. However, in the parallel
geometry the simple dilution picture fails. The details of the mechanism of
the MR in this geometry remain a challenge to current theory. Some steps
towards unravelling it were taken by Feigenson et al., who reported on the
angular dependence of domain wall MR in SrRuO3 [229]. Transport stripes
were patterned from films with stripe domains at several different angles on
a single substrate, and the results interpreted in terms of spin accumulation
and potential step contributions. The spin accumulation signal was found
to vary as sin2 θ, whilst the parameter representing the potential step part
showed a strange oscillatory behaviour that was reproduced between samples.

Another material shown to display a very large magnetoresistance is
the manganite Pr2/3Sr1/3MnO3 [230], which may be grown epitaxially on
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(001) LaAlO3 to provide a compressive strain that yields an out-of-plane
anisotropy. The same material grown on (001) SrTiO3 or (110) NdGaO3

gives lattice matched or tensile strain respectively, which leads to an in-
plane magnetisation and a small MR. The wall thickness in this material is
estimated to be 6-8 nm, and under suitable field preparation conditions a
dense domain pattern can be observed. This leads to a large MR ratio in
thin films that is as high as ∼ 400 per cent in a 6 nm film at 50 K. Oddly, the
effect is much smaller at both higher and lower temperatures. The thickness
dependence in this material is intriguing: huge effects are found for films
in the nm range, whilst a 20 nm thick film showed at most a few per cent
MR [231]. The thinner films show a lower conductivity, but reducing the
conductivity of a thicker film by changing the doping does not increase the
MR, indicating that it is probably not the carrier density that causes the
effect. Thin films might give rise to more scattering site defects, but it is not
clear why these should give rise to huge magnetoresistances. La0.7Sr0.3MnO3

(LSMO) films were studied by Wu et al. [232] in various strained states.
In thin films of LSMO on (100) LaAlO3, the strain-induced perpendicular
magnetic anisotropy gives rise to stripe domains on a ∼ 200 nm lengthscale,
imaged by MFM, which give rise to a contribution to the resistance that,
whilst small, is still larger than would be anticipated from double exchange
theory.

Atomically abrupt changes in magnetisation direction occur at antiphase
boundaries in Fe3O4, where adjacent sites are antiferromagnetically coupled
– shown in Fig. 18. These can give rise to magnetoresistive effects, which
have been measured and modelled by Eerenstein et al. [233]. The difficulty
in this system is in obtaining a saturated state, since the application of a
field will not overcome the antiferromagnetic exchange, leading to a twisted
spin state near to the boundary, so the magnetoresistance will not saturate
at any field that can be applied in the laboratory. Effects of the order of
around 10 per cent were measured in a field of 5 T at 125 K, and the details
of the shape of the curve with field were accurately reproduced by a simple
one-dimensional micromagnetic model that can be solved analytically.

It is also possible to find transition metal systems with Q factors that
exceed unity: two that have been studied are the materials FePd and FePt
with the L10 crystallographic structure. These are ordered alloys with the
same structure as CuAu(I): alternating planes of Fe and Pd or Pt on a
slightly tetragonal face centred lattice, and have very similar properties. (At
present we will restrict our discussion to results for FePd, although we will
examine some results from FePt in §4.3.3.) This lattice structure results in
a very strong uniaxial magnetocrystalline anisotropy along the tetragonal
axis, normal to the planes of atoms [234, 235]. Such materials can be grown
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Figure 18: Spin orientation of two ferromagnetic chains with antiferromag-
netic coupling at an atomically sharp boundary subject to a magnetic field.
After Eerenstein et al. [233].

epitaxially on (001) MgO with the tetragonal axis normal to the film plane,
giving rise to a dense stripe domain pattern with Q factors of the order of 2
[236].

The first measurements of magnetoresistance of L10 FePd films were made
by Ravelosona et al. [237]. The dense domain structure and narrow walls in
these highQ films means that the resistance of the whole film is ∼ 0.6 per cent
higher when the domain structure is present, exceeding the AMR. After ac-
counting for dilution (using estimated wall widths of 10 nm) the domain wall
MR is ∼ 6 per cent at helium temperatures, decreasing to about 2 per cent
at 200 K. Ravelosona et al. made estimates of the relevant parameters in the
Levy-Zhang theory [183] and found at least order-of-magnitude agreement,
in particular noting that the ratio α = ρ↓/ρ↑ extracted varies from roughly
5 at 200 K to 20 4.2 K. This is the first experimental measurement of α by
a DW scattering technique. Subsequent similar measurements of the same
material by Marrows and Dalton [184] that included a more detailed micro-
magnetic analysis of the temperature dependent domain size and wall thick-
ness, but using essentially the same interpretation of the Levy-Zhang theory,
produced fuller temperature dependence for α. The Levy-Zhang model does
not include spin-flip scattering (there is no term for ρ↑↓(↓↑)) and so what is
measured in both cases is some “effective” value for α that takes account
of all scattering processes. Ravelosona et al. concluded that their results
were consistent with the temperature dependent part of the resistivity being
spin independent (consistent with the findings of Fert in pure Fe [238]). In
the later work the power law for this part of the scattering was found to
be consistent with this scattering being dominated by magnon scattering in
this particular material – this conclusion is supported by both the overall
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Figure 19: MR of a L10 ordered film of FePd at 4.2 K. a) complete hysteresis
loop, and b) detail of the positive branch. The inset to panel b) indicates
schematically the wall motion as the field is varied. The slight decrease of
the resistivity above HN is probably due to magnon damping: an increase in
M above Msat caused by the applied field. This is an updated version, with
a correctly labelled ordinate, of a Figure first published by Ravelosona et al.
in Reference 237.

ρ(T ) ∼ T 2 behaviour of the resistivity over a wide temperature range and
the high field MR in the paraprocess [57].

In both the previous measurements an average over the CIW and CPW
geometries in the Levy-Zhang model was made to take proper account of
the isotropic labyrinth form that the stripe domains take in such a sample
after demagnetisation in a vertical field. Viret et al. measured separately
the CIW and CPW contributions [113] by taking advantage of the fact that
under certain growth conditions [239] a virgin state with well aligned stripe
domains along a particular direction can be obtained. By patterning the
sample into a so-call Union Jack geometry, it was possible to measure the
MR in both of two orthogonal directions during a field sweep. During the
virgin branch of the curve these were found to differ as they correspond to
the CIW and CPW geometries: they are almost identical after saturation
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as the sample returns to an isotropic domain state after saturation. The
difference allowed Viret et al. to experimentally determine the difference
in domain wall MR for the two geometries and found it to be 8.2 per cent
for CPW and 1.3 per cent for CIW. This asymmetry is consistent with the
Levy-Zhang model for a value of α of about 10, and represents an important
experimental verification of the theory. This ratio of CPW/CIW MR was
disputed by Snowden et al. [240] using a Ni film, but the lack of details of
the micromagnetic state of that sample make it difficult to judge the level of
concern that this should raise.

4.3.2 Heterostructures

One way that thin walls of controllable thickness can be produced experi-
mentally is through the use of hard-soft multilayer exchange spring systems.
These may be conveniently grown as multilayer stacks, giving walls at every
interface when the soft component is magnetically reversed, although the
matter is then complicated by the presence of scattering at the magnetic in-
terface. As the reverse field is increased the wall is wound increasingly tightly
against the interface until finally the coercive field of the hard component is
reached, and a magnetically saturated state is recovered. A variation on this
theme is the domain wall junction trilayer [241], where a wall is compressed
against an artificial energy barrier. This fact that the wall thickness can be
changed by varying the applied field opens up a useful additional degree of
freedom that can be exploited experimentally. One of the first studies to
make use of this geometry was made by Mibu et al. [242] using SmCo/NiFe.
The measured signal in this system was dominated by the AMR, with the
MR from domain walls being less than 0.1 per cent. This was due to the
fact that the walls in the exchange spring cannot be wound very tightly as
the coercive field of the hard SmCo layers was only ∼ 0.25 T, giving wall
thicknesses in the NiFe of 30 nm. This is much less than in a sheet NiFe film,
where values of a micron might be expected, but compares poorly with the
high Q stripe domain materials discussed in the previous section.

A route out of this impasse is offered by selecting a pair of hard and
soft magnetic materials that will exchange couple antiferromagnetically – a
scheme reminiscent of the antiphase boundary in magnetite [233]. Gordeev
et al. have studied the magnetoresistance of epitaxially grown DyFe2/YFe2

multilayers [243]. In the magnetically hard DyFe2, the Dy and Fe moments
will couple antiferromagnetically, giving a ferrimagnetic material: this is com-
monplace for the coupling between a heavy 4f and a 3d moment in alloys.
The net magnetisation was parallel to the very large Dy moments (∼ 10
µB/atom). The coercive field of this hard ferrimagnet was somewhat in ex-
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cess of 1 T. The Fe moments in both layers will be ferromagnetically aligned,
so that the overall result was a soft YFe2 film antiferromagnetically aligned
to a much larger, and harder, DyFe2 moment in the neighbouring layers.
The structure remained in a collinear antiferromagnetic state up to an ap-
plied field termed the bending field, where the central portion of the softer
YFe2 began to rotate. This was ∼ 7 T at 100 K in the [45 Å DyFe2/55 Å
YFe2] ×40 multilayer in question. As the field was increased beyond this
point the DyFe2 layer magnetisation was held more and more rigidly by it,
whilst the rotated region in the centre of the YFe2 spread, squeezing the
exchange spring planar domain walls more and more tightly against the in-
terfaces. Using a micromagnetic theory of these discrete exchange springs
[244], wall thicknesses as narrow as about 2 nm were obtained at the highest
fields probed, 23 T. At this field a measured magnetoresistance of 12 per cent
was achieved with the current flowing in the plane of the layers. This was
equivalent to a 32 per cent magnetoresistance within the walls using a simple
parallel resistor model. Example magnetisation and magnetoresistance data
for this system are displayed in Fig. 20. The field dependence of the MR was
well described by a combination of the micromagnetic model to predict the
wall width, combined with the Levy-Zhang model of the CIW domain wall
MR, confirming the wall thickness dependence of 1/D2 in that theory.

Of course it is natural to wish to drive the current through the exchange
spring walls in a current-perpendicular-to-the-plane (CPP) geometry. This is
what has been done by Prieto et al. using NiFe/Gd/NiFe trilayers patterned
into pillars [245]. At room temperature the Gd will be barely magnetised at
all (the Curie temperature is 293 K) and so the NiFe layers will adopt a flux-
closed antiparallel configuration. As the sample is cooled the moment of the
Gd will grow until it becomes possible for the NiFe layers to take up a parallel
configuration with all the flux closed through the Gd layer. For thin Gd (2
nm) this transition in magnetic state did not take place until ∼ 70 K. Above
the transition temperature the Gd will be ferromagnetic, but must have its
magnetisation oppositely directed at each of the two interfaces in order to
satisfy the exchange coupling with the two antiparallel NiFe layers. In this
way a 180◦ domain wall was generated in the Gd where the magnetisation
rotates over exactly the thickness of the layer.

The MR of these devices was measured using ∼ 103 devices connected
in series to provide a large voltage signal. The MR of the devices was com-
plex, with multiple hysteretic peaks appearing during the field sweep. Only
certain peaks showed the proper temperature dependence that would be as-
sociated with domain wall effects: the others are ascribed to a spin-valve
effect between the two NiFe layers as they re-orient from parallel to antipar-
allel. Estimates of the MR due the wall in the Gd give ∆ρ/ρ ratios that
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Figure 20: Magnetisation M/Msat and magnetoresistance ratio ∆R/R, for a
current parallel to Bapp, for the superlattice [60 ÅDyFe2/40 ÅYFe2] ×40 at
a temperature of 200 K. Insets show the simulated spin arrangements. After
Gordeev et al. [243].

are ∼ 23 per cent for the 4 nm layer and ∼ 31 per cent for the 2 nm layer.
These were compared to the Levy-Zhang model [183], which gives predictions
of the same order of magnitude for reasonable assumptions about the band
structure parameters appropriate for Gd. The value of MR for the thinner (2
nm) Gd layer is too small, both in terms of the estimates of the model, and
applying a straightforward 1/D2 scaling to the 4 nm result. As the authors
wrote, it seems likely that this is due to a certain fraction of the spin spiral
actually being taken up by the NiFe layers.

Prieto et al. have also studied the Fe/Gd multilayers to investigate the
scattering at the interfaces, where the Gd and Fe magnetisations will be
oppositely directed due the antiferromagnetic exchange there [246]: a very
similar magnetic structure to the antiphase boundaries in Fe3O4 [233]. Just
as in the DyFe2/YFe2 multilayers [243], in-plane spring domain walls can
be formed, although it was found that these played a rather minor role in
the transport in this particular case. The MR was predicted based on the
Valet-Fert model [76], with the angle between the Fe and Gd moments at
the interface based on a simple micromagnetic model. A comparison of this
with the measured MR signal showed that only the case of rather thick (30
nm) Gd and Fe layers, where substantial twists in the magnetisation can be
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built up on both sides of the interface, exhibited any additional signal that
could be attributed to the spring walls. In an extension of this experiment,
the same group have gone on to study a series of Gd/TM multilayers, where
the TM layer was either Fe, Co, Ni, Fe/Co/Fe, or Fe/Ni/Fe, as well as in
CoxGd1−x/CoyGd1−y multilayers in the CPP geometry [247]. In none of these
cases was it possible to discern a signal that could be attributed to anything
other than angle-dependent interface resistance or the ordinary Lorentz force
MR, even though wall widths of just a few nm are achieved in both the Gd
and TM layers. The interpretation of these results offered by the authors is
that the DW separates regions of parallel magnetisation in these systems, so
that the wall just represents a barrier that the spins may be scattered at.
The idea that this is fundamentally different to wall separating oppositely
magnetised domains carries with it the idea that spin-accumulation of spins
that are injected into an oppositely polarised domain may be a source of
much of the MR in these systems.

The magnetoresistance of both types of domain spring systems (with
ferromagnetic or antiferromagnetic exchange at the interface) was modelled
numerically by Inoue et al. using a single band tight-binding model and
the Kubo-Landauer formula [248, 249]. The model included both the MR
associated with a change in angle of the moments at the interface, which these
authors call the contact MR, as well as diffusive effects within the domain
walls. Whilst this diffusive resistance always acts to increase resistivity, the
contact resistance may give effects of either sign depending on the details of
the mismatch in the band structures of the two different ferromagnets. These
effects can combine to give rise to a change in sign of the MR as the wall
thickness is changed by the applied field, observed experimentally by Nagura
et al. [250]. The numerical results reproduce the 1/D2 dependence of the
MR on the wall thickness predicted by the analytical theories.

Before moving on, it is interesting to consider the domain wall resistance
detected in antiferromagnetically coupled Fe/Cr multilayers by Aliev et al.
at low temperatures [251]. These multilayers show a small MR at low field
that these authors argue is related to the non-uniformity of the magnetic
structure – at low temperatures this manifests itself as a small, hysteretic
additional contribution to the resistivity with a T 0.7 power law dependence
on temperature. It was shown to be possible to achieve a good fit to the data
assuming that the DWs in this system contribute to the resistivity through
an antilocalisation effect, similar in nature, though opposite in sign to, the
theories of Tatara and Fukuyama [185] and Lyanda-Geller et al. [189].
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4.3.3 Mesoscopic devices

By far the greatest number of experimental reports concern studies of domain
wall effects in mesoscopic devices prepared by lithographic means. Such
structures are convenient for both the controlled injection and placement of
walls as well as providing well-defined transport measurement geometries.

Ground-breaking work on mesoscopic magnetic wires was done by the
Giordano group at Purdue, on very narrow wires that were fabricated by
a so-called step edge technique [252]. This method uses conventional pho-
tolithography to etch terraces into e.g. a glass substrate, which can then
be used as either etch masks or templates for oblique incidence ion beams
or evaporated flux of metal, which allows wires with diameters of only a
few tens of nm to be formed. These are suitable for localisation studies, for
instance[253]. The initial interest in measuring the effects of domain walls in
these wires was to perform micromagnetometry: such tiny objects cannot be
measured using conventional magnetometers, but are easily probed by trans-
port techniques. The ability to detect and measure magnetisation reversal
with an electrical measurement is extremely useful in this regard.

The first experiments on magnetic wires investigated Ni structures with
diameters down to 315 Å in size [254]. Dips in the resistance occurred at
∼ 130 Oe (at 11.2 K), interpreted as the coercive field of the wire, shown
in Fig. 21. The R(H) curve also showed reproducible jumps and rough-
ness, Barkhausen features associated with domain wall pinning and motion.
Although the temperature dependence of Hc was measured, suggesting a
cross over from thermally activated reversal to a macroscopic quantum tun-
nelling of walls at very low temperature, there was no discussion of the ac-
tual mechanism by which the resistance was affected by the magnetisation
state, although a dominant AMR mechanism seems likely. This method of
nanomagnetometry using the AMR was discussed at greater length in Ref.
255 in similar Ni wires as well as unpatterned Ni films. (The use of AMR
and related effects to carry out nanomagnetometry is now a rather popular
technique [256, 257, 258, 259, 260, 261, 262].) Attempts to fit the magne-
toresistance data to a weak localisation model were rather unsuccessful, and
the high field magnetoresistance measured in the longitudinal geometry was
tentatively assigned to a modified electron-magnon scattering mechanism.
(The same longitudinal effect was detected in a grating of Fe wires by a
group of researchers from the Cavendish Laboratory, where it was attributed
purely to the AMR [263].) Further discussion along these lines was made
in Refs. 264 and 265. In these two papers, Barkhausen jumps in resistance
associated with the depinning of individual domain walls were observed dur-
ing magnetisation reversal: these steps in resistance occurred in the same
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Figure 21: Resistance as a function of field for a 315 Å diameter Ni wire
at 11.2 K. The solid line shows a positive-going field sweep, the dashed line
shows a negative-going one. After Giordano and Monnier [254].

order and were the same size in each field sweep. The exact field at which
this occurred was found to vary stochastically somewhat. By choosing and
repeatedly measuring one of these jumps, depinning field distributions could
be measured for a given temperature. These broadened and shifted to lower
fields as the temperature was raised, as would be expected for thermally ac-
tivated depinning. The distribution width does not extrapolate to zero at
0 K, however: this was taken to be the signature of a different stochastic
process, the quantum tunnelling of the domain wall out of its pinning po-
tential [266]. The quantised nature of the energy levels of domain walls in a
pinning potential well was revealed by microwave excitation of the system:
the depinning field distribution shifted to lower fields via a series of discrete
levels [267]. Similar wires were used to measure electrical noise [268] in Ni
[269] wires at high temperatures, the noise power was found to peak at 450
K and just below the Curie point (620 K) [270]. This was discussed in terms
of magnetic fluctuations.

Giordano and his colleagues turned their attention specifically to the issue
of domain wall resistance in 1998: experiments on Ni wires showed that the
presence of a wall reduced the resistance of the wire somewhat [271]. A
difference in resistance of about 3 Ω was observed in a 300 Å diameter wire
at 4.2 K for instance, in at least order-of-magnitude agreement with the
weak localisation theory of Tatara and Fukuyama [272]: one would need a
2.5 µm thick wall to account for this resistance using AMR. The Berry phase
theory of Lyanda-Geller et al. [189] might also explain this effect (as indeed
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might the band bending model of van Gorkom et al. [194], with the benefit
of hindsight) if more were known about the details of the spin structure in
the wall. Further, similar measurements, with a range of wall preparation
fields lead to a value of the resistance of an individual wall being measured
as −0.085 Ω [273]. Changing from Ni to Co wires, resistance jumps showing
negative and positive resistance were observed for different samples [274].
Co wire magnetisation reversal has been monitored by magnetoresistance
measurements combined with micromagnetic simulations [275] or magnetic
force microscopy [276] – the conclusion in both cases was that the AMR
was primarily responsible for all the features observed. Co has a strong
magnetocrystalline anisotropy with unaxial symmetry, meaning that it is
possible for grains to have their easy axis directed across the wire, giving
rise to more complex reversal mechanisms than are possible in Ni, where this
situation cannot arise. The most recent paper in this series of papers deals
with permalloy wires, where again a negative domain wall MR (∼ −0.14 Ω)
was reported [277].

Many of the earlier experiments in this field measured a reduction in
the resistance when the sample entered a multidomain state. A negative
domain wall MR in was measured in zigzag-shaped Co wires by Taniyama
et al. [212, 213]. In this geometry it is possible to generate two different
forms of 90◦ degree walls at the zigzag corners: when demagnetised along
the length of the zigzag the magnetisation will flow along the wire, whilst
when demagnetised across the wire a head-to-head or tail-to-tail domain
wall will occupy each corner. In this way it was possible to remove much of
the signature of the AMR by comparing these two states, and as a result a
negative wall MR of −1.8 × 10−6 µΩcm was found at helium temperatures.
This negative effect persisted up to about 200 K, meaning that it is difficult
to explain through the the dephasing model [272]. Later experiments on Co
[278] and permalloy zigzag [279, 280] and scalloped wires seemed to only
show AMR effects.

One of the classic mesoscopic experiments on domain walls was carried
out by Otani et al. on wires and disks of Co [208]. Downwards jumps in
resistivity were observed in the wires at the domain nucleation fields, seen
in Fig. 22. The other geometry investigated was a pair of touching disks, in
each of which a magnetic vortex can be stabilised. In this case a 180◦ wall
will be formed at the junction between the disks, which was again found to
reduce resistance. The same group went on to study epitaxial Co wires which
showed both positive and negative MR [281], depending on whether the Co
c-axis lay in or perpendicular to the sample plane, and epitaxial Fe wires
that showed negative MR at low temperature and a rather small positive
MR above about 66 K [282].
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Figure 22: The longitudinal and transverse magnetoresistance curves for a
2 µm wide Co wire. The signal is dominated by the AMR, but the abrupt
jumps in resistance associated with domain nucleation can be seen. After
Otani et al. [208].

The properties of epitaxial wires were examined in great depth by Rüdiger,
Yu, Kent, and Parkin, in a series of experiments reviewed in Ref. 9. These
experiments are particularly impressive for the quality of the material used
and the meticulous care used to determine the micromagnetic structures of
the Fe and Co wires used [283]. This second aspect of the work was critical
to the detailed deconvolution of any intrinsic domain wall signal from all the
other various galvanomagnetic effects that may come into play.

The first experiments reported by this group were performed using (110)
epitaxial Fe films patterned into wires with the (001) easy axis lying across
the wire stripe [284, 285, 286, 287]. This leads to stripe domains lying across
the wire with a stripe period L that can be controlled by the wire width
W , as the balance of anisotropy K and domain wall energy means that
L =

√

2σwallW/K [288]. An MFM image of such a domain structure is
shown in Fig. 23. The micromagnetics of epitaxial Fe microstructures was
discussed extensively in Refs. 289, 290, 291.

Deconvolving the AMR was done by cleverly taking advantage of the fact
that the anisotropy of the Lorentz MR becomes more pronounced as the
temperature is lowered and is of opposite sign to the AMR – this allows a
compensation temperature to be found where one effect just balances the
other. This temperature was 65.5 K, where it was found that the presence
of walls reduced the resistance of the wire: the relevant data may be seen in
Fig. 24. Although walls have been predicted to reduce the resistance through
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Figure 23: MFM images in zero applied field of a 2 µm linewidth Fe wire.
Before performing the MFM images the wire was magnetised in a direction
(a) transverse and (b) longitudinal to the wire axis. After Rüdiger et al.
[284].
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Figure 24: MR of a 2 µm Fe wire at 65.5 K. The extrapolation of the high field
MR data in transverse (dotted line) and longitudinal (solid line) geometry
shows that ρ⊥(H = 0) = ρ||(H = 0), confirming that the system is at the
compensation temperature. The resistivity with walls present, ρ(H = 0),
is smaller than this extrapolation and indicates that DWs lower the wire
resistivity. The left-hand inset shows this negative DW contribution as a
function of linewidth at this compensation temperature in the longitudinal
geometry. The right-hand inset shows the DW contribution as a function of
temperature. After Rüdiger et al. [284].

phase breaking effects, destroying weak localisation correlations [272, 186],
this should not take place much above helium temperatures. Rüdiger et
al. found a reduction in resistance at least up to 80 K. In fact the effect
was shown to be due to the reduction of surface scattering as electron tra-
jectories are bent into the bulk of the film, where scattering is low at low
temperatures due to the high crystallographic quality [287]. This mechanism
of magnetoresistance was first discussed in normal metals over half a century
ago by Chambers [292].

The magnetoresistance of hcp Co films had already been studied, and a
small excess of resistance in the stripe domain state found by others [219].
This group of authors patterned their very high quality (0001) films into 5
µm wide transport stripes [222] with residual resistivity of only 0.16 µΩcm
and a residual resistance ratio of 19, very high for a thin film sample. A
combination of MFM and micromagnetic simulation was used to determine
the domain structure, showing a substantial fraction of Néel closure caps,
confirming the ferromagnetic resonance (FMR) results of Ebels, Wigen and
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Ounadjela [221]. This is as expected for hcp Co, where Q ≈ 0.35, much
less than unity. At the compensation temperature, the interface resistance
due to the walls was found only to be 6 × 10−19 Ωm2, an extremely tiny
value. Slight differences in resistance in the CIW and CPW geometries were
found, up to half of which could be ascribed to the Hall effect. It is clear
that the intrinsic domain wall effect in these films is really very small. The
importance of the Q-factor in achieving meaningful results was underlined
by this group’s final experiment on L10 FePt microstructures [293], where
K ∼ 10 MJ/m3 is the highest reported for any ferromagnetic material [294]
(just a little higher than in L10 FePd), giving Q = 10. In these samples a
clear intrinsic rise in resistance due to domain walls was detected.

Manganite materials have also been studied: Mathur et al. measured the
domain wall MR in La0.7Ca0.3MnO3 in a cleverly designed bridge structure
[295]. This structure had large numbers of constrictions along each arm of
the bridge, formed where small transverse elements touched at the sides.
These elements had small FePt hard magnets at either end: beside every
La0.7Ca0.3MnO3 in two arms of the bridge, but only alongside every other
element in the other two arms. During field reversal this ensures that these
two arms comprise magnetically alternating elements with a 100 nm wide
180◦ wall in every constriction between them. The bridge layout is shown in
Fig. 25. (Nagahama, Mibu, and Shinjo employed a similar scheme, creating
walls in a permalloy wire using hard CoSm pads [296], but only AMR was
found.) If the walls offer extra resistance then the bridge will be driven
out of balance, and the number of walls is exactly known. This allows the
resistance of an individual wall to be determined accurately. Additional
resistance was observed in a well defined field range below 110 K, with a
wall interface resistance of about 100 fΩm2. This was approximately four
orders of magnitude larger than might be anticipated on the basis of a simple
interpretation of the double-exchange, bandwidth narrowing, model usually
used to describe the metallic state of these materials, just as was found by
Wu et al. in their unpatterned films [232]. Since such manganite materials
can offer very high spin-polarisations as candidate half-metals, it is possible
that this result could easily be explained through one of the other models
of wall MR that rely on this quantity, such as the spin mistracking models
[182, 183]. Scattering into an almost insulating minority spin band could
generate substantial resistance even if it were to happen at a comparatively
slow rate – in both the semiclassical and quantum models this is reflected in
the prediction that the wall MR will rise very rapidly as P gets large.

Wolfman et al. measured La0.7Sr0.3MnO3 films with nanotrenches etched
into the top surface to form vertical nanoconstrictions [297]. The aim of
this was to attempt to geometrically constrain the walls [298] at these points
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Figure 25: Schematic of a thin film Wheatstone bridge device on a SrTiO3

substrate. Black regions represent a 200 nm continuous La0.7Ca0.3MnO3 film.
White regions represent 200 nm FePt layers. A conventional current of 10
mA was fed from I1 to I2, and the output voltage was measured between V1

and V2. The tracks leading to the device (not shown) were covered in 6070
nm of gold. An in-plane magnetic field H was swept perpendicular to the
bridge arms as indicated. Below Tc domain walls are liable to form at the
4 mm constrictions in ARM 1 and ARM 3 of the bridge, but not in ARM 2
and ARM 4. After Mathur et al. [295].
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in the films – in fact 38 nm wide walls were found. Huge wall interface
resistances of ∼ 10 aΩm2 were found, much higher than that found either
by Mathur [295] or Wu [232]. The geometrical constraining effects were used
to account for this, although it is a rise of two or three orders of magnitude
in resistance for a compression of the wall by only a factor of two or three.
This suggests an exponential dependence on the wall thickness, implying
some sort of tunnelling process for the spin-polarised current [177]. A similar
vertical patterning structure, but on a much larger length scale, was used by
Shimazu et al. to study Co films, where a small resistance rise was found
when comparing the MR to that measured on films of uniform thickness
[299].

Very narrow nanowires may be made by electrodeposition in track-etched
polymer membranes. Such structures, grown from Co, were studied by Ebels
et al. [90], with the wire diameter being only about 35 nm. They detected an
overall increase in resistance of 0.1-0.3 per cent at 77 K when the magnetisa-
tion reversed in a field parallel to the wire axis – assumed to be the nucleation
and propagation of a single domain wall. Scaling this to the wall thickness
(15 nm) led to a wall ∆ρ/ρ of a few hundred per cent. One cannot easily
justify such a number on the basis of models such as that of Levy and Zhang
[183]. Ebels et al. proposed that one should consider the magnetoresistance
to arise over a distance ℓsf around the wall. This was based on models of
the CPP mode of GMR, where spins will accumulate over that distance as
they enter an oppositely polarised ferromagnetic layer [76], leading to bulk
spin dependent scattering over that lengthscale. However, it was argued by
S̆imánek that most of the spin-accumulation is suppressed by the spin track-
ing the rotating magnetisation rather well, as the system is not far from being
adiabatic [199] – the mistracking of spins in Co with a Larmor wavelength of
only a few Å is unlikely to be very great when the wall thickness is 150 Å. Ni
wires were compared with Co by same group, the effect in Ni was found to
be one order of magnitude smaller [300]. It seems that the true explanation
of these experimental results is still somewhat obscure. Co and Ni nanowires
were also grown by this technique and studied by the Lausanne group [301].
In this case the Ni magnetisation was found to reverse by a curling mode,
and the MR showed only AMR. The Co reversal mode was more complex,
involving wall motion, but again no intrinsic MR signal arising from the wall
could be detected, only AMR was found. (Similar measurements of individ-
ual Co nanowires were made by Vila et al. [276].) Walls of controlled size
were formed in Co wires by growing them on a GdCo1.6 substrate to create an
exchange spring structure [302], a similar technique to that employed in the
multilayers [243, 245] discussed above in §4.3.2. This structure gives just the
same sort of domain wall parallel to the interface, which these authors call
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a Zeeman domain wall, the thickness of which can be controlled by varying
the applied field – in this paper the range studied was from 10 down to 5 nm
thickness. A small excess resistance was found that increased up to almost
0.1 Ω for a 5 nm thick wall. This is value is close to what would be predicted
by the Valet-Fert model [76] for an abrupt interface in Co.

Xu et al. fabricated some microscale crosses from permalloy, which were
contacted for both longitudinal and transverse MR as well as Hall measure-
ments [303]. The magnetisation of the central portion of the cross was shown
– by MFM and micromagnetic modelling – to switch as a separate domain
from the four arms. Measurements of the longitudinal MR showed an effect
only about one-third of what would be anticipated for the AMR based on
a finite element model with the AMR magnitude extracted from previous
transverse MR measurements [304]. Here the AMR reduces the resistance of
the device, so that a contribution of the domain walls that increased resis-
tance could account for the discrepancy. The magnitude of the effect, around
0.01 per cent, was confirmed in a similar experiment by Yu et al., using par-
tially disconnected cross structures [305]. A cross-shaped junction in another
similar experiment showed only AMR, however [259] (as was found in NiFe
wires several years previously [306]).

A clever device structure fabricated from an epitaxial L10 FePd film was
used to detect and count individual domain walls by Danneau et al. [53]
– made possible by the comparatively large DW resistance in this material
[237, 113, 184]. A L-shaped wire was fabricated with the legs running parallel
and perpendicular to the stripe domains created during sample growth, which
lie along a preferred direction. Various voltage probes were formed as part
of the patterned device, spaced 600 nm – roughly 8 domain walls – apart.
Discrete jumps in the resistance were observed during the application of a
field as the walls move (Fig. 26), with the additional resistance generated by a
single wall at low temperatures corresponding to an extra interface resistance
of 0.08 fΩm2 in the CPW geometry, corresponding to an MR within the wall
of about 10 per cent. In this experiment, as well as clearly demonstrating
the positive domain wall MR in this material, and the difference in the CIW
and CPW geometries, detection of the annihilation of an individual wall,
containing only about 5 × 106 spins, was easily demonstrated.

A novel scanning probe experiment was recently carried out by Mecken-
stock, Rastei, and Bucher, where MR and local thermally modulated ferro-
magnetic resonance experiments were performed simultaneously on part of a
Ni wire that was electrochemically etched to be 600 nm diameter [307]. The
Pt wire AFM tip was used as one of a pair of voltage probes so that position
dependent MR curves may be measured at different points along the wire,
as a function of distance from the point where the wire necks down from its
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Figure 26: Variation of resistance and Hall effect during the first magnetiza-
tion sweep for the CPW configuration shown in the inset MFM picture for
a FePd nanodevice. The excess resistance from the saturation value is due
to domain walls. The steps are indicative of individual domain wall disap-
pearance during the reversal process. The Hall resistance varies only during
the low field single jumps, indicating that the magnetization saturates first
in the contacts. After Danneau et al. [53].
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Figure 27: Time-resolved magnetoresistance measured across a single DW
in a GaMnAs microstructure at 4.2 K. When the DW is completely resident
between the voltage probes, the difference between measured longitudinal
resistance, 〈R(t)〉 (violet), and a simple model describing the predominant,
eddy-like part of domain-induced magnetoresistance R0(t) (dashed grey) al-
lows differentiation of the intrinsic DW resistance, which is in fact negative.
After Tang et al. [308].

full diameter. This allowed the switching of the wide part of the wire and
the propagation of the resulting wall to be detected simultaneously.

Remarkably it is only very recently that attempts have been made to
study domain wall resistance in ferromagnetic semiconductors. A negative
intrinsic effect was found in (Ga,Mn)As devices by Tang et al. [308] using a
special multi contact Hall bar-type experimental geometry [309]. This was
accompanied by a painstaking multistage lithography process to align the
Hall bar with the in-plane [110] crystallographic axes of the wafer to better
than ∼ 0.03◦ that suppresses AMR contributions, which can be large in these
materials. The as-measured negative effect was rather small, as a single wall
occupied only a tiny volume fraction of the whole device, which was some
tens of microns wide and hundreds long. Amazingly, the wall, taken to be
∼ 10 nm thick, was found to have a total loss of resistivity to within the
error bar of the measurement for a 30 µm wide channel, and a 60 ± 40 per
cent drop in resistivity when the channel is 60 µm wide (Fig. 27). The
detailed mechanism for this truly remarkable effect is not yet known, but it
is speculated that the quantum correction phase-breaking model of Tatara
and Fukuyama [272] can describe this physics.

4.4 Huge domain wall MR in nanoconstrictions?

A question that is currently taxing researchers is that of the proper descrip-
tion of the electrons traversing a domain wall in a ballistic fashion, and in par-
ticular the unambiguous experimental observation of such an effect. Whilst
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the phenomenon of a diffusive domain wall resistance has been established
beyond reasonable doubt, that of a ballistic effect is far more problematic
to establish. This is mainly due to the extreme difficulty of characterising
the nanoscale devices that are required – since most magnets are metals, the
Fermi wavelength λF is typically only ∼ 1 Å, and the devices must hence
consist of a few atoms to be of the appropriate size. Moreover, magnetic
metals are not free electron-like, and so the mean free path ℓ is at best only
tens of Å. This means that to form a truly ballistic contact the device must
be of atomic scale. Such devices are experimentally difficult to deal with
in several ways: firstly they are hard to fabricate in a reproducible manner;
they are almost impossible to characterise properly, either structurally or
magnetically; and finally they are unstable with time-varying properties and
rather short lifetimes, at best a few hours. In spite of the lack of consensus
amongst researchers, the phenomenon has acquired its own acronym, BMR
(ballistic magnetoresistance), and even its own classification code under the
2003 Physics and Astronomy Classification Scheme: 75.47.Jn. In the light of
the continuing controversy in this area, it seems that an historical account
of this subfield will perhaps be the most balanced.

It is rather difficult to define exactly what is meant by ballistic in this
instance. The conventional definition of a ballistic device is one where the
dimensions are smaller than the mean free path, so that it is band structure
and geometrical effects, rather than scattering, that determine the conduc-
tance. The simplest definition for the ballistic traversal of a wall might then
be that the electrons traverse the wall without scattering, so one condition
might be D ≪ ℓ. However, the mean free path does not explicitly enter the
formulae for the diffusive domain wall MR, given e.g. in Refs. 182 and 183.
The electrons here may still have a chance for their spins to relax as the wall
is crossed, the condition to prevent this is that D ≪ ~vF/J . More extreme is
the Cabrera-Falicov limit, where the wall is thin enough to reflect an electron
wavefunction, here the condition is D ≪ 2π/kF [177]. In all of these cases
the requirement is that the wall is thinner than some relevant length scale,
which it will be only under special circumstances.

4.4.1 First results

Nevertheless there has been a substantial research effort into magnetic nanocon-
tacts on the past few years. This effort was started with the claim by Garćıa
et al. of the observation of a magnetoresistance of 200 per cent in a mechan-
ically formed point contact made by touching together two Ni wires [310].
The effect was observed at room temperature and fields of only a few Oe
were required to switch between the two resistance states. The effect was
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Figure 28: Measurements of Ni-Ni nanoconstrictions. (a) Two nickel wires
of millimeter radius are used to form a nanoconstriction. (b) Dependence of
magnetoresistance on the conductance of the contact: the applied magnetic
fields ranges from 20 to 120 Oe. The smaller the conductance, the larger the
magnetoresistance that is found. After Garćıa et al. [310].

only seen for contacts with a conductance of a few times the quantum unit of
conductance G0 = 2e2/h, implying that the contact area is little more than
a few atoms. An example of the data is shown in Fig. 28. This tantalising
result spurred a large number of other groups to look at this effect. The effect
was interpreted as the trapping of a domain wall in the nanocontact at low
fields, leading to modification of the transmission coefficients of the various
spin-polarised channels conducting the carriers through the constriction. No
effect was observed when one, or both, Ni wires were replaced with Cu.

Theoretical support for this idea is to be found in the concept of a geo-
metrically confined domain wall, introduced shortly afterwards by Patrick
Bruno [298]. Bruno pointed out that in a constriction the usual π

√

A/K
formulation (Eq. 24) for the domain wall width D is no longer valid. The
key insight was that the variable geometry of the constriction means that
higher energy densities can be tolerated by the system if they are confined to
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smaller volumes. For any constriction where the size is growing faster than
linearly with distance as one moves out into the bulk material this will be
satisfied, and a domain wall trapped in the constriction will be squeezed to
be much thinner than it would in the bulk material – although the exchange
energy density in the constriction is growing the overall exchange energy cost
is shrinking as the wall occupies a smaller and smaller volume as it shrinks
into the contact. The result is that D is of the order of the diameter of
the constriction, regardless of the material parameters. A calculated result
showing this substantial compression of the wall thickness is shown in Fig.
29. Hence for a contact only a few atoms across, the thickness of a domain
wall trapped there will also be of atomic dimensions, and hence a good can-
didate for observing ballistic effects. This geometrical confinement has been
observed by Miyake et al. in a NiFe system patterned by electron beam
lithography, but the MR measured for the contact was no higher than would
be anticipated on the basis of the AMR [311]. The geometrical confinement
effect has also been observed in scanning electron microscope with polarisa-
tion analysis (SEMPA) studies [312, 313]. Although not directly observed,
the prospect for ultra-thin walls in nanocontacts is not implausible – walls
of atomic dimensions have been observed by spin-polarised STM by Pratzer
et al. [116] and by Ding et al. [115] under appropriate conditions. Proper
theoretical modelling of such walls cannot proceed using the usual micro-
magnetic approach, as the continuum approximation made in this theory is
not valid at these atomic lengthscales. There is also a theoretical calculation,
by Tatara and Tokura, of the electronic pressure on a wall in metallic mag-
nets that can reduce the wall energy below the magnetostatic value, Eq. 25,
for thin walls if the exchange energy splitting is smaller than some critical
value relative to the Fermi level [314]. Although they are able to show that
this condition is not satisfied in bulk Ni, they speculate that it might play a
role in a nanocontact where exchange interactions will be weaker due to the
reduced co-ordination number of atoms in the contact.

Very rapidly a theory was developed to explain this very large MR and
the scaling with G in nanocontacts [315]. Using a simple, one-dimensional
Hamiltonian and either the Mori or Landauer formula a simple expression
for the magnetoconductance ∆G/G was found in terms only of the Fermi
wavevectors kF↑ and kF↓ and the domain wall thickness D. This was given
as

∆G

G
=
π2

8

P 2

1 − P 2

[

1

cosh2 πkFD
+

1

cosh2 πkFPD

]

, (48)

where the polarisation P is defined in terms of the spin-resolved Fermi
wavevectors, as in the Stearns tunnelling model, Eq. 3, and kF = (kF↑ +
kF↓)/2, the spin-averaged Fermi wavevector. The similarity of the central
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Figure 29: Magnetisation profile of a geometrically constrained magnetic wall
calculated for a wire with a rectangular notch where the width is one-tenth
that of the main magnetic wire and the length is one-tenth of w0 = π

√

A/K
(solid line), as compared with to the unconstrained Bloch wall with the same
w0 (dashed line). The compression of the wall thickness is easily visible.
After Bruno [298].

term, P 2/(1 − P 2), to the Julliere tunnelling formula (Eq. 5) underlines the
similarity of the physics in this model to the tunnelling process between the
two magnetic electrodes.

As in the Cabrera-Falicov theory, once kFσD & 1 then adiabatic relax-
ation of the spin dominates and the simple ballistic effect described here no
longer applies. The dependence on contact size, and hence on G, arises as
a result of a summation over the number of available conduction channels,
dominated by the greater number of d electrons as s-like and d-like electrons
are treated on an equal footing. A reasonable fit to rather scattered ∆G/G
versus G experimental data for Ni and Co nanocontacts was obtained with
values for the band structure parameters of these materials that are not too
far from the bulk ones. A further experimental study comparing contacts
formed from Ni, Co and Fe [316], found that Fe contacts showed BMR val-
ues of about an order of magnitude smaller than for the other two metals,
interpreted within the theory as being due to the much smaller polarization
of the d-like electrons in Fe corresponding to its status as the only weak fer-
romagnet of the three 3d elemental ferromagnets. Extending these ideas to
a wider variety of materials including alloys, amorphous metals, perovskites
and Heusler alloys it is possible to discern a pattern of sorts. Zhao et al.
defined a parameter they call the ballisticity b = D/ℓsf , where ℓsf is called
the “mean free path for spin reversal (ballistic non-adiabatic limit)” [317]
and D is the wall thickness. This quantity was estimated from the vari-
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ation of conductance with contact size, and as a result contacts classified
as either ballistic (1/b ≫ 1) or non-ballistic (b ≫ 1). Combined with a
large spin-polarization, this condition determines whether or not BMR will
be observed, the effect being restricted to the elemental 3d ferromagnets and
a subset of contacts where Ni is one electrode. This type of idea was also
arises in a theory by Tatara and Garćıa, where they calculate the suppression
of the magnetoresistance in a nanocontact as one crosses from the ballistic
to the “dirty” limit [318].

As with tunnelling magnetoresistance, one will anticipate the highest pos-
sible magnetoresistance when half-metallic (viz. a material where one spin
sub-band has a gap at the Fermi level) electrodes are used. A prospective
half-metal with a high Curie point (860 K) is magnetite, Fe3O4. Versluijs and
Coey have studied mechanical point contacts between crystals of magnetite,
and found large magnetoresistive effects exceeding 500 per cent [319, 320].
The presence of high MR was again associated with G ≪ G0 and also with
non-Ohmic I-V characteristics. This was the earliest study to specifically
discount the possibility of magnetostriction as a possible cause of the effects.
Strains due to magnetostriction are typically of the order of a few parts per
million – therefore a changes of the atomic scale (a few Å) will be observed
upon magnetising an object of ∼ 100µm. Changes of this scale will certainly
affect the resistance of atomic scale contacts where the conductance is of
the scale of a few G0, and a nanocontact may operate simply as a very tiny
reed switch. In a simple picture though, there ought to be no change in the
magnetostrictive lengths in a sample when the magnetisation of the contact
is reversed from parallel to antiparallel. The symmetry of the domain wall
MR picture will be different from that of a magnetostrictive “reed switch”
MR, and these were clearly distinguished in this study.

Another half-metal with a high Curie point is CrO2 [21]. Mechanical
nanocontacts of Ni-Ni, CrO2-CrO2, and Ni-CrO2 were studied by Chung et
al. [321]. The maximum MR was observed at G = G0 for the Ni-Ni contact,
whilst the maximum value of MR was observed for contacts with G = 0.05G0

for those involving the half-metal. This group pointed out that is was possible
to scale all their MR data measured on these contacts, along with their own
on magnetite junctions, with the Ni results of Garćıa et al. and the magnetite
results of Versluijs and Coey. This was done by normalising to the maximum
resistance and by the resistivity of the contact materials, resulting in what
is, again, rather scattered data being compressed into a limited region of the
graph, bounded by the low and high channel number limits of the theory
put forward by Tatara et al. [315] (see Fig. 31). This “universal” behaviour
was taken as a sign that the the mechanism of BMR in all these cases is the
same.
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Figure 30: Magnetoresistance hysteresis loop for a magnetite point contact.
After Versluijs et al. [319].

Figure 31: Normalised magnetoconductance as a function of the nanocontact
conductance scaled by the ratio of the material resistivity to the resistivity of
Ni. The data labelled ”this work” in the legend is from Ref. 321, for both that
data and others taken from the literature (Garćıa et al, Refs. 310, 316, 322;
Versluijs et al., Ref. 319), the conductances are scaled to G0 at the peak
magnetoconductance. The solid and dashed lines are from Ref. 315 in the
limits of small and large number of conducting channels, respectively. All the
experimental data falls roughly within this range. After Chung et al. [321].
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Whilst in the original paper the conductance was always much lower when
the domain wall was present, with the wires oppositely magnetised, a full
magnetoresistance loop was found to display either a positive or a negative
effect [323]. These new experiments were performed on nanocontacts formed
by an electrochemical method. The same contact was reported to show both
positive and negative magnetoresistance effects depending on the sequence
of magnetic fields and current pulses applied. The current pulses were said
to modify the local magnetic domain configuration in the electrodes in the
vicinity of the nanocontact region, and various possible domain states were
proposed that could explain the results. The mechanism for this to take place
was suggested to be either a spin-transfer effect (to be dealt with in more
detail in this review in §5) or a simple interaction with the strong Oersted
field produced by these high current density pulses. This electrochemical
technique has been used by Hua and Chopra to form Ni nanocontacts with
claims of magnetoresistance of over 3,000 % (although the saturated state
was the high resistance one) [324], and more recently over 100,000 % (again
an inverse effect) [325].

4.4.2 Theoretical interpretation

The combination of extremely striking results with intrinsically difficult to
characterise samples gave great scope for theoretical speculation about the
possible underlying mechanisms, and myriad different possible micromag-
netic structures and transport mechanisms were proposed. This group of
theories will be reviewed below.

The Delft group performed micromagnetic calculations of the structure in
a 30 nm point contact fabricated through a nanofabricated pinhole in a Si3N4

membrane of the type used for TEM. They made calculations for Co [326]
and Permalloy [327] and used these to estimate AMR and domain wall MR,
using the Levy-Zhang model [183] for the latter term. In the case of NiFe
they compared these to experimental data, and found marked discrepancies,
failing even to reproduce the sign of the MR in one of the geometries they
consider. It is this measured reduction in resistance in such a point contact
that is likely to have inspired the band bending model from the same group
[194] for inverse domain wall MR that we discussed above in §4.2. It is
worth noting that these point contacts are much larger than anything that
is supposed to display BMR, and were studied at more or less the same time
as the first results on the Ni nanocontacts were published.

The group of Garćıa, who first reported on these contacts, published a
theoretical paper in 2001, describing the motion of a wall in a nanocontact as
a field is applied [328]. The calculation built on the constrained wall theory
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of Bruno [298], and predicted that a field will create a finite displacement
shift to such a constricted wall, rather than generating a terminal velocity
motion, as for a conventional wall. In fact this is, of course, the case for any
wall trapped in a pinning potential that experiences a field that is too weak
to depin it. (This displacement had been previously observed by MFM in
planar constriction geometry [329], for instance.)

The displacement of a wall in a constriction was also treated by Burton
et al. in a micromagnetic calculation [330] that qualitatively reproduces the
result of Garćıa et al. [328] showing that wall is compressed to one side
of constriction by an applied field before finally being expelled. However,
this group go on to calculate the conductance of the wire based on the mi-
cromagnetic configuration they find at each field, using a straightforward
ballistic model. They treated a Ni wire between Ni contacts, and also a
Ni wire between a Ni and a CoPt contact. In both cases a clear reduction
of conductance is found when the electrodes are antiparallel, although the
conductance is not constant in the switching region – it changes as the wall
moves, growing in the Ni-Ni system and shrinking in the Ni-CoPt one. This
is because the wall cannot be easily ejected into the CoPt electrode and is
compressed against it until quite a high field is reached: the narrowing of
the wall increases its resistance, just as predicted in the Cabrera and Falicov
model [177, 178] (and in the Viret [182] and Levy-Zhang [183] ones, although
they treated the transport diffusively).

The detailed structure of the wall in the contact was investigated by
Berger, Labaye, and Coey. Monte Carlo simulations of the magnetisation in
nanocontacts confirm Bruno’s idea of a constrained wall and showed the pos-
sibility of thermal fluctuations in the form of walls in a nanocontact between
various different Bloch, Néel, and vortex states [331]. They estimate the
height of the energy barrier separating these states as equivalent to about 80
mK per atom, meaning that structures smaller than about 10 nm in size will
be unstable at room temperature [332]. This opens a new inelastic scattering
mechanism in the contact, which can break phase, flip spins and otherwise
reduce the magnetoresistance of a contact. Experimental results on the tem-
perature dependence of BMR are practically non-existent, due to the extreme
fragility and instability of the contacts.

Many of the theories of the conduction in such a nanoconstriction are
naturally expressed in terms of the Landauer picture of conductance, since
the enormous MR effect is only found when the conductance of the junction
is of the order of G0. The Landauer formula gives the conductance G of a
device as

G =
G0

2

∑

i,σ

Ti,σ, (49)
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where G0 = 2e2/h = 1/12906 Ω−1 is the quantum of conductance, and Ti

is the transmission coefficient of the ith channel of conduction [333]. The
subscript σ is used here to label the spin of the carrier. The value of G0

given here includes a factor of 2 that accounts for the degeneracy due to spin
– in an unpolarised system each channel can carry two electrons of opposite
spin. In this case Ti,↑ = Ti,↓ and the formula reduces to G = G0

∑

i Ti. In
ferromagnetic systems it is necessary to explicitly take account of the spin,
as in Eq. 49.

It is useful at this point to consider the way that experiments on point
contacts are usually done: this is by forming a very narrow neck in a metal
wire, usually by notching it and then drawing it almost to breaking point.
This is then actually broken by further pulling whilst the conductance is
measured – this will of course drop, and when it approaches a few times G0

tends to show plateaux at various values with sharp jumps between them as
the wire is pulled. Eventually the last atoms lose contact, the wire breaks,
andG drops to zero. The resulting, stepped curve of conductance with time is
often referred to as a conductance staircase. The data are usually quite noisy,
and each time the measurement is made the form of the curve is somewhat
different, so some sort of averaging scheme needs to be employed. The reason
for this is that metals are generally rather ductile, and there are jumps caused
by abrupt atomic rearrangements as the contact is drawn, which will not
always happen in exactly the same way. The most common scheme is to
take all of the values of conductance acquired and plot a histogram of them.
Values that appear often, such as those on the flat part of a plateau, will
show up as a peak in the histogram. Peaks appearing at multiples of G0

are usually taken as evidence for conductance quantisation in the sub-nm
metal wire. (Example histograms for Ni nanocontacts are shown in Fig. 34,
showing the change from G0 to G0/2 conductance under the influence of an
applied field.) The field of atomic sized conductors was recently reviewed at
length by Agräıt, Yeyati, and van Ruitenbeek [334].

Imamura et al. adopted a recursion transfer matrix approach to calcu-
lations of the channels and transmission coefficients in such a ferromagnetic
point contact, containing an atomically abrupt domain wall [335, 336]. They
adopted an atomistic view of the exchange interactions and found that as a
result there was no spin precession and the process was certainly not adia-
batic. Several interesting new effects were found, as compared to an ordinary,
spin-degenerate point contact. Since kF is spin dependent, for certain contact
sizes channels exist for one spin but not the other, giving rise to much more
complex conductance staircases (plots of G as a function of contact diameter,
with each step corresponding to the opening of another conduction channel),
including plateaux at half-integer multiples of G0, a hallmark of the lift-
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ing of spin-degeneracy. (Similar results were found by Zvezdin and Popkov
[337].) Calculations of these conductance staircases for parallel and antipar-
allel alignment of the magnetisation on either side of the contact allowed the
MR ratio to be found, which oscillated with contact size. Each peak in the
oscillation got larger as the contact shrinks in size, with the highest being
when only a single channel is open for the parallel conductance case, but
neither spin state was found to be very transmissive. These peaks got larger
as the exchange splitting grows stronger. MR ratios of 1800 per cent were
predicted at this point for the largest exchange splitting considered, 0.7 eV.

Similar calculations of conductance staircases were performed by Nakan-
ishi and Nakamura for ballistic ferromagnetic nanowires [338]. The Landauer
transmission coefficients were here obtained using a perturbational approach,
allowing more realistic pinning potentials to be used than in the previous
paper, as well as treating the possibility of spin-flip scatter through an ad-
ditional term in the Hamiltonian. Similar overall results were found though,
with conductance staircases containing e2/h as well as 2e2/h steps in the
ferromagnetic case, due to the channels opening for different diameter for
different carrier spins. The main new feature found was the rounding off of
the steps in the staircase for the wire containing a wall due to the spin-flip
scattering induced by the transverse component of the magnetisation in the
wall.

Tagirov et al. calculated MR using a semiclassical theory and determined
the crossover from diffusive to ballistic regime [339]. The geometry they used
was that of an orifice in an insulating membrane. They calculated in the limit
that the thickness of the wall D is much less than the distance travelled by a
conduction electron in the Overhauser longitudinal spin relaxation time [340],
ds = vFT1, essentially the non-adiabatic limit. In the ballistic limit, (a≪ ℓ↑)
MR ratios of up to around 1000 per cent were found for realistic values of
spin-polarisation, represented in this theory by the ratio vF↓/vF↑ ∼ 0.5. In
the diffusive case however very large MR ratios were also predicted, of the
order of 450 per cent for the same polarisation – such large values have not
been observed experimentally, it was claimed that this is because as the
orifice size grows the condition D ≪ vFT1 is no longer satisfied, since the
wall thickness will expand.

In a follow-up paper they discussed the variations in MR observed based
on the possibility of the number of quantum channels open for conduction
[341, 342]. The essential story, as far as the half-integer G0 steps in the
staircase and quantised spin-channels goes, was the same as in the papers
discussed above. A novel feature of the discussion was that of addressing the
variability in experimental results. For a given saturated conductance GP it
is possible to have a variety of different conductances in the antiparallel state
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Figure 32: The dependence of conductance (a), and magnetoresistance (b)
on the radius of a connecting orifice. Panels (c) and (d) show dependences of
the magnetoresistance on the number of the open conductance channels for
the F alignment of the magnetisations: (c) for a sloping linear transition in
potential between the sides of the contact, and (d) for a step-like potential.
pF↑ = 1.0 Å−1 is the spin-up Fermi momentum, δ = pF↓/pF↑ = 0.55, and
λ = 10 is the dimensionless length of the contact in Fermi wavelengths.
After Tagirov et al. [341].

GAP, when the contact contains a domain wall, depending on the different
degrees of spin-flipping introduced by the wall, and more importantly, the
fact that certain conduction channels may or may not be open in this state
– they open at different contact diameters to those for the parallel case.
The first available channel for conduction in the AP state opens when the
P state conductance is 2G0, and hence contacts with this conductance may
be expected to show an MR ratio anywhere between a few tens of per cent
(depending on spin polarisation) up to infinity. Higher conductances also
showed considerable variation: see Fig. 32. The important point was that
even in a theoretically perfect case, a plot of MR against GP will not show a
clear correlation, other than a rapidly falling downward trend.

It is interesting to ask why it is that in the case of a nanocontact one
can predict a huge MR, but in the case of a extended wall the MR never
exceeds that predicted by the Julliere formula, or a modified variant thereof,
where for reasonable values of spin-polarisation, the MR does not exceed a
few tens of per cent. The answer lies in the fact that for a laterally extended
system, be it domain wall, tunnel barrier, or interface, all available channels
for conduction are open: that is every value of k|| less than kF in the 2D
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Brillouin zone can contribute to the conduction. In the nanocontact case this
does not apply and only a very small number of channels are open – perhaps
only one. It is the polarisation of these few states that is important, rather
than the average over all of the 2D zone. Since there are few states, there
is good chance that the spin polarisation of these happens to be quite high.
There is an analogy with the spin filtering carried out by the crystalline MgO
barrier in epitaxial junctions [39, 40], where only certain states are permitted
to transmit – which happen to have a very high polarisation.

Dugaev et al. carried out calculations of reflections of electrons from a
narrow wall in a quantum wire [200] in the abrupt limit defined by Cabrera
and Falicov: kFD ≪ 1 [177, 178]. They restricted themselves to the case of
a single open channel, and found an MR of roughly the same magnitude as
would be obtained using a Julliere tunnelling formula. They also calculated
the spin currents through the wall and the equilibrium spin perturbation
found near the wall, which has an oscillatory form like a Friedel oscillation,
indicating that such an abrupt wall perturbs the electron gas in the same
way that a magnetic impurity would. This effect was in addition to any spin
accumulation caused by the current flowing through the wall.

More recently several new theories that deal with materials specific as-
pects of the problem have been described in the literature. One of the first
of these considers the issue of oxidation of such a tiny contact [343] – a few
atoms of Ni are not expected to remain chemically pure under ambient con-
ditions in air. This can give rise to conduction through spin-polarised oxygen
p states, treated using the Kubo formula to calculate the conductance be-
tween two semi-infinite Ni leads each coated with an adlayer of O atoms.
Each O atom was found to develop a rather large magnetic moment of 1.4
µB, meaning that the conducting states are highly spin-polarised. Magne-
toconductance ratios of hundreds of per cent were found for this structure.
Similar adlayers of Cl, S, or C were found not to polarise and no MR was
found.

The role of oxidation in electroplated Ni devices was also discussed by
Yi in the following year [344]. As well as the oxidation of surfaces, grain
boundaries can be oxidised, and Yi proposed that in the contact there is a
short chain of Ni grains each coated entirely in NiO. This can form a multiple
barrier sequential tunnelling structure, which may or may not operate in
the Coulomb blockade regime depending on the smallest particle size. (For
really tiny particles, smaller than the Fermi wavelength, it is proposed that
these may act as quantum dots, although such a small object can comprise
only a few atoms. It is difficult to see how such such an object can be
defined separately to the oxide that surrounds it.) Qualitative arguments are
given without calculation that the presence of oxide is necessary to observe a
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substantial MR through any of these mechanisms. The experiments of Yang
et al. [345], described below, indicate that the presence of oxide is essential
to obtaining large BMR effects in electrodeposited nanojunctions.

Ab initio calculations by the Halle group have treated atomic chains of
various elements between semi-infinite Co [346] and Cu electrodes [347]. In
the first case, Co, Cu, Al, and Si chains of atoms were treated, and local
atomic moments and conductance calculated for P and AP magnetic con-
figurations of the leads. The highest MR values were actually found for Al
(49 per cent) and Si (50 per cent) in a straight chain, whilst Co was the
highest (38 per cent) for a crooked, zig-zag chain (structures are shown in
Fig. 33). This was spite of the fact that induced moments on the Al and Si
were always rather small. What is notable about these results was that in no
case does a rotating domain wall form: in the AP state the moment on the
central atom is always identically zero. The rotating moments reduced the
exchange splitting to nothing in these nanostructures, in an extreme version
of the idea first put forward by van Gorkom et al. [194], although the system
was restricted to collinear magnetic states, meaning that this might well be
artificially introduced. Co, Pd and Rh wires were then considered in the case
of Cu contacts. The focus of this second paper was to determine the magnetic
properties of the atomic chains and transport properties were not calculated
– nevertheless it was found that all three systems are magnetic as the wire
is stretched to almost breaking point. This has some bearing on the results
of Rodrigues discussed below [348]. First principles calculation of the relax-
ation of the positions of Ni atoms within a nanocontact have shown that this
process can substantially reduce both the local moment on and conduction
through the central atom in such a contact [349]. This result underlines the
need for very careful characterisation of such experimental contacts before
detailed theoretical calculations can be applied.

This effect was neglected in the calculation of Velev and Butler for these
very reasons, and instead attention was focussed on the issues wall thickness
and contact width [350]. Again the conductance was calculated from the
Landauer formula, with the transmission coefficients obtained for different
k|| using the Caroli formula. It is important to note that in this formal-
ism the non-collinear nature of the magnetisation can be treated. Results
were calculated for Fe, Co, and Ni systems. The main result is that a very
small contact is needed to obtain a large MR. In this limit, the MR for Fe
is much smaller than that for Co or Ni, as found experimentally [316]. The
paper closed with an examination of the effects of forming contacts with non-
magnetic atoms attached to magnetic leads using the classic GMR materials
systems of Co/Cu/Co and Fe/Cr/Fe: only the former showed a substantial
MR.
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Figure 33: Geometry of the nanocontacts considered by Bagrets et al.: (a)
linear configuration; (b) zigzag-like configuration. After Bagrets et al. [346].

The issue of finite voltage bias across such a contact was examined by
Rocha and Sanvito [351], in order to interpret experimental claims of highly
asymmetric I-V characteristics, which can be somewhat diode-like in appear-
ance in the high-resistance, low field state [352]. A Keldysh non-equilibrium
formalism was used to calculate the energy (bias) dependent transmission co-
efficients. The key to this was the asymmetry of the structure in the contact:
at high field where there is no wall the magnetic state is entirely symmetric –
this is also true if the wall, once created, is positioned exactly in the centre of
the contact. If it is shifted from this position though, either by a structural
asymmetry or by a field [328, 329, 330], then the I-V characteristic will re-
flect this asymmetry. It is worth noting that most theories and experiments
have not closely examined the issue of finite bias in these contacts.

The question of the size of the steps in the conductance staircase was
addressed by Smogunov et al. using ultrasoft pseudopotentials [353]. It was
claimed that these are a superior means of treating d-like electrons, which are
critical in ferromagnetism and are the underlying cause of transition metal
point contacts often showing non-integer multiples of G0 in their conduc-
tance staircases. (As opposed to noble or alkali metals, where the highly
transmitted s electrons mean that the overall conductance is often close to
an integer multiple of G0: various different classes of metals are compared
in Ref. 354.) The band structure of Co was calculated in Ref. 353, building
on previous studies of Ni [355, 356]. These results led to calculations of the
transmission coefficients for atomic chains of Ni and Co atoms. It was found
that many of the electrons with d-like symmetry are blocked when the chain
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contains a domain wall, generating large magnetoresistances, with slightly
better transmission for Ni than for Co due to the greater exchange splitting
in that metal. (Similar findings for Ni were published in Ref. 357.) Frac-
tional values of G0 were not found though, and the suggestion was made that
these could be due instead to fluctuations, either of the magnetic structure
[332] or of the positions of the atoms themselves.

A very recently published ab initio calculation by Jacob, Fernández-
Rossier, and Palacios comments on orbital motion of electrons in Ni nanocon-
tacts [358]. Electronic structures were calculated using density functional
theory in the local spin density approximation, allowing a proper treat-
ment of the details both the band structure and physical structure without
(over)simplifications. The simulated contact was in the single atom limit, on
the last plateau of conductance before the contact breaks. The MR due to a
domain wall in such a structure is found to be no larger than a few tens of
per cent. These authors conclude that a DW effect cannot explain the very
large MRs reported by experimental groups, and suggest that these are due
either to magnetostriction or adsorbed gas atoms.

The lack of consensus regarding the origin of the BMR is reflected in the
more recent experimental results investigating this phenomenon, which are
reviewed in the following section.

4.4.3 Experimental exploration

Aside from the initial measurements of BMR discussed in §4.4.1 above, there
was parallel interest at the some time on the quantisation of conductance
quantisation in ferromagnetic systems. Ludolph and van Ruitenbeek had
measured atomic contacts of various different metals fabricated using a me-
chanical break junction [354], primarily to study the relationship between
fluctuations in the conductance and the conductance itself. An important
side issue in their paper, from the point of view of this review, is that free
electron like metals, e.g. Cu, Ag, Au, and especially Na, tend to have con-
ductance plateaux at integer multiples of G0 = 2e2/h. This does not hold so
well for less free electron-like systems such as trivalent metals, exemplified by
Al, and the transition metals. Nb and Fe were studied, and were found to be
almost indistinguishable: the ferromagnetism of Fe does not seem to affect
the results, although the histogram does appear different to one collected
by Ott et al. [359] at magnetic saturation, although the temperature is also
different (room temperature in this latter case, as opposed to 4.2 K).

Ni nanocontacts have been studied by a number of groups previously
[360, 361, 362, 363, 364]. In one of the more recent experiments the changes
in the conductance steps with temperature, above and below the Curie point,
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and applied field were studied [365]. A strong peak in the conductance his-
togram at G0 was observed below TC that was completely suppressed in a
measurement above this temperature. A deep dip in the histogram between
∼ G0/2 and G0 was found at all temperatures upon application of a 1200 Oe
field. This was the first systematic investigation of the effects of the sample
environment on the conductance of a quantum point contact formed from a
ferromagnetic metal.

A much more pronounced effect was found by Ono et al. who measured
conductance histograms for Ni contacts at several different fields [366]. Very
well-defined peaks in conductance were observed at multiples of G0 at low
fields, whilst extra peaks at half-integer multiples of G0 were observed above
a field of 67 Oe applied along the wire axis (see Fig. 34) – lifting of a spin
degeneracy by a ferromagnetic state would give rise to just such an observa-
tion: switching to G0/2 conductance steps was observed in more traditional
quantum point contacts formed in 2 dimensional electron gases under high
field [367, 368]. No such change in conductance was observed for a control
Cu contact. Measuring of the magnetisation loop of the Ni wire showed that
the hysteresis loop closed up above fields of ∼ 60 Oe, indicating that the
sample is in a single domain state for fields higher than this value. This
paper concludes with the idea that a very large MR might be found in such a
contact under certain conditions, just as the first paper of the Garćıa group
was precipitating the BMR landrush of the next few years.

Further measurements in a perpendicular field showed that the switch
from 2e2/h to e2/h conductance steps took place at roughly the demagnetis-
ing field of the Ni wire, 3.1 kOe [369]. Theory examining this point in more
detail is to be found in Ref. 338. A shift of these conductance values to
1.4G0 and 0.7G0 at bias voltages higher than about 240 mV, reflecting the
non-linear I-V characteristic of these junctions has been measured [370].
Electrodeposited Ni nanowires showing some degree of G0/2 conductance
quantisation at zero field were fabricated by the Piraux group [371].

There have been other experiments detecting conductance quantisation
at values of G0/2 in ferromagnetic contacts. Komori and Nakatsuji mea-
sured the conductance of Fe nanocontacts in a UHV STM apparatus at 4.2
K [372, 373]. The contacts were prepared by gently touching a Pt-Ir STM
tip to a pure Fe film evaporated in a connected UHV chamber until a con-
ductance of about 5G0 was obtained. The tip was then drawn back until
contact with the film was severed. Reproducible results were obtained af-
ter a few extend/retract cycles of the tip, interpreted as indicating that the
tip is then coated with Fe atoms and that the contact is made purely from
that element. Conductance steps of size G0/2 were observed, although the
plateaux did not occur at integer multiples of this value. There was also an
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Figure 34: Conductance histograms for Ni without magnetic field (a) and
with the magnetic field of 10 (b), 33 (c), 50 (d), 67 (e), and 100 Oe (f).
Each histogram is constructed from 20 conductance staircase curves. Con-
ductance quantisation in steps of G0/2 seems to take place for fields of 67 Oe
and higher, a possible indication that the spin degeneracy of the conducting
channel has been lifted. After Ono et al. [366].
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attempt to measure the magnetoresistance of this contact: a clear switching
between two conductance levels differing by about G0/2 was observed for
a contact stabilised near a step, and more complex hysteretic traces were
found for contacts stabilised on plateaux. As the authors warn though, a
sound knowledge of the magnetostrictive properties of the contact is needed
before such data can be interpreted quantitatively. There have also been 10
nm point contacts fabricated to magnetite layers covered with a thin alu-
mina tunnel barrier with tunnelling atomic force microscopy [374], and some
field dependence to the conductance was found, although this aspect of the
experiment was not reported in great depth.

A common criticism levelled at these types of experiments on atomic wires
is that such structures are extremely hard to characterise: Rodrigues et al.
overcame this problem by forming nanowires inside a high-resolution trans-
mission electron microscope (TEM) and imaging them in real time during
measurement [348]. They examined wires formed from Co, Pd, and Pt, the
TEM images of these structures are shown in Fig. 35. The samples were
kept clean by depositing them as thin films covered in C capping layers, sub-
sequently burned off by high intensity electron irradiation inside the TEM.
Measurement of the conductance histograms showed peaks at G0/2 in Co,
Pd, and Pt atomic chains, although it was rather weak in the last case. This
was taken as evidence of ferromagnetic ordering in these nanostructures, al-
though the fact that these are transition metals may also play a role, as we
shall see below.

Yang et al. fabricated junctions electrochemically and measured them
in situ without exposure to air during the electroplating process [345]. Al-
though e2/h conductance steps were observed, indicating the absence of spin
degeneracy in these structures, no large MR was observed for junctions of
any conductance. This experiment tends to indicate that oxidation must
play a vital role in whatever mechanism leads to large effects. (This idea was
put forward by Garćıa in a short unpublished note at about the same time
[375].) The role of gas adsorbates was also investigated by Untiedt et al.
[376]. Atomic contacts of Fe, Co, Ni, and Pt were formed under a cryogenic
vacuum at 4.2 K from high purity metals. No conductance peaks were found
for any of these metals except at integer values of G0, with no indication of
the lifting of spin degeneracy. The most fascinating part of this experiment
was what happened when gases were introduced into the sample space – this
group had previously demonstrated that H2 molecules can conduct when they
are stretched between Au electrodes just after the metallic link has broken,
and an adsorbed molecule moves to fill in the gap [377]. The adsorption of
CO molecules onto the Pt electrodes showed a shift in the positions of con-
ductance peaks to half-integer multiples of G0, exactly the same observation
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Figure 35: HRTEM atomic resolved images showing the formation of sus-
pended chains of atoms just before the contact rupture. (a) Co. (b) Pd. (c)
Pt. These are possibly the only images showing the exact atomic arrange-
ments in a ferromagnetic nanocontact extant to date. After Rodrigues et al.
[348].
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that is often taken for a lifting of spin degeneracy. This group of authors
claim that only when conduction is controlled by a single s character (viz.
highly transmitting) channel can definitive experiments to detect the lifting
of spin degeneracy be carried out. The work of Suderow et al., where a con-
tact was formed between a gold STM tip and a gold layer evaporated on top
of the half-metallic ferromagnetic manganite La2/3Sr1/3MnO3 falls into this
class. The conductance histogram showed the typical peak corresponding to
the last gold contact before rupture at a value smaller than the quantum
of conductance, indicating that the current through the single atom contact
was partially spin polarised [378].

If BMR is ever to be employed in a real device structure it will need to be
implemented in some kind of planar technology. Scholz et al. have designed
pinning traps for walls in such structures by micromagnetic modelling [379].
There have been several recent attempts to fabricate planar versions of the
nanocontacts – some have already been mentioned, e.g. Ref. 352. This
approach has met with mixed success. In general the formation of atomic
scale structures using conventional lithography is all but impossible, even
with the highest resolution electron and focussed ion beam tools available
today. Florez et al. have formed junctions of NiFe down to sizes of about
15 nm, which were shown to trap domain walls using MFM [380]. Drops in
resistance, when scaled to the size of the wall, indicated that the presence
of a wall in a contact actually increased conductance by a few per cent in
these devices, although they claim that one single device showed a drop in
conductance of the same order of magnitude.

To address some of the criticisms of their earlier work, Garćıa et al.
formed pseudo-planar devices, showing some very large effects initially, but
these soon vanish after field cycling [381]. The initial effects were of similar
size for both Ni and NiFe contacts – the effect of magnetostriction should be
much reduced in the latter if good quality permalloy is formed.

Lepadatu and Xu observed a drop in resistance of permalloy and Ni
nanocontacts (down to ∼ 50 nm across) with increasing current that they
ascribe to the removal of a domain wall by current induced wall motion –
current densities of 1011 A/m2 were required to cause the resistance drop
[382, 383]. The largest drop observed was of the order of 0.1 per cent –
equivalent to 3 per cent MR in the wall after correction for the current dis-
tribution and domain dilution in the device, substantially larger than the
AMR. The authors do not say whether the effect is reversible upon field
cycling, as would be expected for a magnetic domain wall mechanism.

On the other hand several sets of well-controlled junction devices have
not found any large MR effects. Stable Co constrictions of nm scale in two
different geometries (examples are shown in Fig. 36) only show effects of
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Figure 36: Scanning electron micrograph of three typical nanoconstrictions
with different widths on a Co film on Si. The width decreases from 130
nm on the right to 45 nm on the left. Although junctions with G ∼ G0

were obtained, none of these structures showed MR in excess of 1 %. After
Montero et al. [384].

the scale that might be anticipated from AMR, all below 1 per cent [384] in
spite of a diligent search. Very carefully fabricated contacts, made by much
the same method as in Ref. 327, using a nanohole in a membrane, were
fabricated by Ozatay et al. [385], who formed Ni-Ni contacts with one side
exchange biased using FeMn. No effect larger than a fraction of a per cent
was found (Fig. 37), although point contact spectroscopy revealed that the
conduction was at least partly ballistic. Contact diameters, estimated from
the junction resistances using the Sharvin formula, were as small as 3 nm.

Egelhoff et al. have carried out a wide-ranging and careful series of ex-
periments on variety of different nanocontact geometries, but found that
whenever a large MR was observed it was caused by the presence of exper-
imental artifacts [386]. Various different popular geometries often used for
BMR measurements using free-standing wires – sometimes glued to a sub-
strate – were considered, and shown to be susceptible to the generation of
various different artifacts involving magnetostrictive or magnetostatic forces
making and breaking the contact. Thin film Ni samples were found to of-
ten detach from thermal oxide substrates in contact regions, then becoming
liable to display the same artifacts as free wires. Care is also needed when
preparing electrodeposited contacts, as it is possible to generate magnetic
nanoparticles in the contact region that can then move under the application
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Figure 37: (a) Room-temperature SQUID magnetometry measurement of
M vs H for a NiNi nanofabricated point contact device. The thick and
thin horizontal arrows represent the magnetisation directions of the free and
pinned layers, respectively. There are two independent hysteresis loops for
the free and fixed layers. (b) Room temperature magnetoresistance scan for a
Ni Ni nanocontact. (c) Magnetoresistance as a function of device resistance:
solid circles are the data for Ni Ni point contacts. The dashed line is a linear
fit to the data. In the ballistic transport regime, a 100 Ω device is expected
to have a minimum contact diameter of ≈ 3 nm. After Ozatay et al. [385].
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of a field and cause large resistance changes [387, 388]. These particles could
be transferred to unplated contacts and similar, BMR-like effects, found.
This group went on to construct an extremely well-controlled electrodeposi-
tion environment where the contact can be stabilised and maintained at a
very well defined resistance, and MR measurements made in situ [389]. No
BMR of any magnitude was detected for Ni contacts in any field orientation
– just as was reported by Yang et al. in Ref. 345.

There are claims of modest success in the fabrication of planar junctions,
though. There are a pair of unpublished reports by Mukherjee et al. where a
20 per cent effect in a FIB cut 40× 10× 10 nm3 Ni80Fe20 junction is claimed
[390], and atomic scale modelling of the magnetic configuration of such a
structure is described [391]. A report of an MR of 18 per cent in a similar
35 nm device was published recently [392]. Ni nanocontacts were prepared
by Ohsawa using a combination of FIB patterning followed by ion milling
combined with in situ magnetoresistance measurements [393]. The sample
was observed by TEM after milling. One side of the contact was coated
with CoPt to give a hard-soft spin-valve-like action to the switching of the
magnetisations on either side of the contact. A clear spin-valve switching
signal was observed, although the signal was never more than about 0.5 per
cent. The resistances of these samples were in the range of tens to a few
hundred Ω, stable over several days under UHV storage conditions. These
became unstable in minutes when exposed to air. Wegrowe et al. studied
carbon encapsulated magnetic nanoparticles embedded in a Co or permalloy
matrix in a nanowire geometry [394]. Magnetomechanical effects leading to
huge MR were found, but some tens of per cent of MR remained after they
have been accounted for – although it is difficult to be certain of the exact
conduction path in such a structure.

The group of Viret et al. in Saclay have studied truly atomic scale con-
tacts, and demonstrated conductance through a single atom of Ni [395].
These samples were mechanical break junctions showing clear conductance
quantisation, measured at low temperatures – the junctions were formed in
an inert He atmosphere. Complicated MR responses of a few tens of per
cent were found, composed of smoothly varying curves, with some discrete
jumps at largely reproducible field values: some data is shown in Fig. 38.
The field direction dependence indicated that this is an effect with the same
symmetry as the AMR, and could be interpreted in terms of the spin-orbit
coupling of the orbitals in atoms forming the contact. In a follow-up paper
they described how to account for and minimise magnetostrictive effects in
these junctions [396]. Since orbital moments are generally found to be en-
hanced in low-dimensional systems, one might expect that their effects on
the transport would also be augmented. Indeed, a so-called giant anisotropic
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Figure 38: Resistance as a function of applied field in the atomic contact
regime of a Ni-Ni mechanical break junction. The field is applied transverse
(a) and longitudinal (b) to the bridge (i.e., the current). The inset is a
schematic of the expected geometry of the atomic constriction. After Viret
et al. [395].

MR has recently been detected in an Fe atomic contact by this group in both
the atomic contact and tunnelling regimes [397], as well as in Ni by Yang
et al. [398]. A theoretical description of the so-called “ballistic anisotropic
magnetoresistance” has been given by Velev et al. [399].

Most recently, the group of Chopra et al. continue to insist that the effects
they measure are real, and claim no magnetostriction-related artifacts in Ni
contact showing large MR in the sub-G0 conductance limit [400]. They argue
that at this point even a sub-Å motion of the contact would result in a total
loss of conductance. However, the MR traces that they measure are noisy
and rather irreproducible – they certainly do not show the clear features of
those in Ref. 395, which clearly occur at particular values of applied field.

Work in this area continues in a number of groups. Whilst very large
effects have been seen in metallic contacts, it seems as though the effect
tends to vanish rapidly as efforts to exclude artifacts are made, and there is
no example of a contact that shows BMR in a stable fashion over long periods
of time. It seems as though the large effects are confined to samples where
the characterisation of both the atomic and magnetic configurations leave
something to be desired. So long as this is the case it seems as though the
theoretical predictions of very large domain wall magnetoresistance effects
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in these junctions will remain to be confirmed convincingly. Nevertheless a
large number of intriguing experimental trends remain unexplained, and it
is unlikely that there will be no further breakthroughs in this area.

As a closing remark, few attempts to examine nanocontacts in the new
class of ferromagnetic semiconductor materials have been made so far. In
principle the requirements are less stringent as the much longer Fermi wave-
length in semiconductors means that one can arrive at conductances ∼ G0

with conventional, albeit high-resolution, lithography techniques: although
the heavy doping required to generate ferromagnetism will reduce the length-
scales somewhat over those in usual III-V heterostructures. The discovery of
a 2000 per cent effect in a (Ga,Mn)As double constriction (see Fig. 39) pat-
terned into a wire by electron beam lithography has been explained not by
a domain wall resistance effects, but by tunnelling magnetoresistance [401].
At the edges of a semiconductor wire Schottky sidewall depletion occurs –
at the constrictions these depleted regions overlap giving rise to a narrow
barrier of material that is neither conducting nor magnetic. Since the scale
of the sidewall depletion is expected to be spin-dependent, the width of this
barrier naturally depends on the relative magnetic configuration (parallel or
antiparallel), giving rise to exponentially large effects as the electrodes reori-
ent. Further studies in similar (Ga,Mn)As devices have revealed a form of
tunnelling anisotropic magnetoresistance in lateral nanocontacts [402]. Con-
duction in this material was found to be highly anisotropic, as large tunnel
AMR effects have been just been observed in vertical tunnelling stacks with
one or more GaMnAs electrodes [403, 404]. No doubt other exciting new
discoveries will be made as work goes on to examine other ferromagnetic
semiconductor systems, some of which show promise at room temperature
[405, 406].

To briefly summarise at the end of this section, there is an extensive lit-
erature going back many decades where the resistance of domain walls has
been measured. It seems fair to say that most of these experiments have not
detected intrinsic effects, but voltages caused by other changes in the electric
field with domain structure due to anisotropic MR, Kohler MR or Hall effects
have been been measured. Unequivocal intrinsic effects have been detected in
high Q materials such as L10 ordered alloys and SrRuO3 by various groups.
Clever use of exchange spring heterostructures or lithographic nanostructur-
ing has also revealed intrinsic effects. These have all shown a rise in resistance
within a domain wall. The magnitude of the rise is very much in line with
what might be anticipated on the basis of the spin-mistracking/spin-mixing
models described in some detail in the previous section (§4.2). An interesting
exceptions seem to have been found in the GaMnAs dilute magnetic semi-
conductor system, and there is no doubt that future developments with such
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Figure 39: False-color SEM picture (side view) of a double constriction fabri-
cated from (Ga,Mn)As showing part of the outer wires with the voltage leads.
Note the resist that is still present on the wire. The insets show the rela-
tive magnetization of the parts (left) and the resulting schematic MR trace
for sweep-up (solid line) and sweep-down (dashed line).Overlapping Schottky
sidewall depletion in the constrictions causes a double lateral tunnel junction
to be formed, which displays a helium temperature magnetoresistance ratio
∼ 2000 %. After Rüster et al. [401].

materials will bring may new results.

102



5 Current-Induced Domain Wall Motion

Bearing in mind the third of Newton’s laws, it seems obvious to ask that if
the presence of domain walls can affect the flow of a spin-polarised current,
can the the flow of the current affect the walls themselves?

Although this question was first posed (and answered in the affirmative)
in the 1980s, there has a been a recent resurgence in this field, for much the
same reasons that the question of domain wall resistance has been returned
to lately: the availability of high quality thin films and multilayers, supe-
rior nanofabrication facilities allowing well-controlled experiments, and the
promise of lucrative technological applications.

In the last case the idea of electrically manipulating magnetic domain
states is particularly attractive from the point of view of writing data in a
magnetic random access memory (MRAM) [407, 408]. Current technologies
rely on the application of localised magnetic fields generated by arrays of
conductors that overlie the MRAM elements themselves, which are usually
magnetic tunnel junctions. A current flowing along one conductor, known
as the word line, “half-selects” all the MRAM elements in the row that lies
beneath it, reducing their coercive field. A current is then passed through
the perpendicular conductor, the so-called bit line, that intersects the word
line at the MRAM element that is to be switched. The current in the bit line
generates a field that is larger than the reduced coercivity caused by the word
line, but is smaller than the coercivity of all the other elements. In a perfect
system only the element at the intersection of the energised word and bit lines
will switch. In practice, extremely tight engineering tolerances are required
to ensure this, and cross-talk is a continuing worry in trying to implement
this technology – one of the reasons for strong competition from phase-change
technologies. New schemes, such as toggle MRAM [409], whilst improving
matters, do not overcome the basic shortcoming of the scheme that one must
perturb an entire row of elements to switch just one of them. Added to this is
the fact that driving the currents through the conductors is an energetically
costly way to switch the magnetisation of a single element.

Using an all electrical scheme where the application of a spin-polarised
current pulse performs the switching is very attractive, as it is straightforward
to confine a current to a single element in the MRAM array, as well as the
required current pulses consuming much less energy. The motion of a domain
wall can be used to accomplish this, either by driving it back and forth past
the point where the data is read out in the storage layer, or using the highly
localised magnetostatic field generated by the wall to switch an adjacent
element.

We shall begin by reviewing the experimental progress in this field before
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turning our attention to the theory that has been developed to describe and
interpret these results.

5.1 Experimental results

The first work on the application of forces to a domain wall using a high
current density pulse was carried out by Luc Berger with a variety of co-
authors in the 1980s. As well as several purely theoretical papers that we shall
review in §5.2 below, there are some reports of experiments being carried out
in sheet films of NiFe of various compositions around the permalloy one – in
fact it seems as though the zero magnetostriction composition of Ni81Fe19 was
being aimed for in each case, but the difficulties of preparing stoichiometric
alloys prevented this from being achieved accurately.

In the first of the papers, the domain structures of films of Ni87Fe13 of ∼ 28
and ∼ 42 nm thickness were imaged using a Faraday effect microscope [410]
as current pulses of a density up to ∼ 1011 A/m2 were passed though the film.
The current pulses were about 2 µs long and of up to 45 A amplitude. Careful
control experiments were done to show that the observed effects were not due
to the stray Oersted fields generated by these high currents passing through
the sample or the leads that were connected to it. Moreover, the fact that
the walls always moved in the opposite direction to the conventional current,
viz. in the direction of the electron drift motion, is compelling evidence that
it is these carriers that are exerting pressure on the wall. The thinness of
the films ruled out the possibility of hydromagnetic drag, related to the Hall
effect, causing the wall motion. These results were interpreted in terms of
a so-called s-d exchange force (see Ref. 411, discussed in more detail in
§5.2 below), with the s-like carriers being the itinerant electrons carrying the
(spin-polarised) current and the d-like carriers being the localised magnetic
moments that form the magnetisation of the sample. After a quantitative
analysis of the domain wall motion the coupling constant of the drift velocity
(∝ the current density) and the force on the wall was measured, and found
to be of the same order of magnitude as predicted by the theory [411]. In an
extension of this experiment, Hung and Berger measured the differing effects
of high current density pulses on Néel and cross-tie walls in thin permalloy
films [412].

Experimental efforts to research these topics then disappeared for many
years before the discovery of current driven switching effects in multilayer
point contacts [413] and nanopillars [414] by the group of Buhrman at Cor-
nell. These experiments were the first confirmations of the theoretical idea
of a spin-transfer torque of Slonczewski [415], and built on previous experi-
mental results where hints of the presence of this torque had been observed
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[416, 417, 418]. The basic principle of current driven switching is that a
current driven from one magnetic layer into another that is antiparallel must
relax its spin polarisation to match that of the layer it is entering over the
scale of a spin diffusion length. As the spins in the conduction current (s-like
carriers) relax into their new direction, there is a change in the angular mo-
mentum of the system by ~ for each spin that flips. This continuous change
of angular momentum as the current flows corresponds to a torque, ~PJJ/e
(J is the charge current density, PJ is the spin polarisation of that current),
that is exerted on the angular momentum possessed by the lattice (d-like
carriers). If this torque is sufficiently large to overcome the anisotropy bar-
rier of the layer (the ∂E/∂θ of which will act as a restoring torque) then its
magnetisation can be switched in direction to match the incoming current.
Reversing the current will reverse the sign of the torque, switching the layer
back. It is clear that the relaxation of accumulated spins in a ferromagnet is
at the heart of this effect.

Injecting spins into an oppositely polarised domain is obviously very sim-
ilar in nature to injecting them into an oppositely polarised layer. Hence
one will anticipate that as the carriers enter the oppositely polarised domain
they will exert a torque on the volume of the domain within one spin diffu-
sion length of the wall as they relax their spin directions. Although in this
hand-waving explanation we have tacitly assumed that ℓsd ≫ D, it is pos-
sible to generalise to cases where this might not be the case. It is therefore
of obvious interest to search for these effects experimentally, as it will hence
be possible to estimate the degree of spin accumulation that does indeed
take place at a domain wall (recall the controversy over this point in Refs.
90, 195, 196, 197, 199). It was not long before experimental searches were
begun in nanostructures more suited to the high current densities required
than the sheet permalloy films of Berger and his colleagues.

Perhaps the first published experimental report of this renaissance in
interest was from Gan et al., who observed domain wall motion in 20 micron
wide permalloy wires using a magnetic force microscope [419]. They found
that for current densities exceeding 2.5× 1011 A/m2 the Bloch walls crossing
the wire, along with the closure domains at ether end of them, could be
moved distances of the order of a micron by pulses with an exponential fall
time of about 1µs – some representative MFM images are shown in Fig. 40.
The exact distance travelled by the wall depended sensitively on local pinning
conditions, as sometimes abrupt jumps in wall position were seen, similar to
Barkhausen effects. Importantly, the direction of wall motion was always
opposite to the conventional current, that is to say it followed the motion of
the electrons through the wall, a key prediction of the spin-transfer theory.
A current pulse-driven reversible single-twin vortex transition was observed
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Figure 40: A sequence of magnetic domain propagation with successive cur-
rent pulses. 40 µm × 25 µm MFM scans of the same area of the surface at
(a) the initial states, (b) after one pulse and (c) after two pulses. Arrows are
drawn to highlight topographic defects to serve reference points for domain
motion. The current direction is down and the domain walls move in the
opposite direction. (d) Zoom-in-image of a segment of a Bloch wall. The
boxes in (a), (b) and (c) show regions where the wall structure change with
pulse. After Gan et al. [419].

by MFM in the same laboratory in micron scale permalloy islands [420].
Versluijs, Bari and Coey measured a non-linear I-V characteristic in their

magnetite contacts [319], the same ones that showed a large nanocontact
magnetoresistance discussed in §4.4. This non-linearity was ascribed to “spin
pressure” applied to the wall by the very high current density, ∼ 1013 A/m2,
in the nm-sized contact. This effect is different to the spin-transfer torque,
a transfer of angular momentum: “spin pressure” arises from a force caused
by the transfer of the linear momentum of the moving electrons as they are
back-scattered by the highly magnetoresistive wall in the nanocontact. As
the wall is pushed out of the nanocontact into the bulk of the crystal by
this pressure it must expand in area, and so the wall energy must increase
in proportion – this energy gradient represents a restoring force pushing the
wall back in to the constriction. As the current is increased the wall will
expand out of the nanocontact in what Versluijs et al. have termed the
“magnetic balloon” effect. They estimated that the wall was pushed out of
the nanocontact by ∼ 10 nm in their experiments. Céspedes et al., working in
the same laboratory, later reported on telegraph noise in Ni nanoconstrictions
fabricated in a planar geometry using electron beam lithography [421], related
to the motion of a domain wall as it reconfigures itself as actual material is
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moved around by the electron wind electromigration.
The Orsay group were amongst the first to reproduce the Cornell spin

transfer torque results using nanopillars fabricated from Co/Cu/Co trilayer
structures [422], clearly demonstrating that oppositely directed currents at a
high enough density could couple the layers either ferromagnetically or anti-
ferromagnetically by measuring the GMR response of the pillar to an applied
field under different current bias conditions. The same group soon moved on
to study domain wall motion in planar 1 µm wide wires patterned from a
CoO/Co/Cu/NiFe film spin-valve structure – the CoO provided pinning be-
low its Néel temperature of 290 K. The Co layer was maintained in a single
domain state throughout the experiments by this pinning. The domain state
of the NiFe layer was then assessed by measuring the GMR of the sample,
which was determined by the fraction of the NiFe layer that had its magneti-
sation lying parallel or antiparallel to the that in the Co. As a wall moves
along the wire, reversing the magnetisation direction from one sense to the
other a continuous change in resistance is expected, and the wall position can
be accurately determined, as was demonstrated by Ono et al. in a similar
(but unpinned) structure [423].

In the first of a series of publications, Grollier et al. measured the re-
sponse of a spin valve sample with a notch positioned one-third of the way
along its length [424]. A standard magnetoresistance loop showed that a
wall would be trapped in the notch over some field range during switching in
both directions. With the sample prepared by field cycling to have the wall
in the notch, measurements of resistance as the current bias is swept were
recorded, showing sharp changes as the wall was swept out of the contact
and the spin-valve wire takes up a fully parallel or antiparallel state. The
lowest current density capable of inducing the switching effect was 0.98×1011

A/m2, or 1.8 × 1010 A/m2 if only the current flowing through the permalloy
layer is considered. However the findings in this paper are at odds with the
spin-transfer theory in that the direction of motion of the wall is independent
of the direction of flow of the current – the authors themselves speculated
that the wall displacement they observed might be related to the longitudi-
nal components of the Oersted field generated by the redistribution of the
current flow as it passes through the constriction.

This problem was resolved in the next paper from this group, where
the current direction did control the direction of wall motion [425]. In this
experiment the spin-valve stack was identical but there were no artificial
domain wall traps introduced: the only pinning was due to the naturally
occurring defects in the 0.3 µm wide sample. In the measured MR loop the
permalloy layer was seen to switch in a series of a few abrupt steps, each
separated by a few Oe. It was possible to pause on one of the plateaux
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between the steps and reduce the field to zero, placing a domain wall on one
of these weak pinning sites. Cycling the current through the device it was
possible to reversibly switch the wall between the various pinning centres, as
seen in Fig. 41. This reversibility of the motion as the current is reversed
is key to demonstrating that the results are due to spin-transfer effects, as
neither applied fields or thermally activated depinning due to Joule heating
under the high current density applied will give rise to such behaviour. The
critical current density to initiate wall motion was only ∼ 1010 A/m2, an order
of magnitude lower than in the various nanopillar devices studied up to that
date, e.g. Refs 414, 422. More details of this experiment were reported in a
third paper [426]. They included the applied field dependence of the critical
current density, which allowed the strength of the pinning potentials to be
determined in terms of the effective fields they exert on the walls as they are
pushed by the flow of polarised carriers.

Further experiments on similar structures were performed in collabora-
tion with Lim, Devolder and Chappert to determine the effect of very short
(sub-nanosecond) current pulses on domain wall motion [427]. This 0.3 µm
wide spin-valve stripe was coupled to a coplanar waveguide structure to give
high bandwidth connections for routing the pulses through the device, and
artificial pinning notches were introduced once again. The wall motion was
again probed using magnetoresistance with the measurement electronics cou-
pled in to the sample using a bias tee. Walls were placed in the notch using
a field cycling procedure, and then displaced from it by the pulse. No de-
pendence of critical current density or wall displacement on pulse width was
found down to 0.4 ns, the shortest pulse measured. There is a dependence
on the pulse current amplitude, with the critical currents of the order of 1010

A/m2: once this value is exceeded the wall is ejected from the end of the
wire (a displacement of at least 20 µm) for all pulse durations.

The depinning of a domain wall at a patterned pinning site was studied
by Kimura et al. in a pair of related papers [428, 429], where they studied
a 200 nm wide NiFe wire attached to a 1 µm wide pad – the pad has a
much lower coercivity and so creates domain walls at the point where it is
attached to the the wire upon switching, as shown in Fig. 42. The magneti-
sation reversal of the pad and wire were monitored using low noise sensing
of the AMR as the magnetisation rotated, shown in the upper panel of that
Figure. The depinning field of the wall from this point was measured as a
function of current: it was found to decrease for both current directions but
much more rapidly for current flow where the electron current is travelling
into the wire. The current dependence of the depinning field was fitted well
by a parabola, not unexpected since the spin-transfer effect will be linear
in current but Joule heating will be quadratic. This fit yielded a coefficient
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Figure 41: Resistance vs current in very low constant field H along a spin-
valve stripe. (a) H = 4 Oe (� motion from 2 to 3 with a positive current;
N motion from 2 to 1 with a negative current); (b) H = 3 Oe (motion from
2 to 3 with a positive current and back to 2 with a negative current). The
results in this panel indicate the fully reversible nature of the control of the
wall position. The numbers 1, 2, and 3 refer to the DW configurations and
corresponding resistance levels associated with previously identified intrinsic
pinning defects. A small contribution (∼ I2), due to the joule heating (∆T ≈
5K), has been subtracted for clarity. After Grollier et al. [425].
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for the linear term that was in good agreement with the spin-transfer torque
model for reasonable assumptions about the polarisation and spin diffusion
length in NiFe [428]. This asymmetry was reproduced in differential resis-
tance measurements where the depinning of the domain wall, detected as a
sharp spike at the depinning field, was detected only for spin currents flowing
in the direction of wall propagation [429].

Electrochemically deposited nanowires grown in ion-track etched poly-
carbonate membranes, typically 80 nm in diameter, were studied by Kelly
et al. [430]. It was found that the angular dependence of the switching field
for the wires, monitored by magnetoresistive means, was different for current
flowing in different directions: but flipping both current and field restored
the symmetry, suggesting a geometric asymmetry in the wire itself. More
complex nanowires were also grown, with a half nickel wire attached to a
Co/Cu multilayer that can act as a spin injector into the Ni. Again a dif-
ference in switching field was detected, and in this case it was possible to
ascribe it to the spin-polarised current injected from the multilayer exerting
a torque on the moments in the Ni.

Preparation of well controlled domain walls is not straightforward in
straight wires: rings offer a convenient means of generating head-to-head
walls by demagnetising the structure into the so-called onion state [431, 432,
433], where two curving domains pass around the two halves of the ring. It
is possible to generate such a wall by demagnetising the ring in a particular
direction and then moving the wall around the ring by applying a small field
in that direction. In this way it can be made to move past some electrical
contacts attached to the ring and this motion can be detected by the small
drop in resistance, due to the AMR, when the wall lies between them. Kläui
et al. used this scheme, measuring the passage of the wall using a lock-in am-
plifier to detect a small ac current, under different dc current bias conditions
to detect current driven wall motion in ∼ 1 µm diameter permalloy rings
[434]. The switching fields were shifted to higher or lower values depending
on whether the spin-polarised electron flow was against or with the direc-
tion of the applied field respectively. Similar results were found in notchless
rings where the current flow will not be distorted by the constriction and the
generation of longitudinal components of the Oersted field can be categori-
cally discounted. In a further study that combined numerical micromagnetic
calculations with experiments on rings a controllable wall motion was demon-
strated using 20 µs wide current pulses [435]. A domain wall could be ejected
from between two voltage probes in a similar geometry to the previous ex-
periment, and then reversibly returned to between them several times in
succession. Careful choice of the contacts at which the current pulses were
injected corrected for possible overshoots of the wall position during motion,
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Figure 42: Typical longitudinal magnetoresistance of the fabricated permal-
loy wire measured at 4.1 K together with the calculated magnetic configura-
tions which correspond to the magnetoresistance indicated by letters (a-d) in
the figure. The arrows indicate the resistance jumps due to the magnetisa-
tion reversals. These were found to be suppressed asymmetrically by applied
dc currents in accord with the expected behaviour of the spin-transfer effect.
After Kimura et al. [428].
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as the wall cannot pass beyond the contact where the spin-transfer current
originates. For rings fabricated from thin permalloy (5-10 nm) the agreement
between calculations using a version of the LLG software [436] that contains
an adiabatic spin-transfer term based on the Slonczewski model [415] and ex-
periment is good, with a critical current density of ∼ 5 × 1011 A/m2 needed
to initiate wall motion. For rings fabricated from thicker permalloy films,
where vortex walls form, the calculation overestimates the experimental crit-
ical current density of ∼ 10 × 1011 A/m2 by roughly a factor of 3. (There
is a similar report of the generation and current induced motion of vortex
walls in submicron permalloy U-shaped wires, which, of course, incorporate
half a ring [437].) This difference was ascribed to either the need to treat
non-adiabatic effects [438] or take account of edge roughness [439, 440]. The
degree of control and reproducibility demonstrated in this ring structure is
essential for the possible use of spin-transfer mechanisms to be used as a
reliable means of writing data to a MRAM device.

The signature of spin-transfer effects is some asymmetry between do-
main wall motion and current direction. Tsoi, Fontana and Parkin exploited
this to demonstrate spin transfer effects in a CoFe nanostructure, where the
wall motion was detected magnetoresistively as the walls entered notches, as
above [441]. The nanostructure was straight but had a diamond shaped wall
nucleation pad at one end, currents flowing away from the pad displaced
the walls from it (so long as they exceed ∼ 1011 A/m2 in density), whilst
those flowing towards the pad never moved the wall. A curved, C-shaped
permalloy wire with a nucleation pad (shown in the left hand panel of Fig.
43) was used by Vernier et al. to perform a related experiment [442]. The
wall was positioned in one corner of the C by a rotating field before being
subjected to a dc current: the subsequent motion was detected by a Kerr
effect nanomagnetometer [443]. As the current density was increased the
applied field required to ensure wall propagation along the final branch of
the C under the focussed laser spot decreased, as expected for Joule heating.
However a small difference in propagation field was detected for opposing
current directions, as expected for spin-transfer effects. A current density of
∼ 2 × 1011 A/m2 was needed to give rise to a difference in propagation field
of 1 Oe, with a rough proportionality observed between the two quantities.
Finally, reversible field free motion of the wall driven only by a spin-polarised
current was demonstrated by these authors.

Vernier et al. were able to estimate the pressure applied to the wall per
unit current density as about 0.44 nN/A, of the same order of magnitude
as the values (0.6 nN/A) that can be derived from the early experiments of
Berger and colleagues [410, 412]. The measurement of the current induced
wall velocity was accomplished by Yamaguchi et al. using a bent L-shaped
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Figure 43: (Left) Electron micrograph of a C-shaped magnetic nanowire
beneath non-magnetic electrical contact pads. Fabrication was by electron-
beam lithography using a 30 kV electron acceleration voltage, polymethyl-
methacrylate resist, metallisation by thermal evaporation and performing
lift-off in acetone. The nanostructure had 80 µm long horizontal arms, 60
µm long vertical arm and corners with a turning radius of 10 µm. The
inset shows a high-magnification image of a vertical part of the nanowire.
(Right: A) Horizontal magnetic field for domain wall propagation, Hp, of
the lower arm of the magnetic nanowire in a counter-clockwise applied ro-
tating magnetic field having Hx = 112 Oe and Hy = 53 Oe (peak values),
as a function of the magnitude of the current passing through the nanowire.
� data points show negative current, • data points show positive current.
(Right: B) The difference, ∆Hp between Hp values for positive and negative
current [Hp = Hp(−I) −Hp(+I)], as a function of current magnitude. This
difference, ∝ I, is the clear signature of spin-transfer effects. After Vernier
et al. [442].
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wire geometry with an injection pad, with the detection of individual walls
by carried out by MFM [444]. Walls were nucleated at the pad and placed
in the corner of the L by an appropriate sequence of applied fields. A series
of pulses of fixed amplitude and variable (∼ µs) duration were applied to
the wire and the wall displacement measured, with the wall position being
reset in the corner each time. A plot of displacement against pulse duration
will have straight line form with a slope of the wall velocity. This velocity
was measured in the narrow range of current densities between the onset of
motion (∼ 1.1×1012 A/m2) and the degradation of the wire by Joule heating
(∼ 1.3×1012 A/m2). (In a subsequent paper from this group of authors they
estimated the rise in temperature of their permalloy nanowire as a result of
the application of the pulse by measuring its resistance during the pulse and
then comparing this with an extrapolation of the known R(T ) behaviour of
the wire [445]. Since they based their current densities in Ref. 444 on the
room temperature resistance these current densities should be revised down
into the high 1011 A/m2 range. The wire was found to rise to temperatures
of 750 K for a true threshold current density of 6.7 × 1011 A/m2, and the
temperature exceeded the Curie point of the wire for J > 7.5 × 1011 A/m2.)
The velocities found were a few m/s, rising from 3 m/s to 5 m/s over the
range of current densities investigated. This velocity is rather slow when
compared to the devices previously discussed, that were switched in sub-ns
times by Lim et al. [427], where motions of at least 20 µm were observed,
implying wall velocities three orders of magnitude faster for the Lim et al.
results. It is also very much slower than the velocities that can be achieved
when the walls are driven by a field [160].

All the results so far discussed have used conventional 3d magnetic met-
als as the basis of the experimental system investigated. As in many areas
of spintronics, the use of dilute magnetic semiconductor (DMS) materials
offers new experimental opportunities. The most widely studied of these is
(Ga,Mn)As, and Yamanouchi et al. have demonstrated current induced wall
motion with a remarkably low critical current density in this material [446].
They grew their (Ga,Mn)As on an (InyGa1−y)As buffer layer to induce a
tensile strain and hence an out-of-plane anisotropy. Three different thickness
areas were patterned in a 20 µm wide channel, each with associated Hall con-
tacts. The different thickness sections have different coercive fields, and steps
between the different segments of the channel act as pinning sites for domain
wall motion. Hence it was possible to prepare various different magnetic
states by careful choice of applied field history. A perfectly reproducible and
reversible domain wall motion between the steps was observed for alternating
100 µs wide current pulses, with a critical current density of only 108 A/m2,
startlingly lower than in any of the metals results given above, as seen in the
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Figure 44: MOKE images of a (Ga,Mn)As sample using 546-nm light at
∼80 K. Black and white regions in the channel correspond to positive and
negative values of M , respectively. (a) The MOKE image of the initial state,
where the domain wall is at the left edge of region II. Regions I, II and III are
indicated by arrows in the image and correspond to lithographically defined
regions of differing vertical height. (b) The MOKE image after application of
a current pulse I = −300 µA (100 ms), showing that the domain wall is now
at the right edge of region II. c, A positive current pulse of I = +300 µA (100
ms) switches the domain wall back to its original position. The wall moves
in the opposite direction to the conventional current. After Yamanouchi et
al. [446].

MOKE images of the device shown in Fig. 44. The efficiency of the effect
(the ratio of the change in the angular momentum of the magnetisation spin
system to the total number of polarised carriers passing) is of the order of
8 %, roughly in line with the results from the permalloy wire of Yamaguchi
et al. [444]. Hence, one reason why the critical current density is so much
less is the much smaller magnetisation of the (Ga,Mn)As that the current
must move, so a much smaller torque is required. However the details of the
p-d exchange that must be taking place if spin-transfer is occurring are not
completely clear at present.

As a brief aside, the most common device used as an MRAM element
is a magnetic tunnel junction. The ability to switch an MTJ using spin-
transfer torque in a nanopillar geometry was considered very challenging, as
the high resistance of the barrier prevent high current densities from eas-
ily being applied to such devices without destroying the sample. However,
the low current densities needed to switch DMS materials meant that this
was achieved readily in a (Ga,Mn)As/GaAs/(Ga,Mn)As trilayer device at
current densities as low as 1× 109 A/m2 [447]. The feat was recently accom-
plished in metal based MTJ structures by the Cornell group, who fabricated
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CoFeB/AlOx/CoFeB junctions with ultrathin barriers (only 3.5 Ωµm2 spe-
cific barrier resistance) and switched them with current pulses of density
∼ 5 × 1011 A/m2 [448]. These current densities are comparable to those
needed to switch similar layers in CPP spin-valves with metal spacers, indi-
cating that it is the flow of the spin current that matters, rather than the
means by which the current is carried. Subsequently the same group were
able to tune the spin-transfer torque up or down in MTJ devices by the ad-
dition of a further ferromagnetic polarising layer [449]. Similar results have
been achieved by Huai et al. [450]. Theory of spin-transfer torque in a MTJ
device was given by Slonczewski [451].

A special case of current driven domain wall motion is the injection of a
bubble domain into a Co film by spin-transfer torque using a non-magnetic
point contact by Chen et al. [452]. Previously spin-wave excitations caused
by the injection of high current densities had been observed in multilayers
[416, 417] and then in single magnetic layers [453] with the current injected
through such a point contact. In the experiment of Chen et al., the surface
of the Co was allowed to oxidise to give an exchange bias effect at low tem-
peratures, stabilising the magnetisation. The ability to generate torques at
the interface of a single magnetic layer at first seems counter-intuitive, but
recalling our discussion of the spin-polarisation of a diffusive current in §2.3,
we can see that the current in the lead is polarised by spin-accumulation
before it enters the layer. This gives rise to spin-wave instabilities even in
the case of a perfectly uniform initial magnetic state [454, 455]. The tiny
domain that is switched under the contact is estimated to be only 5 nm in
size, but gives rise to a considerable magnetoresistance, by which means it
can be easily detected.

The most recent development in the spin-transfer physics of nanopillars is
the generation of sustained microwave frequency dynamics in the appropriate
field and current regime, which has been measured in both the frequency
[456] and time [457] domains by the Cornell group. Extremely high Q =
∆f/f factors of a few 104 for the oscillation have been demonstrated in
point contact samples by Rippard et al. [458], and coherent phase-locking
of nearby point contact devices has been recently shown [459, 460]. The
effect has been modelled by Xi and Lin using a modified form of the LLG
equation that contains an additional spin-transfer torque term to drive a
macrospin representing the entire layer [461]. As yet there is no analog of
these experiments in using the spin-transfer torque to excite dc current driven
oscillatory DW motion, although an unusual rotational motion of a domain
wall within a nanopillar has been predicted [462]. This effect can be used to
operate a nanoscale rotary motor or microwave oscillator that is driven only
by a dc current [463, 464].
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Nevertheless there was an extremely interesting report recently from Saitoh
et al. of a current induced resonance of a domain wall in a curved permal-
loy nanowire [465]. Using similar techniques to those used in the nanorings
to generate a head-to-head wall, a “magnetic pendulum” was constructed,
where a field directed towards the bottom of a U-shaped semicircular wire
acts as the analog of a gravitational force on a mechanical pendulum. This
downward force gave rise to a magnetostatic potential energy of

U = −QMHy ≈ −QMH

(

r − x2

2r

)

(50)

for small displacements x from the bottom of the curve. In this expression
QM = 2µ0MsS is the magnetic charge on the wall, and r is the radius of
curvature of the wire (S is the cross-sectional area of the wire). This potential
gave rise to an eigenfrequency fe given by

fe =

√

QMH

4π2mr
, (51)

where m is the domain wall mass. If the wall motion is driven at a frequency
close to fe then the amplitude of the motion will be greatly enhanced as the
system will be at resonance. This results in increased dissipation of energy
and as a result a greater absorption of power from the source that is driving
it. The experiment was carried out by driving an ac current through the wire.
For fields up to 150 Oe the resonant frequencies were a few tens of MHz, and
a marked rise in wire resistance (dissipation of energy) was observed in a
range a few MHz wide around this frequency, shown in Fig. 45(c). This
experiment allowed the mass of a single domain wall to be measured for the
first time, found to be ∼ 7 × 10−23 kg for a 70 nm wide wall.

Another important result was that it was possible to separate the force on
the wall due to the transfer of linear momentum from scattered electrons from
the torque applied due to the relaxation of spin angular momentum, as these
have different frequency dependences when Fourier analysed [466]. The result
found was that the force due to the linear momentum was roughly two orders
of magnitude larger when amplified by the resonance. The oscillatory motion
of the wall at resonance, with an estimated amplitude of several µm, was
driven with a current density of only 3×1010 A/m2, a rather low value for a 3d
metal system. This low current density means that the heating effect is rather
low for this driving mechanism. This resonance effect may be able to explain
many of the odd (and sometimes contradictory) features of current driven
wall motion where short dc pulses are used, such as an lack of dependence
on pulse duration and the low current density required by Lim et al. to drive
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Figure 45: Comparison between experimental results with and without a do-
main wall in a semicircular permalloy wire (DW). (a) and (b) Magnetic force
microscope images around the bottom of the Ni81Fe19 loop in remanent mag-
netic states measured with a scanning probe microscopy system equipped
with a low-moment CoPtCr tip. Before the measurement shown in (a) and
(b), the initial fields Hy

ini = 10 kOe and Hx
ini = 10 kOe are applied, respec-

tively, which are then set to zero. The dashed lines represent the outlines
of the Ni81Fe19 loop. A DW is imaged as a bright contrast, which corre-
sponds to the stray field from a positive magnetic charge. (c) Frequency f
dependence of the a.c. resistance R for the system with a DW measured by
applying an external magnetic field of 150 Oe in the direction y. The arrow
represents the frequency at which R reaches a maximum. At this point the
wall is undergoing resonant motion and dissipating energy. (d) Frequency f
dependence of the a.c. resistance R for the system without DWs measured
by applying an external magnetic field of 150 Oe in the direction y. After
Saitoh et al. [465].
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their walls at very high velocities using sub-nanosecond pulses [427]. Pulse
wavepackets with sharp rising or falling edges will contain a great many high
frequency components when Fourier analysed. The walls trapped in a pinning
potential, either a natural defect or an artificially introduced constriction,
will possess a resonant frequency that is the eigenfrequency of that potential.
Certain wavepackets will contain that frequency with sufficient energy to be
able to depin the wall in a resonant manner: since this is likely to happen
during the fast rising edge of the pulse it would explain the insensitivity to
the pulse duration. It also suggests novel strategies for resonant depinning
of domain walls in high speed domain wall devices that will perform memory
or logic operations.

5.2 Theory

Some of the earliest efforts to understand current-induced effects on domain
walls date back to the 1970s. Carr considered the force applied to a cylindrical
bubble domain by the current redistribution in a magnetoresistive overlayer
due to the stray field in that overlayer that emerges from the wall [467]. This
induces some longitudinal field components in the bubble layer generated
by the current flow. Carr considered the example of a permalloy overlayer
and a current density of 10 A/cm width of the permalloy. Fields of about
0.01 Oe can be generated this way, enough to overcome the coercive field
of a good quality orthoferrite bubble layer. In the next paper of the same
issue of the journal, Emtage considered almost the same situation with the
additional refinement of separately treating the cases where the permalloy
overlayer is saturated by an externally applied field, and when the domain
structure of the permalloy is controlled by the underlying bubble material
[468]. Similarly small forces and fields were predicted. The forces tend to
be transverse to the current flow direction, and so there is a sort of analogy
between this effect and the flux-flow state in a superconductor. Of course
these papers are simply treating magnetostatic effects. It is more interest
to consider the direct interaction of the current with a domain wall. This is
what Luc Berger did in a series of seminal papers.

Some of the first of these concern what has now come to be known as
hydromagnetic drag [469, 470]. In the following we will assume a thin film
stripline wire geometry for convenience of discussion, but in fact the effect is
quite general. The basic principle of this effect is that the current density will
be displaced slightly to one side of the strip as it passes through a domain
wall due to the Hall effect: for a uniform electric field through the wall the
lines of current density must be bent sharply at twice the Hall angle as they
pass through the wall: sketched in Fig. 46(a). This partial shift of the
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Figure 46: The non-uniform current distribution (a) in a uniaxial material
with one wall can be decomposed into a uniform distribution (b), plus a
d.c. eddy-current loop (c) circling the wall. Also shown in (a) are pairs
of potential probes to monitor [471] the current distribution. After Berger
[179].

current to one side of the sample was detected experimentally in a Co slab
with a single wall by Partin et al., where the current density was found to be
1.7 times higher at one end of the wall than at the other at 4.2 K [471]. This
distorted current flow can be decomposed into a uniform part (Fig. 46(b))
and a circulating part (Fig. 46(c)) rotating through the wall. This dc eddy
current loop will generate longitudinal and vertical field components that are
able to apply forces to the wall. The wall will tend to move in the direction of
the carrier drift velocity, which will be parallel to the conventional current for
holes and opposite to it for electrons. The force is proportional to the cross-
sectional area of the wall, i.e. the film thickness, and so this hydrodynamic
drag effect will vanish as films are made ultrathin. It is generally only a
significant issue for film thicknesses greater than ∼ 100 nm.

More interesting to us, given the scope of this review, is the direct inter-
action between the spin-polarisation of the current and domain wall: what
Berger termed the s-d exchange force and what is now known as the spin-
transfer effect. This effect is independent of film thickness and so will domi-
nate over Hall effect hydrodynamic drag in very thin films [411]. The basic
physics of this effect, as described by Berger, is as follows. Writing the s-
d exchange interaction potential V acting on a spin s of a 4s conduction
electron as

V (x) = gµB

(

s · Hsd(x) +Hsd/2
)

, (52)

where the exchange field Hsd = −2Jsd〈S(x)〉/gµB, Jsd is the s-d exchange
integral, and the co-ordinate x is normal to the wall plane. The second,
constant term in Eq. 52 ensures that V (x = ±∞) = 0. Within a wall this
potential will have a non-zero gradient which will exert a force

Fx = −gµBs · dHsd

dx
= −gµBsyHsd

dθ

dx
(53)
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on the magnetic moment −gµBs of the conduction electron. The second
expression is derived by introducing an angle θ(x) for the direction of Hsd

with that at x = +∞ and local y and z axes in the plane of the wall with z
being parallel to the rotating Hsd. By considering the precession of the spin
around the exchange field is given by ~ds/dt = −gµBs×Hsd and making the
“adiabatic approximation” that the angle between s and Hsd is much smaller
than θ(x) one can obtain the following expression for the force on the wall
as

Fx = − ~
2v2

x

4gµBHsd

d

dx

(

dθ

dx

)2

, (54)

which is the gradient Fx = −dV/dx of the following form of the potential

V (x, vx) =
~

2v2
x

4gµBHsd

(

dθ

dx

)2

. (55)

In these expressions vx = dx/dt is the electron velocity outside the wall. This
is the force exerted by the wall on a single carrier.

Berger then proceeded by arguing that since the wall thickness is many
electron wavelengths one can treat the electrons classically and write down
Ohm’s and Fick’s laws to describe their diffusive motion. Two spin sub-
bands were defined with differing conductivities, densities of states, carrier
concentrations, and diffusion constants. The classical transport equations
were then solved and then as a result the total force applied to all the carriers
by the wall may be obtained.

By Newton’s third law, the force applied to the wall by the carriers will
be equal and opposite to this. The final expression obtained is

Fx =
2Msat

µi

(βve − vw) , (56)

with ve the carrier drift velocity, vw the wall velocity, β a constant of order
unity, and µi the intrinsic wall mobility. This is turns out to be the same
wall mobility that arises from the intrinsic damping force on a moving wall
[472, 473], apart from a factor of β ≈ 1. (In fact, β is the constant of
proportionality for changes in conductivity ∆σ and changes in carrier number
density ∆n and is given by ∆σ

σ
= β∆n

n
. In the Drude formula σ ∝ n and β is

exactly unity.)
In a previous section (§4.2) we discussed the calculations by Berger of

magnetoresistance at a domain wall [179]. In the same paper a calculation
of the torque applied to a wall by a spin-polarised current was given, which
is predicted to cant the moments in a Bloch wall slightly in the direction
normal to the wall plane, due to the reaction torque that the carriers exert
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on the wall as the rotating exchange field reverses their own spin angular
momentum. This canting will be proportional to the current density and the
polarisation of the current. This canting will depend on the helicity of the
wall. Berger suggested that if it were possible to arrange for every wall in a
sample to have the same helicity – a difficult trick to accomplish in practice –
then the induced magnetisation due to the canting could be used to measure
the spin polarisation of the current. The advent of new nanomagnetometry
techniques might allow the canting of a single wall to be measured.

More recently the modelling of the spin-transfer torque, as this reaction
torque is now known, has often proceeded in terms of incorporating additional
terms into the LLG equation (Eqn. 26). The first such approach to this
was made by Slonczewski [415], who considered a N/FM/N/FM/N five-layer
structure. He determined the form of the torque caused by a charge current
I on a macrospin Si representing the moment of one the two FM layers
(labelled i = 1, 2) to be

∂S1,2

∂t
=
Ig

e
ŝ1,2 × (ŝ1 × ŝ2) (57)

with ŝ1 and ŝ2 begin unit vectors in the directions of the two macrospins and
g being a factor dependent on the polarisation P of the current given by

g =
1

−4 + (1 + P )3(3 + ŝ1 · ŝ2)/4P
3

2

. (58)

This particular form of the expression captures several important features.
The first is that the torque is proportional to the current flow and will change
sign when the current does. Another is that the direction of the torque is
correctly given by the ŝ1,2 × (ŝ1 × ŝ2) vector part of the expression. Finally,
Slonczewski predicted that the torque will depend on the polarisation P of
the current and have a particular angular dependence (shown in Fig. 47),
both captured in the factor g. (The details of the spin-transfer torque and
its angular dependence have been considered in some detail by Stiles and
collaborators [474, 475].) It is worth noting that the idea of establishing a
steady precessional state with a spin-polarised current was predicted in this
ground-breaking paper [415].

This LLG formalism was taken up by Wegrowe in his thermokinetic ap-
proach [476] as well as by Sun [477] who both considered the injection of a
spin-polarised current into a single domain nanomagnet and calculated quan-
tities such as the current dependent switching field, precessional macrospin
dynamics or current induced switching. These theories are all more suited
to the nanopillar/multilayer geometry than to a domain wall, as they do not
treat non-uniform magnetisation.
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Figure 47: Spin-transfer velocities |Ṡ1,2| of ferromagnetic spin-vectors S1,2

versus included angle θ. The units are Ie/e (Ie = current, e = electron
charge). Equal polarisation coefficients P of the magnets are assumed. After
Slonczewski [415].

Bazaliy, Jones and Zhang looked at a generalisation of the LLG equation
that incorporates the transfer of spin from a polarised current [478]. They
considered the specific case of a spin polarised current entering a semi-infinite
ferromagnet from an unspecified source. By deriving a continuum form of
the equation for the magnetisation, they were able to show that moments at
the interface of the ferromagnet will cant away from the bulk direction – hard
to detect experimentally, except perhaps with an element specific technique
such as x-ray magnetic circular dichroism. A spin-wave instability solution
was also found, with the current changing the energy gap and position of the
energy minimum in the magnon spectrum. Most importantly in the context
of this review, a moving Bloch wall solution was also found, with the spin-
polarised current pushing the wall deeper and deeper into the ferromagnet.

More recently this spin-transfer term has been incorporated into micro-
magnetic simulations that are based on the LLG equation. Li and Zhang
[479] derived a form of the spin-transfer torque τ in the case of a spatially
varying magnetisation direction

τ = − b

M2
sat

M ×
(

M × (Ĵe · ∇)M
)

, (59)

where Ĵe is a unit vector in the direction of the charge current density and the
prefactor b = PJeµB/eMsat. (This prefactor b has dimensions of velocity and
sets an important velocity scale for wall motion in current-driven systems.)
The similarity with the Slonczewski term (Eqn. 57) is obvious, and this form
is formally identical to that derived by Bazaliy et al. [478]. They showed
that spin-transfer torque at a wall has many features in common with that
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at an F/N interface, with the ratio of the two being given by the ratio of
the thickness of the ferromagnetic layer to the thickness of the domain wall,
i.e. the torque is proportional to the volume of material that experiences
spin-transfer effects.

This additional torque term was incorporated by Li and Zhang into a
micromagnetic code [479] that was described as “very close to” the OOMMF

public code [103]. They used this code to simulate a head-to-head Néel
wall in a 100 nm wide nanowire numerically, and then compared the results
to analytical solutions of the LLG equation that can be found in certain
special cases of interest. Upon application of a current the wall was found
to move with a velocity −b immediately, but rapidly slowed down. This is
because the torque causes the wall to develop a small out-of-plane component
that grows with time. This leads to additional damping, and this extra
dissipation slows the wall. One of the most striking results found was that the
application of a current alone cannot move a wall through a distance greater
than some maximum amount ∝ b/α (α is the Gilbert damping constant), in
brief burst of motion that lasts ∼ 1 ns – the calculated temporal variation
of various quantities of interest is shown in Fig. 48. This behaviour is in
marked contrast to wall motion driven by a field where the wall starts to
move slowly but is accelerated until it reaches some terminal velocity. There
are experiments that report that wall motion over large distances requires
the application of a field as well as current pulses, such as Refs. 425 and 441.
This observation is naturally explained by this theory. The authors go on to
predict the onset of spin-wave instabilities caused by this torque.

They went on to publish a second paper where they discuss the differ-
ences between adiabatic and non-adiabatic torques [439]. The calculation
was based on a very simple s-d Hamiltonian, Hsd = −Jexs · S where s and
S are the dimensionless spins of itinerant and local electrons and Jex is the
exchange integral between them. This exchange integral was used to define
an exchange time τex = ~/SJex, then compared to the spin flip lifetime in
the dimensionless parameter ξ = τex/τsf .

Four torques were then found, two arising from temporal variations in the
magnetisation, and two arising from spatial variations. Those arising from
the time variations have no effect other than to renormalise the gyromagnetic
ratio γ and the Gilbert damping parameter α in the LLG equation (Eqn. 26).
The other two appear in the modified form of this equation

∂M

∂t
= −γM × Heff +

α

Ms

M × ∂M

∂t

− b

M2
s

M ×
(

M × ∂M

∂x

)

− c

Ms

M × ∂M

∂x
, (60)
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Figure 48: Domain-wall dynamics of the permalloy wire for different spin
currents and for zero applied field calculated using only the adiabatic form
of the spin-transfer torque given in Eq. 59. (a) The velocity as a function of
time. (b) The displacement of domain wall versus time. (c) The out-of-plane
component of the magnetisation at the centre of the wall, Mz = Ms, versus
time. After an initial burst of movement the wall comes to a halt after only
about 1 ns. After Li and Zhang [479].
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where b = PJeµB/eMsat(1+ξ2) and c = PJeµBξ/eMsat(1+ξ2). (The x direc-
tion is parallel to the current flow.) Again these quantities have dimensions
of velocity. The term in b is very similar to that in the previous paper by Li
and Zhang [479] and also that by Bazaliy et al. [478], and describes adiabatic
processes. On the other hand, the term in c was new, and is related to spin-
mistracking of the conduction electrons. Terms such as this were described
in detail in §4.2 above, that dealt with the physics of domain wall resistance
e.g. the models of Viret et al. (Ref. 182) and Levy and Zhang (Ref. 183).

The new non-adiabatic term, although very small (c/b = ξ ≈ 0.01), is
actually of great importance as it provides a mechanism for distorting the
wall, and although all the adiabatic torque is eventually absorbed after wall
deformation, the non-adiabatic part is not. It allows the wall to continue
moving: the b term gives rise to a large initial velocity, as discussed above,
but the c term controls the terminal velocity of the wall motion, which is no
longer zero in zero field. It is this velocity that was reported by Yamaguchi
et al. in Ref. 444, whereas the very fast initial velocity was measured by Lim
et al. [427] – the theory of this new torque term resolves this experimental
discrepancy. A calculation of wall dynamics in biaxial system, using only the
adiabatic torque also concluded that some other torque term was required to
reproduce experimental wall velocities [480].

Micromagnetic modelling by Thiaville et al. examined more carefully the
effects of disorder [481]. The aim was to simulate the experimental results
of Vernier et al. [442]. They used a simple, Slonczewski-like form of the
torque, with a velocity prefactor of u = JPgµB/2eMsat. (This is essentially
the same as the modified LLG equation given in Eqn. 59. The velocity u and
the prefactor b of Li and Zhang are identical.) For permalloy they estimated
that for a current density of 1011 A/m2, u ≈ 7 m/s. In perfect wires wall
velocity increased with H roughly linearly until Walker breakdown [161] of
the wall takes place at velocities of several hundred m/s. The difference
in wall velocities with current density was ∝ uH2. With wire roughness
included, represented by an average grain size of 10 nm [161], there was no
wall motion for any current density until H exceeded a propagation field of
∼ 25 Oe, in accord with experiment. (These results are shown in Fig. 49.)
However, when simulating the use of current density alone to move a wall, no
wall motion was found below a critical value of u = 600 m/s, corresponding
to a current density of 6.85 × 1012 A/m2, far higher than in the experiment,
where the results give the critical value of u as 20 m/s for P = 0.4 [442].
Above this value the wall velocity is close to being ∝ u, although with large
fluctuations about the mean for the rough wire. It was shown that thermal
activation cannot account for the reduced propagation field in experiment
as kBT is at least two orders of magnitude two small for T = 400 K. The
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Figure 49: DW motion by field and current. (a) Picture of the rough wire
shape (average wire width 120 nm) and wall structure at rest, with a gray
scale displaying the y magnetisation component and arrows for schematically
depicting the magnetisation. (b) Wall velocity versus field with or without
a fully polarised current, for a perfect (left) and a rough (right) wire. The
velocity is set to zero if the wall stops before the end of the calculation (50
ns). The inset shows the wall thickness parameter D versus field for the
perfect wire. After Thiaville et al. [481].

authors concluded this paper by stating that this simplified form of the torque
is inadequate.

Thiaville et al. developed a new form of the LLG equation that could
overcome these problems, developing Eqn. 60 independently of Zhang and Li,
by introducing a term for the torque already proposed by Heide, Zilberman
and Elliott in the nanopillar geometry [482]. This was inserted phenomeno-
logically into the LLG equation with a prefactor β that is expected, like the
Gilbert damping parameter α, to be much smaller than unity. This term
gave rise to a wall velocity ∝ (β/α)u for abitrarily small values of u in the
case of a perfect wire, i.e. the critical value of current density for wall mo-
tion is zero. (Such a wire would also present zero coercivity to an applied
field.) For high current density the velocity is reduced as sidewall antivortex
injection takes place. When wire roughness is included the pinning poten-
tials create a finite coercivity and also a finite critical value for u. Above
this value the wall velocity is again ∝ (β/α)u. Setting the defect density to
give a realistic value for the propagation field and wall mobility [483] gave a
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Figure 50: Steady velocity computed for a transverse domain wall by micro-
magnetics in a 120 × 5 nm2 wire as a function of the velocity u representing
the spin-polarised current density, with the relative weight (β) of the non-
adiabatic exchange field term as a parameter. Open symbols denote the
nucleation of vortices. The shaded area indicates the available experimental
range for u. (a) Perfect wire and (b) wire with rough edges (mean grain size
D = 10 nm). The dashed lines display a fitted linear relation with a 25 m/s
offset. After Thiaville et al. [440].

good comparison with experimental results for the critical propagation cur-
rent density [442, 444, 435] and wall velocity [444] with reasonable values of
α and β. A summary of these computed results is shown in Fig. 50. Taken
with the results of Zhang and Li in Ref. 439, these calculations give com-
pelling evidence for an equation of the form of Eqn. 60 capturing the proper
form for the spin-transfer torque. Results recently reported by Kläui et al.
show directly observed transformations of the wall structure from a vortex
to a transverse structure after a few current pulses, which no longer takes
up torque and no longer moves under spin-polarised current influence [484].
These results indicate that detailed micromagnetic calculations are the only
way in which all the intricacies of this effect will be resolved.

In a calculation of the torque in multilayers by Zhang, Levy and Fert [485],
both torque terms were included. The prefactor β depends on the exchange
and spin-flip lifetimes (or associated diffusion lengths) as β = (ℓJ/ℓsf)

2 =
~/(Jτsf), giving a physical basis to the phenomenological introduction of the
new term. Taking ℓJ to be 1 nm and ℓsf to be 5 nm in permalloy one obtains
a value of β = 0.04 consistent with the various experimental data. This leads
to the as yet untested prediction that reducing the spin diffusion length ought
to increase wall velocities for a given current density.

These non-adiabatic processes were considered by Waintal and Viret [438]
in the same conceptual framework as the Viret spin-mistracking model of do-
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main wall MR, with the spin Larmor precessing around the rotating exchange
field [182]. When the spin is parallel to the local magnetisation, as it is once
each period of the Larmor precession, the vector product s×M will be equal
to zero and there will be no torque. At the positions between these points,
where the spin mistracking is at a maximum, the torque will take its highest
values. As result there is predicted to be a periodic distortion of a domain
wall as the spin current crosses it, with a period equal to the Larmor wave-
length, λL = 2π~vF/J . These authors argued that this lengthscale is the
important one that determines whether or not the electron crossing the wall
is in the adiabatic limit: for λL ≪ D the process will be adiabatic, whereas
for λL ≫ D the wall crossing will be in the interface limit. For typical 3d
metals where J ∼ eV and vF ∼ 106 m/s, λL will be of the order of a few nm.
For most domain walls, the limit λL ≪ D will be the appropriate one, but
for highly anisotropic materials such as L10 FePt or SrRuO3, the condition
λL ≈ D may hold.

Waintal and Viret proceeded by writing down a modified form of the
Landauer formula that takes account of the differing spin polarisations for the
density of states (PN, defined in Eqn. 2) and the current (PI, Eqn. 8). This
formalism treats domain wall resistance and spin-transfer torque on an equal
footing by identifying any spatial derivative in the spin current as the torque
[486]. The domain wall resistance obtained is ∆R/R = PNλF/(64D2), where
λF = 2π

√

~2/2mEF is the Fermi wavelength. (This is only the ballistic part
of the DW resistance, usually much smaller than the diffusive part, except
in the interface limit.)

A geometry is defined where a Néel wall lies in the y-z plane, with
a current flowing in the x direction through it. The domains have their
magnetisation directed along the z axis. A rotating co-ordinate system
(u, v, w) = (dm̂/dθ, dm̂/dθ × m̂, m̂) that follows that magnetisation is then
defined: v always points along the y direction, whilst w always points along
the local magnetisation. They arrive at a pair of expressions for the different
components of the torque τ per unit current:

∂τu(x)

∂I
=

~π

2eD

[

PI + (PI − PN) cos

(

2π
x

λL

)]

; (61a)

∂τv(x)

∂I
= − ~π

2eD

[

(PI − PN) sin

(

2π
x

λL

)]

. (61b)

There are essentially two terms to this torque. The first (contained only in
Eqn. 61a) is simply proportional to PI, does not depend on x and pushes
the wall in the direction of the electron current. The second appears in both
Eqn. 61a and Eqn. 61b, is proportional to (PI − PN) and oscillates with x.
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This new term introduces a spatially varying deformation of the wall. An
estimate of the size of this term for Ni suggests that a current density of
1011 A/m2 would introduce a new energy term that is about the same size
as the wall energy density, so that changes in the wall structure ought to be
easily observed. This wall deformation may well help with depinning from
potentials that have features on the lengthscale of λL. As yet this periodic
deformation has not been observed, although it ought to lead to periodic
features in the magnetic structure of the sample that will give rise to Bragg
features at a wavevector transfer of Q = 2π/λL that could be observed with
neutron or resonant magnetic x-ray techniques. Waintal and Viret comment
that their torque term will only be large for adiabatic (wide) walls, whilst the
wall resistance will only be large for narrow walls that approximate magnetic
interfaces. These conclusions regarding torque and wall width were also
reached by Falloon et al. in their circuit theory of domain wall transport
[217].

An alternative way of looking at the problem, proposed by Tatara and
Kohno, is to draw a distinction between transfer of linear and angular mo-
mentum to the wall [466]. When electrons scatter at the wall, due to DW
resistance effects, then they will deposit linear momentum ~(kf − ki) in the
wall, corresponding to a force. As usual, when the spin is flipped into the
new domain direction, there is a change of angular momentum of ~, corre-
sponding to a torque. Writing the co-ordinates of the wall as X and φ0,
for position and angle, these authors derived, from a Lagrangian containing
terms for both the transverse anisotropy of a wire and a general form of a
pinning potential, the equations of motion for the wall, which both contain
Ẋ and φ̇0, but separate out the force term

Fel = − J

2S

∫

∇xS0(x−X) · n(x)d3x, (62)

and torque term

τel = − J

2S

∫

S0(x−X) × n(x)d3x, (63)

where J is the exchange splitting, S is a localised spin and n is the local spin
density of the conduction electrons. Both Fel and τel contribute to Ẋ and
φ̇0 in the equations of motion. The torque contributes directly to the wall
velocity through through a term vel = (D/~NS)τel where N = 2AD/a3 is
the total number of spins in the wall.

From the Kubo formula, it was possible to obtain the simple relationship

Fel = eNeρwj = enRwIA, (64)
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where ρw = RwA/D is the resistivity due to the wall and Ne = nDA is
the total number of electrons in the wall. This expression encapsulates the
idea that the scattering of electrons from the wall, which gives rise to the
wall resistance, means that the wall applies a force to the electron in order
to change its momentum – a reaction force is of course then experienced by
the wall. This force is proportional to the charge current, although the spin
polarisation of that current will undoubtedly play a role in determining ρw

according to one of the models in §4.2.
It is clear that the force and torque terms will both contribute to wall

motion but will dominate in different limits. In this paper the adiabatic limit
was defined in the same manner as by Cabrera and Falicov [177, 178], with
reference to the Fermi wavelength, D ≫ 2πk−1

F . In this case the spin transfer
effect is proportional to the spin current density js = Pj flowing in domains,
and the following expression for the time-averaged wall velocity was found

〈Ẋ〉 =
1

1 + α2

a3

2Se

√

j2
s − (jcr

s )2, (65)

where jcr
s is some critical spin current density for the onset of wall motion. For

large current density, that is js ≫ jcr
s , one can see from Eqn. 65 that Ẋ ∝ js,

and is given by the expression for vel. It is in the discussion of the sources of
the critical current density jcr

s that this model is particularly enlightening.
The transverse anisotropy K⊥ of the wire will give rise to a restoring torque
as the magnetisation begins to twist, and as a result the anisotropy barrier
must be overcome before the onset of wall motion (a finite 〈Ẋ〉) even in the
case of zero pinning. Here jcr

s = (eS2/a3
~)K⊥D. Introducing a parabolic

pinning potential of depth V0 and range ξ, a second critical current jcr
s =

(4e/a3
~) × (αV0d

2/ξ) can be found. These expressions allow strong (V0 &

K⊥α) and weak (V0 . K⊥α) pinning regimes to be defined, where it is either
the pinning potential or transverse anisotropy that controls the onset of wall
motion. Since in general α ≪ 1, we would expect that it is K⊥ that controls
the onset of wall motion in most experimental cases of interest. Very recently
published data from Ravelosona et al. show massive enhancements of the
force per unit current in a perpendicularly magnetised spin-valve structure –
in this case it could be the very narrow (< 10 nm) wall thicknesses that give
rise to the high efficiency of the spin transfer process [487]. (Nevertheless
this paper reports the first use of an out-of-plane magnetised metal system,
and also uncovers some important physics relating to the role of thermal
activation in the wall depinning problem [488].) There are also unpublished
results from Ono, where wire aspect ratios affect the critical current density,
and Parkin, where the shapes of pinning potentials have little effect upon the
same quantity, that seem to hint that this theory is correct. This offers an
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Figure 51: Time-averaged wall velocity 〈Ẋ〉 as a function of spin current, js,
in the weak pinning case (V0 . K⊥), where the critical current density is given
by the point at which the spin-transfer torque can no longer be absorbed by
the transverse anisotropy K⊥ of the magnetic wire. After Tatara and Kohno
[466].

important advantage to technological exploitation of the effect, since devices
will not be susceptible to weak pinning effects arising through random edge
roughness that is unavoidable in nanofabrication of real systems. Barnes
and Maekawa had previously treated the problem of depinning but neglected
the transverse anisotropy, arguing that it will always be small [489]. They
derive expressions for the critical depinning current and wall velocity in a
half metallic material, and claimed agreement with the experimental results
of Yamaguchi et al. [444]. A refined version of this theory was reported more
recently, with a careful treatment of intrinsic and extrinsic pinning effects
[490]. In this theory, the former effect is shown to be non-existent, and a
finite wall velocity is found in the ground state.

In the limit of an abrupt wall the spin-transfer torque vanishes and it is
the force Fel that will dominate matters. This force must exceed the pinning
force (the gradient of the pinning potential) in order to move the wall and
a third expression for the critical current density is found – this time for a
charge current, rather than a spin current: jcr = NV0/ξeNeρw, and the aver-
age wall velocity after depinning is obtained as 〈Ẋ〉 = (D2eNe/~αNS)ρwj.
This limit cannot normally be reached as the wall resistivity is usually very
small and the wall is much too wide: generally related facts. However, this
version of the theory only takes into account time-independent dc currents.
At finite frequencies the force term can dominate even in systems that would
show very small wall MR to a dc current, as was demonstrated experimentally
in the resonance studies of Saitoh et al. [465]. The geometrically constrained
walls [298] found in nanocontacts [319] may also experience large forces as ρw

may be very high there. This geometry has been discussed by Osipov, Poni-
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zovskaya and Garćıa [491], who treated magnetostatic effects, and Waintal
and Parcollet [492], who discussed a nanomagnet coupled to two FM leads
through tunnel contacts, where spin blockade effects may cause very rapid
variations in the torque with voltage bias.

As noted in Tatara and Kohno’s paper [466], the velocities achieved in
reality are often not as high as might be predicted from the models. One
reason that they give is that the efficiency of the spin-transfer process can
be compromised if the angular momentum is dissipated as spin-waves (as
detected by Tsoi et al. [493] and Rezende et al. [494] in multilayers), rather
than being coherently directed into the wall motion. Ansermet discussed how
this could, nevertheless, assist an applied field to depin a wall [495].

As noted above, Bazaliy, Jones and Zhang briefly examined the modifica-
tion of the spin-wave spectrum by a spin-current in the case of a half-metallic
system [478]. This point was followed up in more detail for systems of arbi-
trary spin polarisation by Fernández-Rossier et al. [496] and Shibata, Tatara
and Kohno [497]. In the first of these two papers, an additional term in
the spin wave spectrum that depends on spin current density is found, that
takes the form δω(k) ∝ js · k, a so-called “spin-wave Doppler shift”. This
was derived in several ways from different microscopic models. The textbook
derivation of the spin-wave spectrum in a ferromagnet yields ω ∝ k2 (see e.g.
Ref. 154), so that it appears at first as if an arbitrarily small spin current can
produce negative spin-wave energies and destroy ferromagnetism, something
that would have been easy to establish experimentally by now. In fact, real
spin wave spectra contain a gap due to anisotropies and dipolar terms, so
that the spin current must exceed some critical density before the spin-wave
instability sets in: see Fig 52. (It is this same gap that is responsible for
the experimental observation of low dimensional magnetism in spite of the
predictions of the Mermin-Wagner theorem [498].) In transition metal sys-
tems the gap is primarily due to the spin-orbit interactions that give rise to
anisotropy, and so it is of interest to search for this effect in systems where
this interaction is small, such as permalloy. They go on to point out that
this physics is intimately related to spin-torque at a domain wall: using the
(standard) spin-torque expression of Bazaliy, Jones, and Zhang, and solving
the modified LLG equation that results from it for the case of spin-waves
yields the Doppler shift term just discussed. The same term was derived
by Shibata, Tatara and Kohno [497], who similarly showed that a uniformly
magnetised state is not the ground state under a sufficiently strong spin-
current flow. They argue that at least in the case of a uniaxial anisotropy,
the true ground state is one that contains domain walls, where the spin-wave
instability is absent. The walls are moving with an average velocity equal to
the spin current drift velocity: this has a Galilean invariance with a static
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Figure 52: Current modified spin-wave spectrum. The j = 0 has an
anisotropy gap of 1 µeV. A current density of j = 1.1× 109 A/cm2 is enough
to reduce the energy for creation of a finite-q magnon to zero, leading to a
collapse of the ferromagnetic state. After Fernádez-Rossier et al. [496].

domain structure in the absence of current. Estimates of the critical cur-
rent for domain wall formation were found to be in accord with experimental
results in a point contact geometry [453, 452, 499].
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6 In Conclusion

To summarise the main points: domain walls have been shown to affect
the resistivity of magnetic materials in a large number of complex ways.
There are a variety of extrinsic mechanisms for this, such as AMR or Lorentz
force MR, as well as the sought-after intrinsic effects related to the domain
walls interactions with the spin-polarised currents that flow in ferromagnets.
Theoretical predictions for these offer the possibility that the effect may
be of either sign. Experimental results have been reported in bulk mate-
rials, thin films, multilayer heterostructures, and mesoscopic devices, with
the introduction of domain structures reported to either reduce or enhance
the conductivity. In most cases the effects are rather small, and decon-
volving the various extrinsic changes in the resistivity of the samples is not
straightforward. Only in a few cases, where few nm thick walls have been
achieved through the use of high anisotropy materials, are the intrinsic ef-
fects large enough to be easily detected without extensive data manipulation
[53, 184, 225, 237, 113, 243, 293]. Without exception these more clear-cut
results show that the presence of a domain wall gives rise to additional scat-
tering leading to a rise in the resistivity as compared to a single domain
state. The models which seem best to describe this are the spin-mistracking
models [182, 183], where the precession of the spin around the rotating ex-
change field mixes the spin channels. Various aspects of this model have
been borne out by the experimental results, such as anisotropy with respect
to wall direction, thickness dependence, and it seems as though this pro-
vides a proper description of the resistance of a domain wall, at least in the
almost-adiabatic, diffusive limit.

Very large effects are expected theoretically for much thinner walls, but
no definitive experimental observations have yet been made. The effect of
ballistic magnetoresistance in a point contact is said to rely the introduction
of an Å thick wall into the contact, which can be shown to be reasonable for
fairly probable magnetic conditions [298]. This might then go on to affect
the conductance by closing quantum channels that are open in a uniformly
magnetised state. The extreme difficulty of structurally and magnetically
characterising such atomic scale contacts, of keeping them stable for more
than a few minutes or field cycles, and of reproducibly measuring them mean
that there is a great deal of conflicting experimental evidence: some groups
are convinced of the reality of the exceptionally large effects they measure
[381, 400], others are equally convinced that these are artifacts and that
properly controlled experiments have revealed only null results [384, 385,
386]. Without a definitive experiment the debate will continue to generate
more heat then light, but such an experiment seems to require a radically
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different approach to the problem than what has gone before. There is a
great opportunity here for an inspired researcher.

Spin-polarised currents have also been shown to be capable of inducing
domain wall motion [425, 442] at high velocity [427], although the exact max-
imum wall speed that may be (or has been) achieved is still an open question
[444]. Achieving this motion requires very high current densities, close to
the point at which devices will fail due to elecromigration effects. There are
now several quite sophisticated theories of this motion [439, 440, 466, 479]
and these suggest possible mechanisms for a reduction of the critical current
required to induce wall motion. The current may either apply a force to a
wall, if it presents a large resistance to the current so that there is substantial
scattering from it, or may apply a torque as spins are flipped during their
passage through the wall. Theory leads experiment in this area at present,
and there are great opportunities for experiments searching for more optimal
materials, examining more complex device geometries, looking at the various
high frequency micromagnetic effects, and exploiting the new dynamic modes
of driving walls that are now available [465]. Such experiments will help fur-
ther refine the theories: all of those described here are phenomenological in
nature. Attempts at materials-specific calculations of the forces and torques
involved are only just beginning [500].

The topics reviewed in this article are still active areas of research, espe-
cially the current-induced domain wall motion effect discussed in the previous
section. Spin-transfer physics appears to be in its heyday, although of course
one can never predict what new discoveries the future will bring. Most of
the results reviewed in this article have been found in conventional metallic
magnetic materials, and the new opportunities afforded by the development
of magnetic semiconductor materials have already revealed huge nanocon-
tact MR [401] and low current density wall motion [446], albeit at cryogenic
temperatures. The field is still a very rich and rewarding one for further
research, with many questions unanswered and challenges unmet.
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metal lines with substrate-step techniques. Appl. Phys. Lett., 37:94,
1980.

[253] N. Giordano. Experimental study of localization in thin wires. Phys.
Rev. B, 22:5635, 1980.

[254] N. Giordano and J. D. Monnier. Magnetization reversal and domain
wall motion in thin Ni wires. Physica B, 194:1009, 1994.

[255] K. Hong and N. Giordano. Approach to mesoscopic magnetic measure-
ments. Phys. Rev. B, 51:9855, 1995.

[256] H. Katsuno, T. Niiyama, T. Ono, and H. Miyajima. Galvanomagnetic
effect and domain wall resistance of ferromagnetic Fe-Ni wire in sub-
micrometer width. J. Magn. Magn. Mater., 226-230:1864, 2001.

[257] R. Hanada, H. Sugawara, Y. Aoki, H. Sato, K. Shigeto, T. Shinjo,
T. Ono, and H. Miyajima. The local domain wall position in ferromag-
netic thin wires: simultaneous measurement of resistive and transverse
voltages at multiple points. J. Phys.: Cond. Matt., 14:6491, 2002.

[258] K. Mibu, K. Shigeto, K. Miyake, T. Okuno, T. Ono, and T. Shinjo.
Magnetic properties of nanoscale wire and dot systems. Phys. Stat.
Sol. a, 189:567, 2002.

[259] A. O. Adeyeye and M. E. Welland. Domain wall trapping at mesoscopic
ferromagnetic junctions. J. Appl. Phys., 92:3896, 2002.

[260] G. Dumpich, T. P. Krome, and B. Hausmanns. Magnetoresistance of
single Co nanowires. J. Magn. Magn. Mater., 248:241, 2002.

159
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[284] U. Rüdiger, J. Yu, S. Zhang, A. D. Kent, and S. S. P. Parkin. Negative
domain wall contribution to the resistivity of microfabricated Fe wires.
Phys. Rev. Lett., 80:5639, 1998.

161
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tering explains 300% ballistic magnetoconductance of nanocontacts.
Phys. Rev. Lett., 83:2030, 1999.
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