This is a repository copy of *Spin-polarized tunneling with Au impurity layers*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/3794/

Article:

https://doi.org/10.1063/1.2839623

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
This is an author produced version of a paper published in *Journal of Applied Physics*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/3794/

Published paper
The first report of a magnetic tunnel junction (MTJ) was made over 30 years ago by Julliere. These structures consist of an ultrathin insulating barrier separating two ferromagnetic electrodes (a so-called F/I/F configuration). In the past decade there has been a huge upsurge in interest in these structures (recently reviewed by Tsymbal, Myrasov and LeClair) as the improvement of fabrication techniques has lead to values of room temperature tunneling magnetoresistance (TMR) that are large enough for technological applications. The magnitude of the TMR, defined as the fractional change in junction resistance \(\Delta R/R \) on switching the junction from a parallel (P) to an antiparallel (AP) magnetization state, depends on the degree of tunneling spin polarization (TSP) of the F electrode materials. This can be measured in an independent way by forming a junction between the ferromagnet in question and a superconductor (an S/I/F structure) by a means devised by Meservey and Tedrow.

The quality of the interfaces on either side of the tunneling barrier is widely considered to be paramount in these structures. Here we describe experiments where we have deliberately inserted thin layers of Au as an impurity at this point. We have introduced the Au both at the interface between a Co electrode and an AlO\(_x\) barrier, and also as a \(\delta \)-layer, which we can place at a variable distance from that interface. This second case mirrors a previous study of the giant magnetoresistance (GMR) in Co/Cu/Co spin-valves. There are reports of previous experiments on MTJs similar to our interface layer studies. Moodera et al. deposited Au layers onto Co electrodes before covering them with plasma-oxidized alumina, and found that the TMR almost vanished for Au layers thicker than about 1 nm, in addition to a weak quantum well oscillation. Other spacer materials have also been studied, such as Cu, Cr, and Ru. A variety of different effects, some pointing to the presence of quantum well states, were found. On the other hand, we know of no comparable studies in the tunneling regime for the \(\delta \)-layer experiments.

Our junctions were of the cross-strip form, deposited by dc magnetron sputtering through shadow masks, which were changed in situ to give an active area 50 \(\mu \)m square. The substrates were pieces of Si wafer with \(\sim 100 \) nm thermal oxide at the surface. The chamber base pressure was \(\sim 2 \times 10^{-8} \) Torr, whilst the working pressure of Ar was 2.5 mTorr. Typical deposition rates, calibrated by low-angle x-ray reflectometry on test films of each material, were 2.5 Å/s for the metal layers. The barriers were formed by dc plasma oxidation in 55 mTorr of O\(_2\) for 30 s at a power of 100 W. Two types of junctions were grown: the first were F/I/F MTJs based on the following layer stack sequence: substrate / Al (150 Å) / Co\(_{88}\)Fe\(_{22}\)B\(_{10}\) (40 Å) / AlO\(_x\) (13 Å) / Co (30 Å) / Ir\(_{20}\)Mn\(_{80}\) (60 Å) / Al (150 Å). The IrMn layer pins the Co through the exchange bias effect to control the switching between the P and AP states. The others were S/I/F junctions based on the stacking sequence Al\(_{96}\)Si\(_4\) (40 Å) / AlO\(_x\) (13 Å) / Co (200 Å). The superconducting Al\(_{96}\)Si\(_4\) layer had a critical temperature \(T_C \) of \(\sim 3 \) K and an in-plane critical field, measured at 1.4 K, exceeding 5 T; both quantities were determined from two point resistance measurements of a bottom electrode strip. The junctions were doped by introducing a thin layer of Au either at the barrier/Co interface, or at a point within the Co layer a distance \(x \) from that interface. It is also important to emphasize that the growth protocol used here has been demonstrated to give highly reproducible results: as series of several nominally identical undoped MTJs had TMR ratios and resistance-area products that were the same to within only a few per cent. This means that sample-to-sample variations should not mask any changes due to the introduction of Au above this level. The good tunnelling \(I-V \) properties of our junctions (not shown), along with x-ray reflectometry of comparable sheet film test samples, confirms that interfacial roughnesses are all well below 1 nm, and our barrier is smooth and pinhole-free.

The TMR of the MTJs was measured by a conventional four-probe dc technique at room temperature: measure-
ments were taken under variable bias, but we only show
data here for a 10 mV applied voltage bias. All junc-
tions were measured in their as-grown, unannealed state,
to prevent any migration of the Au within the structure,
for instance along grain boundaries. The differential con-
ductance \((dI/dV)\) as a function of applied bias \(V\) of the
S/I/F junctions were measured at 250 mK in a \(^3\)He re-
frigerator, under a constant applied field of 2 T supplied
by a superconducting magnet. A separate transverse coil
was used to null off any small component of field normal
the junction surface due to sample misalignment, that
would otherwise give rise to vortices in the superconduc-
tor.

In Fig. 1 we show an example of some TMR data from
a pair of selected F/I/F samples: an undoped one, which
conforms exactly to the standard stacking sequence given
previously, and one in which a Au doping layer of 8 Å
thickness has been introduced at the interface between the
Co pinned layer and the alumina barrier. The und-
doped junction has a TMR of 11%, whilst the introduc-
tion of the Au barrier has reduced the TMR to 8 %. It
can be seen that there are no other significant changes to
the form of the TMR loop apart from a reduction in its
amplitude.

We also measured the effects of introducing a Au in-
terface layer on the TSP of the Co electrode by the
Meservey-Tedrow method. Representative data mea-
sured on an undoped S/I/F junction, and one contain-
ing an 8 Å thick Au layer at the barrier/Co interface are
shown in Fig. 2. The four peaks corresponding to
the Zeeman split edges of the BCS (Bardeen-Cooper-
Schrieffer) gap in the \(\text{Al}_9\text{Si}_4\) electrode are clearly visible.
These data were modeled using the theory of Alexan-
der, Orlando, Rainer, and Tedrow (AORT)
[11,14]. In this model there are four input parameters:
the BCS gap \(\Delta\), the spin-orbit parameter \(b\) (which accounts for all the
mechanisms that mix spin up and down without destroy-
ing the Cooper pairs), the spin-flip or depairing param-
eter \(\xi\) (which includes all mechanisms which break the
time-reversal symmetry and hence break Cooper pairs),
and the TSP itself. The fits to the data are shown in the
plot as solid lines, along with the values of these param-
eters. Both samples are well described by similar values
for \(\Delta\), \(b\), and \(\xi\). The TSP of our undoped sample is 39%,
a typical value for a transition metal [15]. This is roughly
halved, to 21 %, on the introduction of the Au interface
layer.

Having shown representative data for both F/I/F and
S/I/F junctions, we turn our attention to a summary of
all our results, shown in Fig. 3. In panel (a) of that
figure we show the data for the introduction of a Au
interface layer of variable thickness between the barrier
and Co electrode for both types of samples. There is
a drop in TMR when the Au is first introduced, but,
remarkably, an easily measurable TMR of a few % is
still present for Au thicknesses exceeding 20 Å. We were
able to fit our data (excluding the first point) with a
phenomenological exponential decay, which returns a \(1/e\)
lengthscale of \(\lambda_{\text{TMR}} = 11 \pm 3 \text{ Å}\). The TSP is seen to
decay in a similar manner to the TMR. There is a rather
abrupt drop in TSP on introduction of the first Å of Au
from about 40 % to 30 %, but then the TSP decays more
gently: again there is a finite and substantial TSP for 20 Å.

In Fig. 3(b) we show similar data for the case where
1 Å thick Au \(\delta\)-layers have been introduced into the Co
layer at a variable distance from the barrier/Co interface.
When the Au is at the interface both TMR and TSP
are suppressed in line with what is seen in Fig. 3(a).
As the Au moves into the Co layer both the TMR and
the TSP rise smoothly and rapidly towards the 39 %
value for an undoped Co layer. Exponential fits yield
substantially shorter \(1/e\) lengthscales than those found
above, \(\lambda_{\text{TMR}} = 6 \pm 4 \text{ Å}\), whilst \(\lambda_{\text{TSP}} = 7 \pm 2 \text{ Å}\): again,
Moreover, if the Au hillocks were as high as required by to explain the reduction in TMR and TSP using this island-growth hypothesis, the huge additional roughness for the thicker Au layers, a few nm in amplitude, would lead to a substantial increase in the orange-peel coupling field for the free layer, whereas we see no observable change in Fig. 1. Moreover, this enormous roughness should also be present at the top interface of the Co layer, with the IrMn, which should give rise to a drastic reduction in exchange bias, which is also absent in our experiment. Such rough layers might also be expected to have a very much higher coercivity - again this is not observed in the TMR loops. Fig. 4(b) shows an AFM image of a completed MTJ stack including 7 Å of Au, which will give some idea of the roughness in these layers, as conformal roughness is generally accumulated through the stack in sputtered samples: the rms roughness σ_{rms} is barely more than ~1 nm.

Hence, a substantial excess TMR and TSP remains to be explained for the case of the Au interfacial layers. An interesting possibility is that our results are due to some spin-polarization in the Au. This could arise either by a proximity effect due to the contact with the Co, or by spin injection when a current is driven by a voltage bias. This will give rise to a weak spin-polarization at the barrier which is detected by the tunnel junction.

To summarize, our measurements show that a substantial TSP can penetrate a few nanometers of Au from an interface with Co, measured both directly at 250 mK and by TMR measurements at room temperature. On the other hand both the TMR and TSP recover from their suppression by the Au δ-layer much more quickly when it is withdrawn into the Co, with the IrMn, which should give rise to a drastic reduction in exchange bias, which is also absent in our experiment. Further modelling and characterization to investigate this point is ongoing at the time of writing, as well as experiments using other dopant species.

We would like to thank A. T. Hindmarch for help with the coding of the AOR T model, and the EU (via project NMP2-CT-2003-505587 “SFINx”) and the EPSRC for funding.

FIG. 3: (Color online) (a) The dependence of TMR and TSP on Au interface layer thickness. (b) The dependence of TMR and TSP on the distance of a 1 Å Au δ-layer from the barrier/Co interface. TMR was measured at 300 K, TSP at 250 mK. The solid lines are the results of fitting exponential decays to the data, and in each plot we report the decay length-scales, λ, extracted from the fits.

FIG. 4: (Color online) Atomic force micrograph of (a) a Au (7 Å) / AlO$_2$ / SiO$_2$ sample ($\sigma_{rms} = 7.9$ Å), and (b) a completed MTJ stack including 7 Å of Au ($\sigma_{rms} = 11.5$ Å).
Electronic mail: c.h.marrows@leeds.ac.uk

1 Also at Institut Universitaire de France

