promoting access to White Rose research papers

Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/

This is an author produced version of a paper, subsequently published in **Inorganica Chimica Acta**. (This paper has been peer-reviewed but does not include final publisher proof-corrections or journal pagination.)

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/3752

Published paper

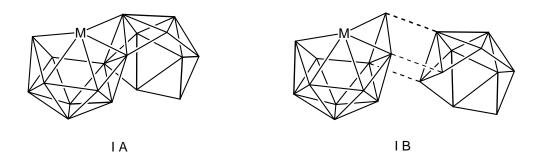
Shea SL, Perera SD, Kennedy JD et al (2004) Macropolyhedral boron-containing cluster chemistry: two-electron variations in intercluster bonding intimacy. Contrasting structures of 19-vertex [(eta(5)-C5Me5)HIrB18H19(PHPh2)] and [(eta(5)-C5Me5)IrB18H18(PH2Ph)] Inorganica Chimica Acta 357 (3119-3123)

Macropolyhedral boron-containing cluster chemistry. Two-electron variations in intercluster bonding intimacy. Contrasting structures of nineteen-vertex $[(\eta^5\text{-}C_5Me_5)HIrB_{18}H_{19}(PHPh_2)] \text{ and } [(\eta^5\text{-}C_5Me_5)IrB_{18}H_{18}(PH_2Ph)].*$

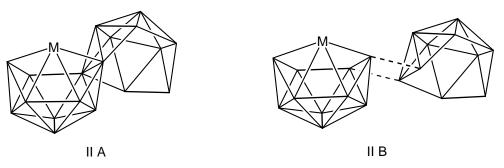
Suzanne L. Shea, ^a Tomáš Jelínek, ^b Sarath D. Perera, ^{a,c} Bohumil Štíbr, ^b Mark Thornton-Pett^a and John D. Kennedy ^a

^a The School of Chemistry of the University of Leeds, Leeds, UK LS2 9JT, England
^b Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, 25068 Řež u Prahy, The Czech Republic.

^c The Department of Chemistry of the Open University, Nawala, Nugegoda, Sri Lanka


Fused double-cluster $[(\eta^5-C_5Me_5)IrB_{18}H_{18}(PH_2Ph)]$ **8**, from syn- $[(\eta^5-C_5Me_5)IrB_{18}H_{20}]$ **1** and PH_2Ph , retains the three-atoms-in-common cluster fusion intimacy of **1**, in contrast to $[(\eta^5-C_5Me_5)HIrB_{18}H_{19}(PHPh_2)]$ **6**, from PHPh₂ with **1**, which exhibits an opening to a two atoms-in-common cluster fusion intimacy. Compound **8** forms via spontaneous dihydrogen loss from its precursor $[(\eta^5-C_5Me_5)HIrB_{18}H_{19}(PH_2Ph)]$ **7**, which has two-atoms-in-common cluster-fusion intimacy and is structurally analogous to **6**.

keywords: Borane cluster, Macropolyhedral opening and closure, X-ray structure, NMR spectroscopy, Redox changes in intercluster intimacy, Metallaborane, Iridium-borane cluster compound.


The redox flexibility of transition-element centres allied with the *closo-nido-arachno-etc* redox flexibility of boron-containing cluster structures engenders much interesting metallaborane structural, behavioural, and reaction chemistry [1,2]. Rhodium and iridium metallaboranes have figured significantly in this regard, for example in terms of reactions, both catalytic and non-catalytic [3-9], in phenomena such as fluxionalities [10,11], and in the establishment of interesting cluster types, such as those of *'isocloso'* and *'isonido'* geometries [12-15]. Single-cluster borane, heteroborane and metallaborane chemistry is governed at present by an uppermost limit to cluster size of about fourteen vertices [16,17]: to extend beyond this horizon the clusters need to be linked or fused together to make bigger cluster assemblies. Intimate intercluster fusions, with two or more atoms held in common between the constituent subclusters, result in so-called 'macropolyhedral' species [18-21], in which the multicentre bonding characteristics of boron extend across the nexus between the constituent subclusters. The structural flexibility resulting from the incorporation of rhodium and iridium centres in macropolyhedral metallaborane assemblies has been most useful in the development of this macropolyhedral area [22-29], and milestone compounds include the [(CO)(PPh₃)Rh₂B₁₈H₂₀]⁻ anion [23], [(C₅Me₅)₂RhB₁₈H₂₀] [2], [(C₅Me₅)₂RhB₁₇H₂₁] [22], [(C₅Me₅)₂RhB₁₇H₂₁] [22], [(C₅Me₅)₂Rh₂B₁₇H₁₉] [22,24], [(C₅Me₅)₂Rh₂S₂B₁₅H₁₄(OH)] [25],

$$\begin{split} & [(CO)(PMe_3)_2IrB_{16}H_{14}Ir(CO)(PMe_3)_2] \ [26], \ [7,7,7\text{-}(CO)(PMe_3)_2\text{-}syn\text{-}7\text{-}IrB_{17}H_{20}] \ [27], \\ & [(PMe_3)_2IrB_{26}H_{24}Ir(CO)(PMe_3)_2] \ [20,21,28], \ [(\eta^5\text{-}C_5Me_5)IrB_{18}H_{20}] \ [6], \ the \ [(\eta^5\text{-}C_5Me_5)IrB_{18}H_{19}S]^- \ anion \ [6], \\ & and \ [(\eta^5\text{-}C_5Me_5)_3Ir_3B_{18}H_{15}(OH)] \ [20,21,29]. \end{split}$$

The addition of electrons to the cluster in a single-cluster compound generally results in cluster opening along the *closo-nido-arachno-etc* sequence; conversely, removal of electrons generally results in cluster closure [30]. In macropolyhedral boron-containing cluster compounds, in which single clusters are fused together, the addition or removal of electrons can, alternatively, result in a decease or an increase, respectively, in the degree of intimacy of intercluster fusion, rather than the opening or closing of individual subclusters [6,18,20,29]. For the development and understanding of intercluster fusion chemistry, there is merit in establishing systems in which such alternative behaviours can be observed and defined.

Addition of electrons to a cluster is commonly effected by the addition of a two-electron ligand [31] and, in this context, we have recently found that the addition of the two-electron ligand PMe₂Ph to the macropolyhedral iridaborane $[(\eta^5-C_5Me_5)Ir-syn-B_{18}H_{20}]$ **1** (Figure 1, upper diagram) [6] results in the adduct $[[(\eta^5-C_5Me_5)HIr-syn-B_{18}H_{19}(PMe_2Ph)]$ **2** (Figure 1, lower diagram) (equation 1, where L is PMe₂Ph) [32]. In compound **1**, the cluster structure (schematic **I A**) is that of a *nido* twelve-vertex {IrB₁₁} unit fused with a *nido* ten-vertex {B₁₀} unit, with three boron atoms held in common (schematic **I B**). By contrast, in compound **2**, the cluster structure (schematic **II A**) is that of a *nido* eleven-vertex {IrB₁₀} unit fused with a *nido* ten-vertex {B₁₀} unit, but now with only two boron atoms held in common (schematic **II B**). The conversion of **1** to **2** by the addition of the two-electron ligand PMe₂Ph therefore results in a reduction of intimacy of cluster bonding rather than an opening of the individual subclusters along the *closo-nido-arachno-etc* sequence.

In attempts at the further investigation of this and related phenomena, we found in siting experiments that the reaction of PMe₂Ph with the rhodium analogue of **1**, *viz*. $[(\eta^5-C_5Me_5)-syn$ -RhB₁₈H₂₀] **3**, results in a species reasonably formulated from NMR spectroscopy and mass spectrometry as $[(\eta^5-C_5Me_5)HRh-syn$ -B₁₈H₁₉(PMe₂Ph)] **4**, *i.e.* a species analogous to compound **2**, with the less intimately fused two-atoms-incommon double-cluster configuration **II**. However, in our hands so far, compound **4** has proved to be unstable in solution, precluding purification, definitive NMR work, crystallisation and structural elucidation. It decomposes to a further compound, for which NMR spectroscopy suggests formulation as $[(\eta^5-C_5Me_5)Rh-syn$ -B₁₈H₁₈(PMe₂Ph)] **5**, *i.e.* a species with two hydrogen atoms fewer, and thence two cluster electrons fewer, than its precursor **4**. Compound **5**, in turn, has also proved to be unstable in solution, again, so far, precluding definitive NMR work, purification, crystallisation and thence structural confirmation by single-crystal X-ray diffraction analysis.

The nature of this further structural type is, however, clarified from the results of the investigation of the reaction of the iridium species $[(C_5Me_5)Ir$ -syn- $B_{18}H_{20}]$ 1 with the phosphines PHPh₂ and PH₂Ph. Reaction overnight at room temperature between excess PHPh₂ (0.3 ml, 1400 μmol) and 1 (38 mg, 700 μmol) in CH₂Cl₂ (ca. 15 ml), followed by removal of solvent (rotary evaporator, water pump, 30 °C) and separation of the yellow residue by TLC (silica-gel G, CH₂Cl₂/C₆H₁₂ 60/40 v/v), gave air-stable orange crystals of [(η^5 -C₅Me₅)HIr-syn-B₁₈H₁₉(PHPh₂)] **6** (R_F 0.7, 26 mg, 370 μmol, 53 %) after recrystallisation from a solution in CH₂Cl₂ that was overlayered with C_6H_{12} . Compound 6 was characterised by NMR spectroscopy¹ and single-crystal X-ray diffraction analysis (Figure 2),² and thereby shown to have the more-open two-atoms-in-common cluster structure of its PMe₂Ph analogue 2 [32]. By contrast, the analogous product from the reaction of PH₂Ph with 1 was not so robust. Overnight reaction (ca. 18 hours) of PH₂Ph (9 μl, 820 μmol) with 1 (40 mg, 740 μmol) in CH₂Cl₂ (ca. 15 ml) gave a yellow solution. Filtration through silica-gel G, followed by removal of solvent as above gave an impure orange powder, formulated, on the basis of NMR spectroscopic similarities to the PMe₂Ph and PHPh₂ species 2 and $\mathbf{6}$, as principally $[(\eta^5 - C_5 Me_5) \text{HIr-} syn - B_{18} H_{19} (PH_2 Ph)] \mathbf{7}$ (21 mg, 320 µmol, 43 %) of two-atoms-in-common configuration II. Attempted purification by TLC on silica-gel G using a variety of solvent systems resulted in decomposition of 7, although a small quantity of a yellow component 8, not present in the crude product 7, was isolatable, and was purified by crystallisation. NMR spectroscopy on 8 thence suggested a formulation $[(\eta^5 - C_5 Me_5)Ir - syn - B_{18}H_{18}(PH_2Ph)]$, which was confirmed by the results of single-crystal X-ray diffraction analysis (Figure 3).² The molecular structure of compound 8 thence in turn clearly shows that the three-atoms-in-common intercluster intimacy of the starting species 1 (schematic I and Figure 1, upper diagram) is conserved, in contrast to the structure of the $[(C_5Me_5)HIrB_{18}H_{19}(PHPh_2)]$ 7, in which an opening to the two-atoms-in-common fusion mode is noted.

In the overall formation of $\bf 8$ from $\bf 1$, the two-electron gain associated with the incorporation of the PH₂Ph ligand is cancelled by the two-electron loss associated with the elimination of dihydrogen (equation 2, where L is PH₂Ph); overall, the three-atoms-in-common configuration is thence retained, and the individual subclusters retain their individual *nido* characters. The observations involving the conversion of rhodium compound $\bf 4$ to

give **5**, and of the iridium compound **7** to give **8**, indicate that the stepwise process reasonably involves an initial stoichiometric adduct with a comparatively simple adduct reaction stoichiometry (equation 1), to give the more open two-atoms-in-common configuration, followed by dihydrogen elimination (equation 3) to give the more condensed three-atoms-in-common product species **5** and **8**.

$$[(C_5Me_5)Ir\text{-}syn\text{-}B_{18}H_{20}] + L \rightarrow [(C_5Me_5)HIrB_{18}H_{19}(L)]$$
 (1)

$$[(C_5Me_5)IrB_{18}H_{20}] + L \rightarrow [(C_5Me_5)IrB_{18}H_{18}(L)] + H_2$$
(2)

$$[(C_5Me_5)HIrB_{18}H_{19}(L)] \rightarrow [(C_5Me_5)IrB_{18}H_{18}(L)] + H_2$$
 (3)

We currently examine reactions of other two-electron ligands with compound 1 and related species, and examine for other products from the systems reported in this present note.

Acknowledgements

Contribution no. 95 from the Řež -Leeds Anglo-Czech Polyhedral Collaboration (ACPC). We thank Mr. Simon Barrett for assistance with NMR spectroscopy. The support of the UK EPSRC (Grants nos. F/78323, J/56929, K/05818, L/49505 and M/83360), the Grant Agency of the Academy of Sciences of the Czech Republic (Grant no. A 403 2701), and the Grant Agency of the Czech Republic (Grant no. 203 00 1042) is greatly appreciated, and we thank The Royal Society (London) and the Academy of Sciences of the Czech Republic, together with the Royal Society of Chemistry Scheme for Journals Grants for International Authors, for assistance with reciprocal visits.

Corresponding author

Professor J D Kennedy

The School of Chemistry of the University of Leeds

Leeds, UK LS2 9JT, England

e-mail: johnk@chem.leeds.ac.uk; fax UK 0113 343 6401

Crystallographic data

Crystallographic data are deposited at the Cambridge Crystallographic Data Centre (CCDC), deposition nos. 165855 and 233342 for compounds **6** and **8** respectively.

References.

- [1] J. D. Kennedy, *Prog. Inorg. Chem*, 1984, **32**, pp 519-679 and 1986, **34**, pp 211-434.
- [2] L. Barton and D. K. Srivastava, in *Comprehensive Organometallic Chemistry II*, Eds. G. Wilkinson,; E. W. Abel, and F. G. A Stone, Pergamon, 1995, Vol. 1, Ch. 8, pp. 275-373.
- [3] E. J. Ditzel, X. L. R. Fontaine, H. Fowkes, N. N. Greenwood, J. D. Kennedy, P. MacKinnon, Zhu Sisan and M. Thornton-Pett, *J. Chem. Soc.*, *Chem. Commun.*, 1990, 1692.

- [4] E. J. Ditzel, X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy, Zhu Sisan, B. Stibr, and M. Thornton-Pett, J. Chem. Soc., Chem. Commun., 1990, 1741.
- [5] J. Bould, P. Brint, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1993, 2335.
- [6] S. L. Shea, T. D. McGrath, T. Jelínek, B. Štíbr, M. Thornton-Pett and J. D. Kennedy. *Inorg. Chem. Commun.*, 1998, 1, 97.
- [7] J. Bould, W. Clegg, T. R. Spalding and J. D. Kennedy. *Inorg. Chem. Commun.*, 1999, 2, 315.
- [8] M. F. Hawthorne, in *Advances in Boron and the Boranes*, Eds. J. F. Liebman, A. Greenberg and R. E. Williams, VCH, Weinheim, 1988, pp 225-233.
- [9] H. Yan, A. M. Beatty and T. P. Fehlner, *J. Organomet. Chem.*, 2003, **680**, 66.
- [10] J. A. Long, T. B. Marder, and M. F. Hawthorne, J. Am. Chem. Soc., 1984, 106, 3004.
- [11] X. L. R. Fontaine, J. D. Kennedy, and M. Thornton-Pett, Collect. Czech. Chem. Commun., 1993, 58, 1555.
- [12] J. Bould, J. E. Crook, N. N. Greenwood, J. D. Kennedy, and W. S. McDonald, J. Chem. Soc., Chem. Commun., 1982, 346.
- [13] K. Nestor, X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy, J. Plešek, B. Štíbr, and M. Thornton-Pett, *Inorg. Chem.*, 1989, 28, 2219.
- [14] J. Bould, J. D. Kennedy, and M. Thornton-Pett, J. Chem. Soc., Dalton Trans. 1992, 563.
- [15] B. Štíbr, J. D. Kennedy, E. Drdáková and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 229.
- [16] See, for example, A. Burke, D. Ellis, B. T. Giles, B. E. Hodson, S. A. Macgregor, G. M. Rosiar and A. J. Welch, *Angew. Chem. Int. Edn.*, 2003, **42**, 225, and references cited therein.
- [17] M-S. Cheung, H-S. Chan and Z. Xie, *Organometallics*, 2004, 23, 517.
- [18] J. D. Kennedy, in *Advances in Boron Chemistry*, Ed. W. Siebert, Royal Society of Chemistry, Cambridge, 1997, pp 451-462.
- [19] J. Bould, W. Clegg, S. J. Teat, L. Barton, N. P. Rath, M. Thornton-Pett and J. D. Kennedy. *Boron Chemistry at the Millennium*, special edition of *Inorg. Chim. Acta*, 1999, **289**, 95.
- [20] J. Bould, D. L. Ormsby, H-J. Yao, C-H. Hu, J. Sun, R-S. Jin, S. L. Shea, W. Clegg, T. Jelínek, N. P. Rath, M. Thornton-Pett, R.Greatrex, P-J. Zheng, L. Barton, B. Štíbr and J. D. Kennedy, in *Contemporary Boron Chemistry*, Eds. M. Davidson, A. K. Hughes, T. B. Marder and K. Wade, Royal Society of Chemistry, Cambridge, England, 2000, pp 171-174.
- [21] S. L. Shea, J. Bould, M. G. S. Londesborough, S. D. Perera, A. Franken, D. L. Ormsby, T. Jelínek, B. Štíbr, J. Holub, C. A. Kilner, M. Thornton-Pett, and J. D. Kennedy. *Pure Appl. Chem.*, 2003, **75**, 1239.
- [22] J. D. Kennedy, in *Boron Chemistry (IMEBORON VI)*, Ed. S. Heřmanek, World Scientific, 1987/1988, pp. 207-243.
- [23] R. L. Sneath and L. J. Todd, *Inorg. Chem.*, 1973, **12**, 44.
- [24] X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy, P. I. MacKinnon, and M. Thornton-Pett, J. Chem. Soc., Chem. Commun., 1986, 1111.
- [25] P. Kaur, J. D. Kennedy, M. Thornton-Pett, T. Jelínek and B. Štíbr, *J. Chem. Soc., Dalton Trans.*, 1996, 1775.
- [26] L. Barton, J. Bould, J. D. Kennedy and N. P. Rath, J. Chem. Soc., Dalton Trans., 1996, 3145.

- [27] J. Bould, W. Clegg, J. D. Kennedy, S. J. Teat and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1997, 2005.
- [28] J. Bould, J. D. Kennedy, L. Barton and N. P. Rath, J. Chem. Soc., Chem. Commun., 1997, 2405.
- [29] S. L. Shea, T. Jelínek, B. Štíbr, M. Thornton-Pett and J. D. Kennedy, *Inorg. Chem. Commun.*, 2000, **3**, 169.
- [30] R. E. Williams, Inorg. Chem., 1971, 1, 210, and Adv. Inorg. Chem. Radiochem., 1976, 18, 67; K. Wade, Chem. Commun. 1971, 792, and Adv. Inorg. Chem. Radiochem., 1976, 18, 1.
- [31] S. G. Shore, in *Boron Hydride Chemistry*, Ed. E. L. Muetterties, Wiley, New York, 1975, pp. 79-174.
- [32] S. L. Shea, T. Jelínek, S. D. Perera, B. Štíbr, M. Thornton-Pett and J. D. Kennedy, *J. Chem. Soc., Dalton Trans.*, 2004, submitted.
- [33] P. McArdle, ORTEX, version 5, *J. Appl. Crystallogr.*, 1995, **28**, 65.
- [34] G.M. Sheldrick, SHELXS86, Program for crystal structure solution, University of Göttingen, 1986.
- [35] G. M. Sheldrick, SHELXL93, Program for crystal structure refinement, University of Göttingen, 1993.

Captions for Figures

Figure 1. ORTEP-type [33] drawings of (upper diagram) $[(\eta^5-C_5Me_5)IrB_{18}H_{20}]$ (1, data from reference [6], CCDC 101291, and (lower diagram) $[(\eta^5-C_5Me_5)HIrB_{18}H_{19}(PHPh_2)]$ (2, data from reference [32], CCDC 233343). In the more condensed structure 1, the hydride unit on Ir(9) bridges to B(12), and the distance Ir(9)-B(12) is bonding at 2.387(11) Å; the three atoms B(7),B(8)and B(12) are held in common between the two subclusters, and Ir(9)B(8)B(12) is acute at 75.0(6)° In less intimately conjoined 2, the hydride unit on Ir(9) is *endo*-terminal, there is an *exo*-terminal hydrogen unit on B(2'), and Ir(9)-B(2') is non-bonding at 3.279(7) Å; only two atoms, B(7) and B(8), are held in common between the two sub-clusters, and the corresponding angle Ir(9)B(8)B(2') is now more obtuse at 109.1(4)°.

Figure 2. ORTEP-type [33] drawing of $[(\eta^5-C_5Me_5)HIrB_{18}H_{19}(PHPh_2)]$ **6**. Selected interatomic distances (Å) are Ir(9)-B(4) 2.164(4), Ir(9)-B(5) 2.175(4), Ir(9)-B(8) 2.214(4), Ir(9)-B(10) 2.215(4), Ir(9)-H(9) 1.43(4), Ir(9)-C(C_5Me_5) 2.215(4)-2.271(3), B(7)-B(8) 1.905(5), B(7)-B(11) 1.892(5), B(7)-B(2') 1.828(5), B(7)-B(10') 2.050(6), B(8)-B(2') 1.810(6), B(8)-B(7') 1.900(6), B(10)-B(11) 1.914(5), B(7')-B(8') 1.945(6), B(8')-B(9') 1.816(6), and B(9')-B(10') 1.776(7), with other interboron distances between 1.756(6) and 1.831(6) Å for the $\{IrB_{10}\}$ subcluster and between 1.704(7) and 1.820(6) Å for the $\{B_{10}\}$ subcluster. Ir(9)-H(9) is *endo*-terminal, B(2')-H(2') is *exo*-terminal, Ir(9)-B(2') is non-bonding at 3.307(4) Å, and Ir(9)B(8)B(2') is 110.1(2)° (compare 2 in Figure 1, lower).

Figure 3. ORTEP-type [33] drawing of $[(\eta^5-C_5Me_5)IrB_{18}H_{18}(PH_2Ph)]$ **8**. Selected interatomic distances (Å) are Ir(9)-B(4) 2.272(7), Ir(9)-B(5) 2.257(6), Ir(9)-B(8) 2.227(7), Ir(9)-B(10) 2.255(6), Ir(9)-B(12) 2.316(8), Ir(9)-H(9,12) 1.845(8), Ir(9)-C(C_5Me_5) 2.199(6)-2.261(6), B(7)-B(8) 1.864(10), B(7)-B(11) 1.822(9), B(7)-B(12) 1.801(10), B(7)-B(10') 1.881(10), B(8)-B(12) 1.567(12), B(8)-B(7') 1.892(11), B(10)-B(11) 1.728(9), B(12)-B(3') 1.684(11), B(7')-B(8') 1.810(13), B(8')-B(9') 1.799(12), and B(9')-B(10')

1.799(11), with other interboron distances between 1.700(10) and 1.842(11) Å for the $\{IrB_{11}\}$ subcluster and between 1.688(11) and 1.872(11) Å for the $\{B_{10}\}$ subcluster. In contrast to **6** (Figure 2), the hydride unit on Ir(9) bridges to B(12), and the distance Ir(9)-B(12) is bonding; three atoms, B(7),B(8)and B(12), are held in common between the two subclusters, and Ir(9)B(8)B(12) is acute at 72.9(4)° (compare **1** in Figure 1, upper).

Footnotes

* Footnote for title if required

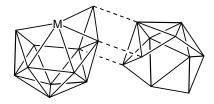
IUPAC nomenclatures for the new species **6** would be 11-diphenylphosphine-9-*pentahapto*-pentamethylcyclopentadienyl-9-hydrido-*nido*-9-iridaundecaborano-< 7,8 : 5',6' >-*nido*-decaborane, CCDC 165856, and, for compound **3**, 11-monphenylphosphine-9-*pentahapto*-pentamethylcyclopentadienyl-*nido*-9-iridadodecaborano-< 7,8,12 : 5',6', 7' >-*nido*-decaborane, CCDC 233342. This article was freely submitted for publication without royalty. By acceptance of this paper, the publisher and / or recipient acknowledges the right of the authors to retain non-exclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce all or part of the copyrighted paper.

NMR footnote

Cluster NMR data at 297-300K (CDCl₃), ordered as $\delta(^{11}B)$ [$\delta(^{1}H)$ of directly bound hydrogen atoms] (relative intensity); [11B-1H] correlations for solution-unstable **7** and **8** are tentative (impure and decomposing solutions): for $[(n^5-C_5Me_5)HIrB_{18}H_{19}(PHPh_2)]$ **6** - ca. +17.0 [+3.73] (1BH), +16.2 [+4.02] (1BH), +5.7 [no exo H] (1B),+3.6 [+3.34] (1BH), ca.+1.5 [+4.58] (1BH), ca. +0.5 [+2.97] (1BH), ca. -1.5 [+2.27] (1BH), -2.0 [+2.28] (1BH), -8.8 [+1.99] (1BH), ca. -10.7 [no exo H] (1B), ca. -11.5 [+2.13] (1BH), -16.3 [+2.06], -17.0 [+2.30] (1BH), ca. -25.5 [+0.12] (1BH), ca. -22.7 [no exo H, unresolved coupling ${}^{1}J({}^{31}P^{-11}B)$ ca. 150 Hz] (1B), -25.3[+1.78] (1BH), -28.9 [-1.46] (1BH), -40.1 [+0.12] (1BH); additionally $\delta(^{1}H)$ at +1.08, -1.00, -2.39[unresolved doublet splitting ${}^{2}J({}^{31}P^{-1}H)$] and $-2.86(4 \times H\mu)$, at $+2.07(15H, C_5Me_5)$, at $+1.43(1H, PHPh_2, PHPh_2)$ $^{1}J(^{31}P^{-1}H)$ ca. 80 Hz) and at -14.78 (1H. IrH), with $\delta(^{31}P)$ +0.8 ppm [unresolved coupling $^{1}J(^{31}P^{-11}B)$ ca. 150 Hz]; for $[(n^5-C_5Me_5)HIrB_{18}H_{19}(PH_2Ph)]$ 7 - ca. +17.2 [+3.89] (1BH), +16.2 [+4.03] (1BH), ca. +5.9 [no exo H](1B), +3.4 [+3.36] (1BH), ca.+1.8 [+4.72] (1BH), ca.+0.4 [+3.04] (1BH), ca.-0.1 [+2.26] (1BH), -1.9[+2.22] (1BH), -8.8 [+2.01] (1BH), ca. -10.5 [no exo H] (1B), ca. -11.2 [+2.12] (1BH), -15.9 [+2.12] (1BH), -16.8 [+2.23] (1BH), ca. -22.0 [+0.15] (1BH), ca. -25 [no exo H, unresolved coupling ${}^{1}J({}^{31}P^{-11}B)$ ca.135 Hz] (1B), -24.6 [+1.70] (1BH), -28.7 [-1.45] (1BH), -40.0 [+ 0.15] (1BH); additionally $\delta(^{1}\text{H})$ at +1.13, -1.01, -2.47 [unresolved doublet splitting ${}^2J({}^{31}P^{-1}H)$] and -2.84 (4 × H μ), at +2.24 (15H, C₅Me₅), at +1.43 $(1H, PHMe_2, {}^{1}J({}^{31}P^{-1}H) ca. 80 Hz)$, at +2.41 and +1.28 (2H, PHPh₂), and at -14.78 (1H, IrH), with $\delta({}^{31}P)$ -40.3 ppm [part-resolved coupling ${}^{1}J({}^{31}P-{}^{11}B)$ ca. 135 Hz];

¹ Footnote for NMR data.

for $[(\eta^5-C_5Me_5)IrB_{18}H_{18}(PH_2Ph)]$ **8** - ca. +10.7 [ca. +3.7] (1BH), +5.7 [ca. +3.2] (1BH), +5.7 [ca. +2.7] (1BH), ca. +5.0 [ca. +3.9] (1BH), +3.0 [ca. +3.55] (1BH), ca. +1.0 [ca. +0.08] (1BH), -0.7 [ca. +3.9] (1BH), (1BH), -4.8 [ca. +2.3], -8.3 [ca. +1.95], ca. -10.5 [ca. +3.0] (1BH), ca. -14.0 [no exo H] (1B), ca. -14.4 [ca. +1.45] (1BH), ca. -16.8 [ca. +2.05] (1BH), ca. -16.8 [ca. +0.7] (1BH), -26.5 [ca. +1.75] (1BH), -29.6 [ca. +10.2] (1BH μ M), -41.8 [ca. +0.04] (1BH); additionally $\delta(^1$ H) at ca. +1.96 (15H, ca. +0.7), ca. -0.85 and ca. -2.5 (3 × H μ) and two centred at ca. +1.53 (2H, PH $_2$ Ph), with $\delta(^{31}P)$ -36.6 ppm [broadened, unresolved coupling 1 J($^{31}P_ ^{11}B$)].


X-ray footnote

² Footnote for X-ray diffraction analyses.

[(η⁵-C₅Me₅)HIrB₁₈H₁₉(PHPh₂)] **6**, C₂₂H₄₆B₁₈IrP: M = 728.34, monoclinic (yellow block, 0.32×0.28×0.22 mm, from CH₂Cl₂/C₆H₁₄), Space Group $P2_1/n$, a = 10.9820(1), b = 26.0041(3), c = 12.3756(1) Å, β = 109.2830(6)°, U = 3335.91(6) Å³, $D_{calc} = 1.450$ Mg m⁻³, Z = 4, Mo- $K_α$, λ = 0.71073 Å, μ = 4.066 mm⁻¹, T = 190(2) K, $R_1\{I > 2σ(I)\} = 0.0376$ and $wR_2 = 0.1042$ for all 17158 unique reflections; CCDC 165855. [(η⁵-C₅Me₅)IrB₁₈H₁₈(PH₂Ph)] **8**, C₁₆H₄₀B₁₈IrP: M = 650.23, monoclinic (yellow prism, 0.39×0.26×0.13 mm, from CH₂Cl₂/C₆H₁₄), Space Group $P2_1/c$, a = 10.3712(2), b = 12.0290(3)), c = 23.6126(5) Å, β = 99.7010(13)°, U = 2903.67(11) Å³, $D_{calc} = 1.487$ Mg m⁻³, Z = 4, Mo- $K_α$, λ = 0.71073 Å, μ = 4.661 mm⁻¹, T = 100(2) K, $R_1\{I > 2σ(I)\} = 0.0352$ and $wR_2 = 0.0902$ for all 5635 unique reflections; CCDC 233342. For both **6** and **8**, methods and programs were standard [34,35].

Shorter abstract for graphical contents

 $[(\eta^5-C_5Me_5)IrB_{18}H_{18}(PH_2Ph)]$ **8**, from double-cluster *syn*- $[(\eta^5-C_5Me_5)IrB_{18}H_{20}]$ **1** and PH_2Ph , retains the three-atoms-in-common cluster-fusion intimacy of **1**, in contrast to $[(\eta^5-C_5Me_5)HIrB_{18}H_{19}(PHPh_2)]$ **6**, from $PHPh_2$ with **1**, which exhibits an opening to a two atoms-in-common cluster-fusion intimacy.

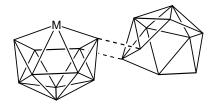
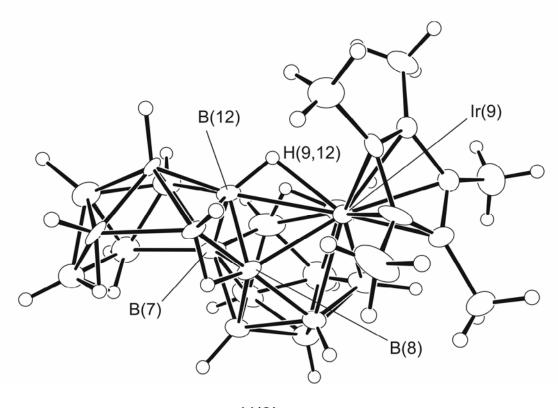



Figure 1

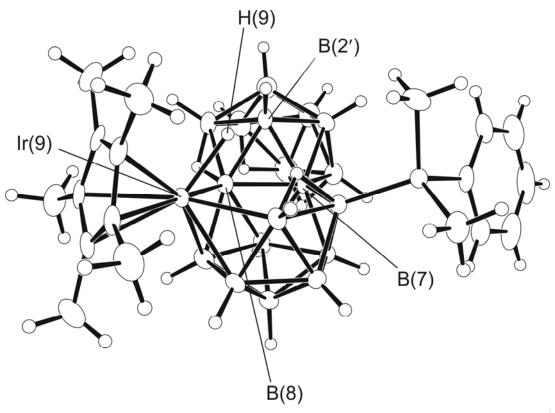


Figure 2

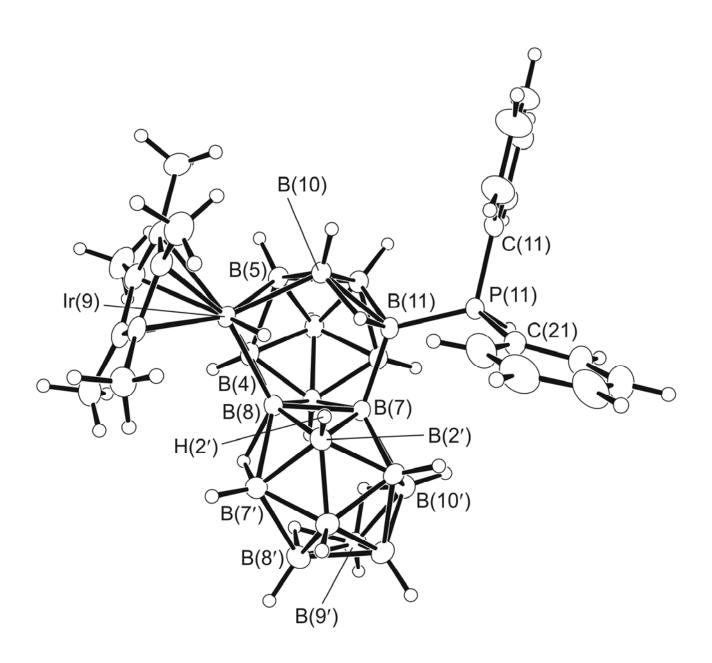
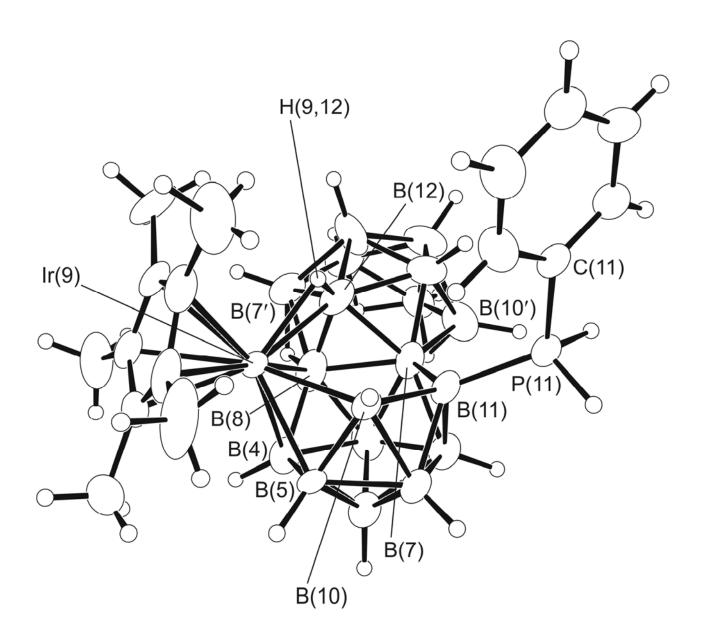



Figure 3

