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_______________________________________________________________________________________ 

Fused double-cluster [(η5-C5Me5)IrB18H18(PH2Ph)]  8,  from syn-[(η5-C5Me5)IrB18H20] 1 and PH2Ph, retains the 

three-atoms-in-common cluster fusion intimacy of 1, in contrast to [(η5-C5Me5)HIrB18H19(PHPh2)] 6, from 

PHPh2 with 1, which exhibits an opening to a two atoms-in-common cluster fusion intimacy. Compound 8 forms 

via spontaneous dihydrogen loss from its precursor [(η5-C5Me5)HIrB18H19(PH2Ph)] 7, which has two-atoms-in-

common cluster-fusion intimacy and is structurally analogous to 6. 

_______________________________________________________________________________________ 
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The redox flexibility of transition-element centres allied with the closo-nido-arachno-etc redox flexibility of 

boron-containing cluster structures engenders much interesting metallaborane structural, behavioural, and 

reaction chemistry [1,2]. Rhodium and iridium metallaboranes have figured significantly in this regard, for 

example in terms of reactions, both catalytic and non-catalytic [3-9], in phenomena such as fluxionalities 

[10,11], and in the establishment of interesting cluster types, such as those of 'isocloso' and 'isonido' geometries 

[12-15].  Single-cluster borane, heteroborane and metallaborane chemistry is governed at present by an 

uppermost limit to cluster size of about fourteen vertices [16,17]: to extend beyond this horizon the clusters need 

to be linked or fused together to make bigger cluster assemblies. Intimate intercluster fusions, with two or more 

atoms held in common between the constituent subclusters, result in so-called 'macropolyhedral' species [18-21], 

in which the multicentre bonding characteristics of boron extend across the nexus between the constituent 

subclusters. The structural flexibility resulting from the incorporation of rhodium and iridium centres in 

macropolyhedral metallaborane assemblies has been most useful in the development of this macropolyhedral  

area [22-29], and milestone compounds include the [(CO)(PPh3)Rh2B18H20]− anion [23],  [(C5Me5)2RhB18H20] 

[2],  [(C5Me5)2RhB17H21] [22], [(C5Me5)2Rh2B17H19] [22,24], [(C5Me5)2Rh2S2B15H14(OH)] [25], 



[(CO)(PMe3)2IrB16H14Ir(CO)(PMe3)2] [26],  [7,7,7-(CO)(PMe3)2-syn-7-IrB17H20] [27], 

[(PMe3)2IrB26H24Ir(CO)(PMe3)2] [20,21,28], [(η5-C5Me5)IrB18H20] [6], the [(η5-C5Me5)IrB18H19S]−  anion [6], 

and [(η5-C5Me5)3Ir3B18H15(OH)] [20,21,29].  

 

The addition of electrons to the cluster in a single-cluster compound generally results in cluster opening along 

the closo-nido-arachno-etc sequence; conversely, removal of electrons generally results in cluster closure [30].  

In macropolyhedral boron-containing cluster compounds, in which single clusters are fused together, the 

addition or removal of electrons can, alternatively, result in a decease or an increase, respectively, in the degree 

of intimacy of intercluster fusion, rather than the opening or closing of individual subclusters [6,18,20,29].  For 

the development and understanding of intercluster fusion chemistry,  there is merit in establishing systems in 

which such alternative behaviours can be observed and defined.  
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Addition of electrons to a cluster is commonly effected by the addition of a two-electron ligand [31] and, in this 

context, we have recently found that the addition of the two-electron ligand PMe2Ph to the macropolyhedral 

iridaborane [(η5-C5Me5)Ir-syn-B18H20] 1 (Figure 1, upper diagram) [6] results in the adduct [[(η5-C5Me5)HIr-

syn-B18H19(PMe2Ph)] 2  (Figure 1, lower diagram) (equation 1, where L is PMe2Ph) [32]. In compound 1, the 

cluster structure (schematic I A) is that of a nido twelve-vertex {IrB11} unit fused with a  nido ten-vertex {B10} 

unit, with three boron atoms held in common (schematic I B). By contrast, in compound 2, the cluster structure 

(schematic II A) is that of a nido eleven-vertex {IrB10} unit fused with a nido ten-vertex {B10} unit, but now with 

only two boron atoms held in common (schematic II B). The conversion of 1 to 2 by the addition of the two-

electron ligand PMe2Ph therefore results in a reduction of intimacy of cluster bonding rather than an opening of 

the individual subclusters along the closo-nido-arachno-etc sequence.  
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In attempts at the further investigation of this and related phenomena, we found in siting experiments that the 

reaction of PMe2Ph with the rhodium analogue of 1, viz. [(η5-C5Me5)-syn-RhB18H20] 3, results in a species 

reasonably formulated from NMR spectroscopy and mass spectrometry as [(η5-C5Me5)HRh-syn-

B18H19(PMe2Ph)] 4, i.e. a species analogous to compound 2, with the less intimately fused two-atoms-in-

common double-cluster configuration II. However, in our hands so far, compound  4 has proved to be unstable 

in solution, precluding purification, definitive NMR work, crystallisation and structural elucidation. It 

decomposes to a further compound, for which NMR spectroscopy suggests formulation as [(η5-C5Me5)Rh-syn-

B18H18(PMe2Ph)] 5, i.e. a  species with two hydrogen atoms fewer, and thence two cluster electrons fewer, than 

its precursor 4. Compound 5, in turn, has also proved to be unstable in solution, again, so far, precluding 

definitive NMR work, purification, crystallisation and thence structural confirmation by single-crystal X-ray 

diffraction analysis.  

 

The nature of this further structural type is, however, clarified from the results of the investigation of the 

reaction of the iridium species [(C5Me5)Ir-syn-B18H20] 1 with the phosphines PHPh2 and PH2Ph. Reaction 

overnight at room temperature between excess PHPh2 (0.3 ml, 1400 µmol) and 1 (38 mg, 700 µmol) in CH2Cl2 

(ca. 15 ml), followed by removal of solvent (rotary evaporator, water pump, 30 °C) and separation of the yellow 

residue by TLC (silica-gel G, CH2Cl2/C6H12 60/40 v/v), gave air-stable orange crystals of [(η5-C5Me5)HIr-syn-

B18H19(PHPh2)] 6 (RF 0.7, 26 mg, 370 µmol, 53 %) after recrystallisation from a solution in CH2Cl2 that was 

overlayered with C6H12. Compound 6 was characterised by NMR spectroscopy1 and single-crystal X-ray 

diffraction analysis (Figure 2),2 and thereby shown to have the more-open two-atoms-in-common cluster 

structure of its PMe2Ph analogue 2 [32].  By contrast, the analogous product from the reaction of  PH2Ph with 1 

was not so robust. Overnight reaction (ca. 18 hours) of  PH2Ph (9 µl, 820 µmol) with 1 (40 mg, 740 µmol) in 

CH2Cl2 (ca. 15 ml) gave a  yellow solution. Filtration through silica-gel G, followed by removal of solvent as 

above gave an impure orange powder, formulated, on the basis of  NMR spectroscopic similarities to the 

PMe2Ph and PHPh2 species 2 and 6,1 as principally [(η5-C5Me5)HIr-syn-B18H19(PH2Ph)] 7 (21 mg, 320 µmol, 43 

%) of two-atoms-in-common configuration II. Attempted purification by TLC on silica-gel G using a variety of 

solvent systems resulted in decomposition of 7, although a small quantity of a yellow component 8, not present 

in the crude product 7, was isolatable, and was purified by crystallisation. NMR spectroscopy1 on  8 thence 

suggested a formulation [(η5-C5Me5)Ir-syn-B18H18(PH2Ph)], which was confirmed by the results of single-crystal 

X-ray diffraction analysis (Figure 3).2  The molecular structure of compound 8  thence in turn clearly shows that 

the three-atoms-in-common intercluster intimacy of the starting species 1 (schematic I and Figure 1, upper 

diagram) is conserved, in contrast to the structure of the [(C5Me5)HIrB18H19(PHPh2)]  7, in which an opening to 

the two-atoms-in-common fusion mode is noted.        

 

In the overall formation of 8 from 1 , the two-electron gain associated with the incorporation of the PH2Ph 

ligand is cancelled by the two-electron loss associated with the elimination of dihydrogen  (equation 2, where L 

is PH2Ph ); overall,  the three-atoms-in-common configuration is thence retained, and the individual subclusters 

retain their individual nido characters. The observations involving the conversion of  rhodium compound 4 to 



give 5, and of the iridium compound 7 to give 8, indicate that the stepwise process reasonably involves an  initial 

stoichiometric adduct with a comparatively simple adduct reaction stoichiometry (equation 1), to give the more 

open two-atoms-in-common configuration, followed by dihydrogen elimination (equation 3) to give the more 

condensed three-atoms-in-common product species 5 and 8.  

 

[(C5Me5)Ir-syn-B18H20]    +   L       →      [(C5Me5)HIrB18H19(L)]           (1) 

[(C5Me5)IrB18H20]    +    L              →      [(C5Me5)IrB18H18(L)]    +  H2        (2) 

[(C5Me5)HIrB18H19(L)]                   →      [(C5Me5)IrB18H18(L)]    +  H2       (3) 

 

We currently examine reactions of other two-electron ligands with compound 1 and related species, and examine 

for other products from the systems reported in this present note.  
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Captions for Figures 

 

Figure 1.  ORTEP-type [33] drawings of  (upper diagram) [(η5-C5Me5)IrB18H20] (1, data from reference [6], 

CCDC 101291, and (lower diagram) [(η5-C5Me5)HIrB18H19(PHPh2)] (2, data from reference [32], CCDC 

233343). In the more condensed structure 1, the hydride unit on Ir(9) bridges to B(12), and the distance Ir(9)-

B(12) is bonding at 2.387(11) Å; the three atoms B(7),B(8)and B(12) are held in common between the two 

subclusters, and Ir(9)B(8)B(12) is acute at 75.0(6)°  In less intimately conjoined  2, the hydride unit on Ir(9) is 

endo-terminal, there is an exo-terminal hydrogen unit on B(2'), and Ir(9)-B(2') is non-bonding at 3.279(7) Å; 

only two atoms, B(7) and B(8), are held in common between the two sub-clusters, and the corresponding angle 

Ir(9)B(8)B(2') is now more obtuse at 109.1(4)°. 

 

Figure 2.  ORTEP-type [33] drawing of  [(η5-C5Me5)HIrB18H19(PHPh2)] 6. Selected interatomic distances (Å) 

are Ir(9)-B(4) 2.164(4), Ir(9)-B(5) 2.175(4), Ir(9)-B(8) 2.214(4), Ir(9)-B(10)  2.215(4), Ir(9)-H(9) 1.43(4), Ir(9)-

C(C5Me5) 2.215(4)-2.271(3), B(7)-B(8) 1.905(5), B(7)-B(11) 1.892(5), B(7)-B(2') 1.828(5), B(7)-B(10') 

2.050(6), B(8)-B(2') 1.810(6), B(8)-B(7') 1.900(6), B(10)-B(11) 1.914(5), B(7')-B(8') 1.945(6), B(8')-B(9') 

1.816(6), and B(9')-B(10') 1.776(7), with other interboron distances between 1.756(6) and 1.831(6) Å for the 

{IrB10} subcluster and between 1.704(7) and 1.820(6) Å for the {B10} subcluster. Ir(9)-H(9) is endo-terminal, 

B(2')-H(2') is exo-terminal, Ir(9)-B(2') is non-bonding at 3.307(4) Å, and Ir(9)B(8)B(2') is 110.1(2)° (compare 2 

in Figure 1, lower). 

 

Figure 3. ORTEP-type  [33] drawing of  [(η5-C5Me5)IrB18H18(PH2Ph)] 8. Selected interatomic distances (Å) 

are Ir(9)-B(4) 2.272(7), Ir(9)-B(5) 2.257(6), Ir(9)-B(8)  2.227(7), Ir(9)-B(10)  2.255(6), Ir(9)-B(12) 

2.316(8),  Ir(9)-H(9,12) 1.845(8), Ir(9)-C(C5Me5) 2.199(6)-2.261(6), B(7)-B(8) 1.864(10), B(7)-B(11) 

1.822(9), B(7)-B(12) 1.801(10), B(7)-B(10') 1.881(10), B(8)-B(12) 1.567(12), B(8)-B(7') 1.892(11), B(10)-

B(11) 1.728(9), B(12)-B(3') 1.684(11), B(7')-B(8') 1.810(13), B(8')-B(9') 1.799(12), and B(9')-B(10') 



1.799(11), with other interboron distances between 1.700(10) and 1.842(11) Å for the {IrB11} subcluster 

and between 1.688(11) and 1.872(11) Å for the {B10} subcluster. In contrast to 6 (Figure 2), the hydride 

unit on Ir(9) bridges to B(12), and the distance Ir(9)-B(12) is bonding; three atoms, B(7),B(8)and B(12), are 

held in common between the two subclusters, and Ir(9)B(8)B(12) is acute at 72.9(4)°  (compare 1 in Figure 

1, upper). 

 

Footnotes 

 

*  Footnote for title if required 

IUPAC nomenclatures for the new species 6 would be  11-diphenylphosphine-9-pentahapto-

pentamethylcyclopentadienyl-9-hydrido-nido-9-iridaundecaborano-< 7,8 : 5′,6′ >-nido-decaborane, CCDC 

165856, and, for compound 3,  11-monphenylphosphine-9-pentahapto-pentamethylcyclopentadienyl-nido-9-

iridadodecaborano-< 7,8,12 : 5′,6′, 7′ >-nido-decaborane, CCDC 233342. This article was freely submitted for 

publication without royalty. By acceptance of this paper, the publisher and / or recipient acknowledges the right 

of the authors to retain non-exclusive, royalty-free license in and to any copyright covering this paper, along 

with the right to reproduce all or part of the copyrighted paper.  

 

NMR footnote 
1 Footnote for NMR data. 

Cluster NMR data at 297-300K (CDCl3 ), ordered as δ(11B) [δ(1H) of directly bound hydrogen atoms] (relative 

intensity); [11B-1H] correlations for solution-unstable 7 and 8 are tentative (impure and decomposing solutions):  

for [(η5-C5Me5)HIrB18H19(PHPh2)] 6 -   ca. +17.0 [+3.73] (1BH), +16.2 [+4.02] (1BH), +5.7 [no exo H] (1B), 

+3.6 [+3.34] (1BH), ca.+1.5 [+4.58] (1BH), ca. +0.5 [+2.97] (1BH),  ca. −1.5 [+2.27] (1BH),  −2.0 [+2.28] 

(1BH),  −8.8 [+1.99] (1BH), ca. −10.7 [no exo H] (1B),  ca. −11.5 [+2.13] (1BH),  −16.3 [+2.06], −17.0  [+2.30] 

(1BH), ca. −25.5 [+0.12] (1BH), ca.−22.7 [no exo H, unresolved coupling 1J(31P-11B) ca. 150 Hz] (1B), −25.3 

[+1.78] (1BH), −28.9 [−1.46] (1BH), −40.1 [+ 0.12] (1BH); additionally δ(1H) at +1.08, −1.00, −2.39 

[unresolved doublet splitting  2J(31P-1H) ] and −2.86 (4 × Hµ), at +2.07(15H, C5Me5), at +1.43 (1H, PHPh2, 
1J(31P-1H) ca. 80 Hz) and at −14.78 (1H, IrH), with δ(31P) +0.8 ppm [unresolved coupling 1J(31P-11B) ca. 150 

Hz];  

for [(η5-C5Me5)HIrB18H19(PH2Ph)] 7 -   ca. +17.2 [+3.89] (1BH), +16.2 [+4.03] (1BH), ca.+5.9 [no exo H] 

(1B), +3.4 [+3.36] (1BH), ca.+1.8 [+4.72] (1BH), ca. +0.4 [+3.04] (1BH),  ca. −0.1 [+2.26] (1BH),  −1.9 

[+2.22] (1BH),  −8.8 [+2.01] (1BH), ca. −10.5 [no exo H] (1B),  ca. −11.2 [+2.12] (1BH),  −15.9  [+2.12] 

(1BH), −16.8 [+2.23] (1BH),  ca. −22.0 [+0.15] (1BH), ca.−25 [no exo H, unresolved coupling 1J(31P-11B) ca. 

135 Hz] (1B), −24.6 [+1.70] (1BH), −28.7 [−1.45] (1BH), −40.0 [+ 0.15] (1BH); additionally δ(1H) at +1.13, 

−1.01, −2.47 [unresolved doublet splitting  2J(31P-1H) ] and −2.84 (4 × Hµ), at +2.24 (15H, C5Me5), at +1.43 

(1H, PHMe2, 1J(31P-1H) ca. 80 Hz), at +2.41 and +1.28 (2H, PHPh2),  and at −14.78 (1H, IrH), with δ(31P) −40.3 

ppm [part-resolved coupling 1J(31P-11B) ca. 135 Hz];  



for [(η5-C5Me5)IrB18H18(PH2Ph)]  8 -   ca. +10.7 [ca. +3.7] (1BH), +5.7  [ca. +3.2] (1BH), +5.7 [ca.+2.7] 

(1BH), ca. +5.0 [ca. +3.9] (1BH), +3.0 [ca. +3.55] (1BH), ca. +1.0 [ca. +0.08] (1BH),  −0.7 [ca. +3.9] (1BH),   

(1BH),  −4.8 [ca. +2.3], −8.3  [ca. + 1.95], ca. −10.5 [ca. +3.0] (1BH), ca. −14.0 [no exo H] (1B), ca. −14.4 [no 

exo H] (1B), ca. −14.4 [ca. +1.45] (1BH), ca. −16.8 [ca. +2.05] (1BH), ca. −16.8 [ca. +0.7] (1BH), −26.5 [ca. 

+1.75] (1BH), −29.6 [ca. +10.2] (1BHµM), −41.8 [ca. + 0.04] (1BH); additionally δ(1H) at ca. +1.96 (15H, 

C5Me5), at ca. +0.7, ca. −0.85 and ca. −2.5 (3 × Hµ) and two centred at ca. +1.53 (2H, PH2Ph), with δ(31P) 

−36.6 ppm [broadened, unresolved coupling 1J(31P-11B)]. 

 

X-ray footnote 
2  Footnote for X-ray diffraction analyses.  

 [(η5-C5Me5)HIrB18H19(PHPh2)] 6, C22H46B18IrP: M = 728.34, monoclinic (yellow block, 0.32×0.28×0.22 mm, from 

CH2Cl2/C6H14), Space Group P21/n, a = 10.9820(1), b = 26.0041(3), c = 12.3756(1) Å, β = 109.2830(6)°, U = 

3335.91(6) Å3, Dcalc = 1.450 Mg m-3, Z = 4, Mo-Kα, λ = 0.71073 Å, µ = 4.066 mm−1, T = 190(2) K, R1{I > 2σ(I)} = 

0.0376 and wR2 = 0.1042 for all 17158 unique reflections; CCDC 165855.  [(η5-C5Me5)IrB18H18(PH2Ph)] 8, 

C16H40B18IrP: M = 650.23, monoclinic (yellow prism, 0.39×0.26×0.13 mm, from CH2Cl2/C6H14), Space Group P21/c, 

a = 10.3712(2), b = 12.0290(3)), c = 23.6126(5) Å, β = 99.7010(13)°, U = 2903.67(11) Å3, Dcalc = 1.487 Mg m-3, Z = 

4, Mo-Kα, λ = 0.71073 Å, µ = 4.661 mm−1, T = 100(2) K, R1{I > 2σ(I)}= 0.0352 and wR2 = 0.0902 for all 5635 unique 

reflections; CCDC 233342. For both 6 and 8, methods and programs were standard [34,35]. 

 

 

      



Shorter abstract for graphical contents 

 

[(η5-C5Me5)IrB18H18(PH2Ph)] 8,  from double-cluster syn-[(η5-C5Me5)IrB18H20] 1 and PH2Ph, retains the three-

atoms-in-common cluster-fusion intimacy of 1, in contrast to [(η5-C5Me5)HIrB18H19(PHPh2)] 6, from PHPh2 

with 1, which exhibits an opening to a  two atoms-in-common cluster-fusion intimacy.  
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Figure 1 

 



Figure 2 

 

 

 

 



Figure 3 
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