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__________________________________________________________________________________ 

 

Fusion of  nine-vertex [1-Ph-nido-1-CB8H11] with [Mo(CH3CN)3(CO)3] in the presence of 

tetramethylnaphthalenediamine gives the nineteen-vertex macropolyhedral metallaborane anion 

[(CO)2MoB16H15C2Ph]−  with a molybdenum(VI) twelve-atom coordination sphere. 

 

________________________________________________________________________________ 

 

One conception of future achievable large borane cluster molecules predicts species that consist of condensed 

borons-only cores surrounded by boron-hydride outer skins.1,2  The architectures of many of these might be expected 

to mimic the assemblies of boron atoms that are seen within allotropes of elemental boron, but with peripheral 

valencies bound to hydrogen atoms.3-5  Computational work suggests that globular species such as B17H21 and 

B84H54, based on elemental boron assemblies, may represent future architectural principles.4,5  In terms of known 

species, such structures are approached by assemblies such as the {PdB20} unit of 

[(PPh3)2(PPh2)2Pd3B20H16Pd(PPh3)] 4 and the {IrB18} unit of [(PMe3)2COIrB26H24Ir(PMe3)2 ].3 In the formation of 

these latter two compounds, smaller boron hydride units assemble and fuse about a transition-element centre.6  The 

experimental yields of these larger globular metallaborane species are, however, exceedingly small. Consequently, 

there is merit in prospecting for higher-yield assembly-fusion systems to facilitate development.  Higher-yield 

fusions of five-vertex {C2B3} and six-vertex {C2B4} units about iron and cobalt centres have been observed,7 but the 

application of such routes to the fusion of larger clusters is not established, although potential feasibility is thereby 

suggested.  We surmised that use of earlier transition-element centres, with fewer electrons, high formal oxidation 

states, and higher orbital and coordination-number availabilities, could have use as nuclei for such assembly-fusions.  

We have now been able to establish an instance of such an assembly fusion, in the reaction of [Mo(CO)3(MeCN)3] 8 

with [1-Ph-nido-1-CB8H11],9 and non-nucleophilic base, to give the air-stable nineteen-vertex 

[(CO)2MoB16C2Ph2H15]− anion  1 in a yield of 31 %.  We have also obtained 1 from the otherwise closely related 

reaction using [Mo(CO)3(C7H8)], but yields are very variable (zero to 70 %) and we have not been able to achieve 

consistency of good yield over many attempts and over several variations of conditions. 

 

Thus, the reaction of  [1-Ph-nido-1-CB8H11] {formed in situ from [4-Ph-arachno-4-CB8H13] (500 mg; 2.65 mmol) in 

toluene (25 ml) by heating to reflux temperature overnight}9 with N,N,N',N'-tetramethylnaphthalene-1,8-diamine 

(tmnd; 615 mg; 2.87 mmol) and [Mo(CO)3(CH3CN)3] (700 mg, 2.65 mmol) in toluene (25 ml) at reflux temperature 

for 5 hours, followed by preliminary purification by  'flash chromatography' using silica-gel and subsequent TLC 

separation on silica-gel-G (Fluka, type GF254), revealed a single major golden component (RF ca. 0.3; 80 / 20 CH2Cl2 

/ hexane as liquid phase). This was identified as the [tmndH]+ salt 1a of the [(CO)2MoB16H15C2Ph2]− anion 1 (308 



mg, 420 µmol, 31 %) by single crystal X-ray diffraction analysis (Figure 1),10 together with  NMR spectroscopy, 

mass spectrometry and elemental analysis.11 

 

The basic double-cluster configuration of 1 approximates closely to the C2v symmetry that is consistent with its 

solution NMR properties. This configuration is based on a nineteen-vertex {MoC2B16} assembly (schematic I) that 

factorises into two closo ten-vertex {MoCB8} subcluster units that join with the molybdenum atom in common 

(schematic II).  Monometallamonocarbaborane {MCB8} closo ten-vertex single-cluster species are known, but 

rare.12  The two subclusters additionally link by a BHB unit, in which the hydrogen atom takes up a position 

equivalent to what would otherwise be a {BH(exo)} site in each subcluster. This bridging hydrogen atom has an 

interestingly low nuclear shielding, with NMR δ(1H) at + 7.17 ppm (CDCl3).  The overall architecture in this 

intercluster fusion region has some parallels with the apparently unbridged solid-state structure of 

[(C5Me5)Co(C2Me2B4H3)CoH(C2Me2B4H3)Co(C5Me5)],13 and with the hydrogen-bridged structure in 

[Cl2TaC4B18H21].14  The last compound, like 1, is an earlier transition-element compound.  These latter two species, 

as far as we are aware, constitute the only other known reasonably close cluster-fusion parallels.  In the cobalt 

compound, the non-bridged interboron distance is 1.758(5) Å, and in the hydrogen-bridged tantalum species 

1.870(4) Å.  The equivalent linkage B(1)-B(1') in 1 at 1.707(4) Å shows a stronger fusion than in the other two 

species. The bonding around the B(1)-B(1') intercluster fusion in 1 is in fact generally strong, with Mo(2)-B(1) and 

Mo(2)-B(1'), both at 2.150(3) Å, markedly shorter than the other Mo-B distances, which all exceed 2.44 Å; 

interestingly, also, B(1)-B(4) and B(1)-B(4') are short for deltahedral interboron distances, at 1.662(5) and 1.657(5) 

Å respectively, and are in the range associated with localised interboron two-electron two-centre σ-bonds. In anion 1 

the molybdenum atom is sited in a ten-boron cleft in the basic double-cluster assembly (compare references 3 and 

4), with its formally molybdenum(VI) coordination periphery completed by the two CO ligands to give a sixteen-

electron d0 transition-element centre, with an overall nearest-neighbour atomic coordination number of 12. 
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In view of the elusiveness of high-yield routes to fused multi-cluster boron-containing species other than the syn and 

anti isomers of B18H22, this synthesis of the [(CO)2MoB16H15C2Ph2]− anion 1 in reasonable yield in a straightforward 

synthesis from relatively easily made, or otherwise readily available, starting substrates,8,9 should now permit the 

development of a macropolyhedral chemistry that compliments that derived from the B18H22 isomers.  The principle 

for the method also offers possibilities for development into a more generically applicable cluster-fusion method.   
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Captions for Figure 

 

Figure 1.  Molecular structure of the [(CO)2MoB16H15C2Ph2]− anion 1, as determined crystallographically in its 

[tmndH]+ salt 1a.10  Selected interatomic distances (Å) are as follows: from Mo(2) to B(1) 2.150(3), to B(1′) 

2.150(3), to B(3) 2.446(3), to B(3′) 2.535(3), to B(5) 2.531(3), to B(5′) 2.447(3), to B(6) 2.448(3), to B(6′) 2.534(3), 

to B(9) 2.551(3), to B(9′) 2.441(3), to C(21) 2.037(3) and to C(22) 2.018(3); C(21)-O(23) and C(22)-O(24) are 

1.143(3) and 1.146(3); B(1) to B(1′) is 1.707(4), with B(1)-B(4) and B(1)-B(4') also short at 1.662(5) and 1.657(4) 

(see text); conversely B(6)-B(9) and B(6')-B(9') (shown unconnected in the Figure) are 'long' at 1.978(2) and 

1.971(4), showing a tendency towards more open 'isonido' ten-vertex geometry, as often observed in metal-

containing closo-type ten-vertex borane cluster species.15 Other cluster interboron distances are in the range 1.733(4) 

to 1.872(4) Å, with carbon-boron distances in the range 159.7(4) to 162.1(4) Å. The C(21)-Mo(2)-C(22) angle is 

89.27(11)° 

 

Data for deposition 

 

Crystallographic data for the previously unreported [C10H6(NMe2)H]+ salt 1a of the [(CO)2MoB16H15C2Ph2]− anion 1 

are deposited at the Cambridge Crystallographic Data Centre, CCDC, deposition number CCDC 239168; These data 

can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge 

Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; E-

mail: deposit@ccdc.cam.ac.uk]. 
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Suggestion for graphical abstract 
 
Fusion of  [1-Ph-nido-1-CB8H11] with [Mo(CH3CN)3(CN)3] gives the nineteen-vertex macropolyhedral 

metallaborane anion [(CO)2MoB16H15C2Ph]−  with a molybdenum(VI) twelve-atom coordination sphere. 

 

 

 


