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Abstract

The dynamics of ignition between a contact surface and a shock wave is investigated using a

one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and

high-resolution finite activation energy numerical simulations are employed. Emphasis is on com-

paring and contrasting the solutions with those of the ignition process between a piston and a shock,

considered previously. The large activation energy asymptotic solutions are found to be qualita-

tively different from the piston driven shock case, in that thermal runaway first occurs ahead of

the contact surface, and both forward and backward moving reaction waves emerge. These waves

take the form of quasi-steady weak detonations that may later transition into strong detonation

waves. For the finite activation energies considered in the numerical simulations, the results are

qualitatively different to the asymptotic predictions in that no backward weak detonation wave

forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance

of the contact surface. The above conclusions are relevant to gas phase equation of state models.

However, when a large polytropic index more representative of condensed phase explosives is used,

the large activation energy asymptotic and finite activation energy numerical results are found to

be in quantitative agreement.
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I. INTRODUCTION

Ignition of explosive fuels by the passage of a shock wave is an important issue from

the perspective of safety (e.g. storage and handling). For fuels which can be characterized

by a single exothermic reaction model with an Arrhenius form of the reaction rate, the

evolutionary mechanisms of the shock-to-detonation transition process are well understood

in the case that the shock is driven by a constant velocity piston, or equivalently by the

reflection of a weaker shock from a stationary wall.

Indeed, a complete theoretical picture of the shock-to-detonation transition process exists

for the asymptotic limit of large activation energy of the reaction [1–3]. This theory shows

that the evolution begins with an induction stage during which the shocked material slowly

evolves from the uniform initial shocked state due to weak heat release. This stage ends with

a thermal runaway event at the piston (where the material has been shocked for the longest).

The fuel subsequently burns to complete reaction on a timescale which is exponentially short

compared to the induction time. However, this thermal runaway event is just the first in

a series of local thermal runaways, which occur sequentially due to a gradient in induction

times created by the passage of the shock. A locus of thermal runaways thus moves away from

the initial point of runaway, which represents the leading order the path of a weak detonation

wave (a shockless reaction wave which is supersonic throughout in its own rest frame) [1–3].

Since the reaction rates are exponentially rapid in the high activation energy limit, this wave

is assumed quasi-steady, i.e. the particle transit time through the wave is short compared to

the evolution time of the wave. This quasi-steady weak detonation decelerates very rapidly,

and once it reaches the Chapman-Jouguet (CJ) speed, a sonic point appears in the region of

reaction burnout [1]. At this point unsteady effects become important, which results in the

formation of a secondary shock. This interior shock subsequently accelerates, and propagates

rapidly through the remaining part of the upstream weak detonation, transforming it into

a strong detonation [1]. This theory predicts that the strong detonation forms very close to

the piston in gaseous fuels [2].

However, numerical simulations of the piston driven shock-to-detonation process with

finite, but realistic activation energies [4, 5] show qualitatively different evolution scenarios

than that predicted by the asymptotic theory . For moderately large activation energies, the

reaction wave which emerges from the piston face consists only partially of a quasi-steady
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weak detonation, with the remainder of the wave complex comprising an unsteady com-

bustion zone followed by part of a quasi-steady fast-flame (an expansive, subsonic reaction

wave). Due to this unsteadiness, the secondary shock forms internal to the reaction wave

complex, sometimes closer to the head of the wave complex than to the rear, and the spatial

location of the shock formation may be orders of magnitude further from the piston face

than the asymptotic prediction. As the effective activation energy is decreased (e.g. as the

strength of the initiating shock increases), the region of the reaction wave consisting of a

weak detonation rapidly diminishes, and the wave becomes more and more unsteady. The

points of formation of the secondary shock and strong detonation also move further from

the piston face and closer to the initiating shock [5].

The disparity between the large activation energy asymptotic picture and the finite ac-

tivation energy calculations is due to the assumption in the asymptotics that the reaction

wave which emerges from the induction phase is quasi-steady. In the high activation energy

limit, the weak detonation decelerates extremely rapidly, and hence the secondary shock

forms extremely close to the piston face [2]. For such rapid decelerations, the post-shock

temperature scaled activation energy would need to be very high in order for the main re-

action zone to be sufficiently thin that the quasi-steady approximation holds. For the finite

activation energies considered in [4, 5], the main reaction zone times are not short compared

to the asymptotic wave deceleration time, and hence unsteadiness needs to be considered,

which profoundly affects the evolution [5].

A more general problem than the piston driven shock case described above is that of

ignition between a contact surface and a shock. This scenario arises, for example, when

two weak shocks merge, producing an expansion wave, contact surface, and stronger shock

triad [6, 7] with an increased temperature (and hence shorter induction time) in the region

between the contact surface and the shock. This occurs, for example, in the deflagration-to-

detonation transition experiments of Urtiew & Oppenheim [8], where an accelerating flame

produces a series of shocks which subsequently merge. It also can occur as part of the piston

driven shock initiation scenario itself, when the secondary shock formed in the ignition

process overtakes the original initiating shock [5]. In addition, the contact-shock problem

arises in shock-initiation experiments on condensed phase (solid and liquid) explosives. In

these experiments, a gas gun is used to drive flier plates into the explosive, e.g. [10, 11].

Upon contact, the impact produces a shock in the explosive and a shock wave travelling
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back into the projectile; the contact surface is the material interface between projectile and

explosive. Another scenario where the contact-shock configuration occurs is in shock tubes

when a diaphragm between a higher pressure driver gas and the explosive gas is burst, again

producing an expansion, contact and shock triad, e.g. [12]. A related problem occurs in

the failure and subsequent re-ignition of a strong detonation wave [13]. In the failing strong

detonation, the shock and reaction decouple into a weak shock and a fast-flame, with the

latter acting as a contact discontinuity separating the induction zone behind the weak shock

from the burnt products. The strong regime of shock-induced ignition in gaseous explosives

and the flier plate experiments in condensed phase explosives are reproducible, essentially

one-dimensional events [8, 11].

In ignition between a contact surface and shock, the role of the contact surface is to

enhance chemical reaction by partially reflecting acoustic pressure waves created by the evo-

lution of the induction zone ahead of it. These waves are also partially transmitted into

the material behind the contact surface. Thus the contact-shock problem is more general

than the problem of ignition between a piston and a shock. The former includes an extra

variable, namely the acoustic impedance of the material behind the contact surface[6]. In

fact, the more general contact-shock problem includes the piston driven shock case consid-

ered previously. The latter is recovered in the limit of infinite acoustic impedance behind

the contact surface [6].

Solutions of the contact-shock problem have been obtained in the large activation energy

asymptotic limit [2, 6, 7, 9], which are described more fully in §III below. The induction

time is found to increase as the acoustic impedance of the contact surface decreases, due to

larger acoustic leakage through the contact surface. However, in contrast to the piston driven

shock case, the point of first thermal runaway may occur not at the contact surface itself,

but a small distance ahead of it. Thus, somewhat counter-intuitively, the particle which has

been shocked the longest is not necessarily the first one to reach ignition. The reason is that,

as the temperature begins to rise, the material is able to expand locally near the contact

surface more readily than in the piston case due to the finite impedance of the contact

surface. This results in a relative deceleration of the contact surface, and a competition

develops between expansion of the material and heat accumulation, thus delaying ignition

at the contact surface [6]. However, the first ignition still occurs close to the contact surface,

and, furthermore, the maximum in temperature remains at the contact surface until close
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to the thermal runaway time. As the acoustic impedance of the contact surface is increased,

the point of first runaway moves closer to it [6, 7, 9].

In the asymptotic solution of the contact-shock ignition problem, particles subsequently

runaway sequentially in both the upstream and downstream directions from this first point

of ignition. This signifies weak detonations moving both forward and backward away from

this point. The forward moving wave still decelerates rapidly, but not as quickly as in the

piston driven shock scenario. However, the backward weak detonation that moves towards

the contact surface is found to decelerate much more rapidly than the forward moving wave,

so that, despite the very small distance between the contact surface and the origin of the

wave, its speed still drops significantly before it reaches the contact surface. Depending on

the acoustic impedance, the weak detonation may slow to the CJ speed before it reaches

the contact surface. In such cases this would signify the birth of a strong detonation wave

moving towards the contact surface.

Due to the very small length and time scales involved in the asymptotic solutions, i.e.

the very small distance between the contact surface and the point of first runaway, and

the rapidity of the deceleration of the backward weak detonation, very high post-shock

temperature scaled activation energies would be required for the main reaction stage to

be thin compared to these scales, and hence for the assumptions of the asymptotics to be

realized. Furthermore, given the qualitative differences between the large activation energy

asymptotic and finite activation energy numerical solutions that appear even in the piston

case (where the backward wave, and its associated smaller scales, do not appear), one would

also expect that the numerical solutions for large, but finite activation energies would be

profoundly different to those identified in the high activation energy limit for the ignition

between a contact surface and shock wave.

Previous numerical simulations of the contact-shock initiation scenarios have been per-

formed for various finite activation energy chemical kinetic models [12, 14]. These simu-

lations indicate that ignition may indeed occur ahead of the contact surface, resulting in

reaction waves moving in both directions. However, due to the temperature sensitive nature

of the induction region, and to the very small scales which may be inherent in the solution

(as indicated by asymptotic analysis for one-step Arrhenius chemistry), very high resolu-

tion simulations will be required to resolve the ignition dynamics on these fine scales. In

this paper, high resolution, detailed numerical simulations are performed using a one-step
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Arrhenius reaction model, such that the ignition dynamics near the contact surface are, for

the first time, properly resolved. We examine how the evolution depends on the activation

energy, and compare and contrast these finite activation energy numerical results with the

large activation energy asymptotic predictions, as well as with the piston driven shock initi-

ation numerical solutions. The plan of the paper is as follows: in §II the governing equations

of the model are given; the asymptotic solutions are briefly described in §III; the results of

the numerical simulations are examined in §IV; §V contains the conclusions.

II. GOVERNING EQUATIONS

We consider the standard model system consisting of one irreversible reaction, A→B,

with an Arrhenius form of the reaction rate. In one-dimension, the dimensionless versions

of the governing equations are

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0, (2)

∂e

∂t
+ u

∂e

∂x
− p

ρ2

[

∂ρ

∂t
+ u

∂ρ

∂x

]

= 0, (3)

∂λ

∂t
+ u

∂λ

∂x
=

1

(γ − 1)QE
(1 − λ) exp(E[1 − 1/T ]), (4)

where u is the fluid velocity, ρ the density (with V = 1/ρ the specific volume), p the pressure,

e the internal energy per unit mass, λ the mass fraction of the product (so that λ = 0 in

the unburnt state and λ = 1 in the completely burnt state), E and Q the dimensionless

activation energy and heat of reaction, respectively, γ is the (constant) ratio of specific

heats in the case of gaseous explosives, and

T =
p

ρ

defines the temperature. The distance, x, and material velocity, u, in Eqns. 1-4 are measured

with respect to a frame of reference to be specified below. We assume a polytropic equation

of state so that the internal energy is given by

e(ρ, p, λ) =
p

(γ − 1)ρ
− Qλ, (5)
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Note that such an equation of state model using a polytropic index of γ ≈ 3 is also often

employed as a simple, qualitative model of condensed phase explosives [15]. Eqns. 1-5 are

supplemented by the standard Rankine-Hugoniot jumps conditions across shock waves and

contact discontinuities.

Here we consider the scenario of a shock with initial Mach number M0 propagating into

a reactive material whose initial state is denoted by a zero subscript, and moving away

from a contact discontinuity, behind which the density is initially ρB. The initial conditions

correspond to the time at which the shock and contact surface separate. At this time the

contact-shock complex is located at xl = 0, where an l superscript denotes the laboratory

frame (e.g. xl = 0 is the point at which the shocks collide in the shock merging problem, or is

the position of the diaphragm in the shock tube scenario). The initial state between the shock

and contact surface (and hence also the initial pressure and material velocity immediately

behind the contact surface) just after they separate is denoted by an s subscript. If there

was no heat release (i.e. the inert case), the solution would be self-similar corresponding to

a shock of constant speed moving away from the contact discontinuity, with a uniform state

in between and with the density immediately behind the contact surface remaining at ρB.

The (constant) speed at which the contact surface subsequently moves in the inert case is

given by the post-shock particle speed in the laboratory frame, ul
s, since a contact moves

with the fluid.

In the corresponding reactive version, just after the shock and contact surface separate

at t = 0+, the contact surface will still move away from xl = 0 with speed ul
s. However, the

contact surface will subsequently decelerate due to the thermal expansion induced by the

exothermic reaction ahead of it, which is switched on by the passage of the shock. At very

early times on the ignition time scale the configuration will remain close to the self-similar

solution of the inert problem since the total heat released is then very small. Here we work

in the non-accelerating rest frame of the contact surface in the inert version of the problem,

or equivalently in the instantaneous rest frame of the contact at t = 0+ for the reactive

version. Hence in Eqns. 1-4, x = xl − ul
st denotes distance from the contact surface in the

non-reactive solution. Similarly, u = ul −ul
s measures the fluid speed relative to the contact

surface’s speed in the non-reaction solution. Thus for the inert version, the contact surface

would remain stationary at x = 0, while in the reactive case it will be pushed backwards in

this frame of reference by the thermal expansion of the reacting material ahead of it. Note

7



that, for infinite acoustic impedance of the contact surface, this is just the piston rest frame

used in [5].

In contrast to the inert version, in the reactive ignition between a contact surface and a

shock wave, the density just behind the contact surface will not remain at ρB, due to the

partial transmission through it of acoustic waves induced by the heat release in the induction

zone ahead of it.

Equations 1-5 have been non-dimensionalized using the following self-consistent scalings

ρ =
ρ̃

ρ̃s

, p =
p̃

p̃s

, T =
p

ρ
=

R̃ρ̃s

p̃s

T̃s, u =

(

ρ̃s

p̃s

)1/2

ũ,

where a tilde denotes dimensional quantities. The dimensionless upstream, quiescent state

ahead of the shock (denoted by a zero subscript) is then given by the shock jump conditions

as

ρ0 =
γ − 1

γ + 1
+

2

(γ + 1)M2
0

, p0 =
γ + 1

γ + 1 + 2γ(M 2
0 − 1)

, T0 = p0/ρ0,

u0 = (ρ0 − 1)M0

(

γp0

ρ0

)1/2

, λ0 = 0. (6)

Time is non-dimensionalized using the high activation energy, spatially homogeneous con-

stant volume explosion time corresponding to the initial shocked state[16], i.e.

t =
t̃

t̃exp

, t̃exp =
C̃V T̃ 2

s

k̃ẼQ̃
exp

(

Ẽ

T̃s

)

,

where k̃ is the dimensional rate multiplier and C̃V is the specific heat at constant volume.

Distance is then scaled as

x =

(

ρ̃s

p̃s

)1/2
x̃

t̃exp

,

characteristic of the distance an acoustic wave disturbance would travel in the shocked

material during time t = 1 (t̃ = t̃exp). The dimensionless initial value of the density just

behind the contact surface is then ρB = ρ̃B/ρ̃s, and the initial acoustic impedance, as defined

in [6], of the material here is α0 =
√

ρB. The limit α0 → ∞ corresponds to the constant

velocity piston case considered previously.

In this paper, when unspecified, the parameter set considered is γ = 1.4, Q = 4, M0 = 1.5,

since these are the values considered in detail in both the asymptotic studies of the contact-

shock ignition problem in [2, 6] and in the finite activation energy numerical simulations of

the piston driven case examined in [5]. It is with these results which we wish to compare
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the present results. However, we also briefly consider a case with γ = 3, in order to examine

how the details of the evolution changes when a simple condensed phase equation of state

model is used.

III. LARGE ACTIVATION ENERGY ASYMPTOTICS

In this section we briefly describe and examine the solutions obtained for the contact-

shock ignition problem in the large activation energy asymptotic limit, E → ∞ or ε = 1/E →
0, where ε is the inverse activation energy. In this limit the reaction history of a particle can

be split into two main stages: an induction stage where the state remains within O(ε) of the

initial state for an O(1) timescale, followed by a main reaction or ignition stage where the

burning proceeds to completion on an timescale which is exponentially short compared to the

induction time [16]. Although the state changes by only O(ε) amounts during the induction

phase, it is this weak reactive gas-dynamical evolution which determines the path of the

supersonic reaction wave that emerges from the first point of ignition. The leading-order

structure of the reaction wave itself is determined by the ignition stage [2].

The O(ε) induction stage solution is obtained via the expansions

T = 1 + εT1 + O(ε2), p = 1 + εp1 + O(ε2), ρ = 1 + ερ1 + O(ε2),

u = εu1 + O(ε2), λ = 1 + ελ1 + O(ε2),

in the region between the contact surface and the shock. Inserting into Eqns. 1-5, one

obtains Clarke’s leading order induction equations [17], which in the scales used here are

∂p1

∂t
+ γ

∂u1

∂x
= exp(T1),

∂u1

∂t
+

∂p1

∂x
= 0,

∂T1

∂t
− (γ − 1)

γ

∂p1

∂t
=

1

γ
exp(T1), ρ1 = p1 − T1. (7)

Equations 7 admit solutions which have local finite-time blow-ups of T1 and p1 (“thermal

runaway”). These events signal the end of the induction stage for a particle and the onset of

the exponentially short main reaction stage [1]. The time at which thermal runaway occurs

is termed the induction time.

The initial conditions for Eqns. 7 correspond to the time at which the shock and contact

surface are contiguous (e.g. the time at which the shock collision occurs in the shock merging
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problem or the time the diaphragm bursts in the shock tube problem). For the problem of

ignition between a contact surface and a shock, Eqns. 7 are subject to the linearized shock

jump conditions at the shock front [6], together with the condition at the contact surface

ucontact = −pcontact

α0

,

which is derived from continuity of pressure and velocity across the contact surface together

with a radiation condition [6]. Note that for the piston case, corresponding to the limit

α0 → ∞, this reduces to the condition u = 0. For an analysis correct to O(ε), these

boundary conditions are applied on the leading order contact surface (x = 0) and shock

(x = M0

√
γp0ρ0t) paths [6].

Equations 7 are solved using the parametric integration method described in [2]. Here

complete asymptotic solutions are obtained for a few cases which have not been characterized

before. Only the solution for the case α0 = 1.5 was given in [2]. Also while Parkins [7]

calculated some weak detonation paths using parametric variable integration described in

Short & Dold [2], the weak detonation speeds (which are necessary for calculating the point

of transition to strong detonation, see below) were not shown. Furthermore, much higher

resolution is employed than was attainable for the calculations presented in [2, 7], an essential

element to describing the path of the backward facing weak detonation.

Figure 1 shows the evolution of the temperature and pressure during the latter part of

the induction stage for the gas phase model, with γ = 1.4, in the case α0 = 0.5 (chosen

because low α0 exemplifies the difference between the contact-shock problem from the piston

driven case, cf [6]). During the early stages of rapid temperature growth, the temperature

remains monotonically increasing as one moves back from the shock to the contact surface

(particles nearer the contact surface have been shocked, and hence reacting and releasing

heat, for the longest). However, the temperature maximum moves off the contact surface

at t = 1.31928, which is only slightly before the initial blow-up time is reached. The reason

for this is as follows. Throughout the induction stage, the gradient in fluid velocity, ∂u/∂x,

is positive and largest at the contact surface (the largest negative value of the fluid velocity

occurs at the contact surface) [2]. As the induction time is approached and the rate of heat

release begins to accelerate in the region ahead of the contact surface, the contact surface

is driven backwards at an increasing rate and hence the fluid velocity gradient (or “rate of

expansion”) at the contact surface rapidly increases. A positive velocity gradient acts as a
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local sink of thermal energy [18], and since it is largest at the contact surface, a competition

between the rate of expansion and heat release occurs there, causing the temperature to

begin to rise more rapidly in the interior than at the contact surface. Figure 1(a) shows

that subsequently the temperature maximum continues to grow rapidly in an increasingly

narrow boundary layer [6], indicating the onset of thermal runaway here. For α0 = 0.5,

thermal runaway first occurs at time t0 = 1.3203 at a distance of x = 0.00125 from the

contact surface (cf the values of t0 = 1.186, x = 0 for the piston case α0 → ∞).

Meanwhile, Fig. 1(b) shows that even during the initial stages, the pressure is not

monotonically increasing with distance behind the shock as occurs for the piston case, but

instead has an internal maximum, due to acoustic pressure wave leakage at the contact

surface. In fact for finite α0, an early time analysis shows that initially the pressure decreases

linearly with distance behind the shock, with gradient proportional to α−1
0 [6]. As runaway

is approached the pressure maximum moves backward, and a finite time blow-up also occurs

in p1 at the same position as the temperature runaway [6]. Note, however, that both u1 and

ρ1 remain bounded and monotonic [6].

As one moves away from this point of first runaway in either direction, particles will

sequentially ignite at later times as they reach their induction times in turn. Thus two loci

of thermal runaway times emerge from the initial point of ignition. It can be shown that the

thermal runaway paths must move supersonically [1], through an essentially frozen induction

region ahead of it. Thus Eqns. 7 can continue to be integrated in the regions ahead (in

the direction of propagation) of the thermal runway loci and hence their paths determined.

Since thermal runaway signals the onset of the ignition stage, one can associate a thermal

runaway locus with the path of a vigorous reaction wave involving O(1) variations in the

material state through the wave. As the main reaction time and lengths are exponentially

rapid in the asymptotic limit due to the Arrhenius form of the reaction rate, this wave will

be quasi-steady to leading order, i.e. the timescale for a particle to traverse the reaction

wave is much shorter than the timescale for changes in the wave’s speed. In fact, it can

be shown that the reaction wave takes the form of a quasi-steady weak detonation, i.e. a

shockless compression wave which is supersonic throughout in the wave’s rest frame [1, 2].

Consequently, the thermal runaway loci represent to leading order the paths of two weak

detonations arising from the first point of thermal runaway. It is emphasized that in the

contact-shock case, since ignition first occurs off the contact surface, both forward and
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backward weak detonations move away from this point of initial runaway.

Note that here we do not describe the asymptotic structure of an initial rapid ignition

transient: this is not explicitly needed for a description of the weak detonation path or struc-

ture [2], which is the the concern of the present paper. However, for the large activation

limit, the structure of the initial ignition point could be described by the standard re-scaling

analysis in [19]. Indeed, both Parkins [7] and Bauwens [9] have described the hot-spot struc-

ture for θ → ∞ and (γ− 1) → 0. One would not expect qualitatively different results to the

hot-spot structure when the second (Newtonian) limit approximation is dropped. However,

this transient is not the concern of the present paper, which is focused on description of the

weak detonation behaviour.

Figure 2 shows the weak detonation paths in the (x, t) plane for the case α0 = 0.5,

as well as the magnitude of the inverse of the weak detonation speeds, |v|−1. As can be

seen, the forward and backward moving weak detonations emerge from the point of first

thermal runaway at x = 0.00125, t = t0 = 1.3203, with initially infinite speeds (v−1 = 0).

However, the waves then decelerate rapidly as they move away. While the time scale for

deceleration of the forward moving wave speed by an O(1) amount is still very short, it

decelerates more slowly than in the corresponding piston driven case (α0 → ∞). On the

other hand, the deceleration of the backward wave is extremely rapid. It can be shown that

when, α0 ≤ 1, this backward wave’s speed asymptotes to
√

γ (i.e. sonic) in the asymptotic

or Newtonian limit γ → 1 as it approaches the contact surface [7]. Nevertheless, despite this

rapid deceleration, the wave reaches the contact surface at t = t0 + 1.82 × 10−4, i.e. very

soon after its formation.

A weak detonation only remains a valid structure whilst its speed remains above the

Chapman-Jouguet (CJ) speed. Once the wave’s speed drops to the CJ speed, DCJ, the flow

in the reaction burn-out region of the wave becomes sonic [1]. In the asymptotic scenario,

this signals the birth of a secondary shock very near the rear of the wave, which rapidly

accelerates through the remaining part of the weak detonation reaction zone ahead, trailing

a fast-flame behind which couples with the secondary shock to form a strong detonation

[1]. The transition from weak to strong detonation is exponentially rapid, so that the

point at which the weak detonation speed reaches DCJ effectively marks the point of strong
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detonation formation. In the scalings used here, the CJ speed is given by

D2
CJ = (γ2 − 1)Q + γ +

[

(γ2 − 1)Q((γ2 − 1)Q + 2γ)
]1/2

. (8)

Note that the weak detonation path is independent of Q since it does not appear in Eqns.

7, but it does affect where the transition to strong detonation occurs. Equation 8 shows

that the transition occurs earlier (where the weak detonation speed is higher) for larger Q.

The CJ speed for Q = 4 is also shown in Fig. 2(b). For this value of Q, the transition point

of the forward moving wave is at x = 0.0128. Again, while this is still a small distance,

due to the slower deceleration of the forward wave, it is significantly larger than for the

piston driven case where the transition occurs at x = 0.002 [5]. The transition point for

the backward moving weak detonation, however, is 1.5 × 10−4, i.e. the transition to strong

detonation occurs virtually at the contact surface. The transition of the backwards wave

occurs first, and very soon after ignition, at t = t0 + 1.1 × 10−4, while the transition of the

forward moving wave follows at t = t0 + 2.5 × 10−3.

As α0 increases, the thermal runaway time decreases (and approaches that in the piston

driven case), but the length scales characteristic of the thermal runaway region also rapidly

decrease. Figure 3 shows the weak detonation paths and speeds for the case α0 = 1. Thermal

runaway first occurs at time t0 = 1.2840, and at x = 5.48×10−4, i.e. about half the distance

closer to the contact surface as for the α0 = 0.5 case. When Q = 4 and α0 = 1, the transition

to strong detonation of the backwards moving weak detonation wave occurs earlier and even

closer to the contact surface, at t = t0 + 4.7 × 10−5, x = 2.6 × 10−5. The forward weak

detonation wave also transitions earlier than in the α0 = 0.5 case, at t = t0 + 1.9 × 10−3,

x = 0.0093.

For an even larger value of α0 = 2, thermal runaway is found to occur at t0 = 1.2396,

x = 1.61 × 10−4, while the transition points occur at t = t0 + 1.06 × 10−5, x = 1.1 × 10−6

and at t = t0 + 1.4 × 10−3, x = 0.0063 for the backward and forward weak detonation

waves, respectively. However, an important difference occurs when α0 > 1, in that the

backward weak detonation no longer slows to the sound speed at the contact surface [2],

hence transition to strong detonation is not guaranteed in these cases. For α0 = 2, v = 3.16

at the contact surface, which corresponds to 0.99DCJ when Q = 4. For slightly smaller

values of Q, the backwards weak detonation wave would not transition to strong detonation

for this α0, since then DCJ < 3.16.
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Since the weak detonation decelerates extremely rapidly in these asymptotic solutions,

the post-shock temperature scaled activation energy would need to be very high in order for

the main reaction zone to be sufficiently thin such that the quasi-steady assumption in the

asymptotic theory holds. Thus as in the piston case [4, 5], we expect that for moderately

large finite activation energies the solutions will be qualitatively different to the asymptotic

predictions, since the main reaction zone times will not short compared to the asymptotic

wave deceleration time, and hence unsteadiness needs to be considered [5]. Furthermore,

since the length and time-scales involved in the asymptotic become shorter as α0 increases,

larger activation energies can be expected to be required for the quasi-steady assumption to

become valid.

Sharpe & Short [5] also described an interesting difference for the piston-shock case when

a high polytropic index, more representative of condensed phase (liquid or solid) explosives

[15] is used in the equation of state. In this case, the asymptotic evolution to detonation

was found to be qualitatively different to those corresponding to gaseous values of γ. The

weak detonation decelerated comparatively slowly, such that the transition point occurred

at a distance of the order of unity from the piston face. This indicated that the quasi-

steady assumption for the weak detonation should hold even for moderately large activation

energies. Indeed finite E simulations showed that the asymptotic predictions were actually

quantitatively good even for moderate E, in stark contrast to the gaseous equation of state

cases.

Given this difference it is worth briefly considering how the induction phase and weak

detonation behaves for a high polytropic index in the scenario of ignition between a contact

surface and a shock in the limit of large activation energy. Figure 4 shows the induction

stage solution when γ = 3 and α0 = 0.5. In this case, the temperature maximum moves

off the contact surface comparatively much earlier, and thermal runaway first occurs at a

relatively large distance from the contact surface. Ignition occurs at t = t0 = 1.9223 and

x = 0.6018, i.e. about three orders of magnitude more distant from the contact surface than

for the γ = 1.4 case considered above.

The reasons for the large differences between the model condensed phase and gas phase

cases can be understood by considering the temperature equation in Eqns. 7. In the limit

γ → 1, the evolution of T1 decouples from the pressure evolution to leading order [7], and

hence the leading-order rise in temperature is mainly due to the local self-acceleration of the
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temperature induced by the heat release of the reaction, which is switched on by the passage

of the shock. The rise in temperature is initially greatest at the contact surface where the

material has been heated the longest. For γ−1 = O(1), however, the temperature evolution

is also strongly coupled to the pressure evolution through the ((γ − 1)/γ) ∂p1/∂t material

compressibility term. As for the gaseous γ cases considered above, the γ = 3 solution has an

internal pressure maximum due to the acoustic leakage at the contact surface. The pressure

maximum initially occurs at the shock, but grows and moves backward towards the contact

surface. For γ − 1 = O(1), localized increases in temperature occur not only via local heat

release (which is initially largest at the contact surface where the material has been shocked

the longest), but also due to localized increases in pressure, which are largest around the

internal pressure maximum. Thus the growth of pressure internally has a much stronger

role in determining the temperature profiles, and hence the first point of thermal runaway,

when γ = 3 than for γ = 1.4 . Figure 5 shows the weak detonation paths and speeds for the

γ = 3 case. The forward moving weak detonation decelerates much more slowly than for the

gaseous equation of state cases, as was also found for the piston scenario [5]. For Q = 4, the

forward wave transitions to strong detonation at x = 1.0426, t = 1.9508 when α0 = 0.5, i.e.

transition occurs a distance of 0.44 from the point of first thermal runaway, which is over

twice the transition distance of 0.20 in the α0 → ∞ case [5] when γ = 3. Figure 5(b) shows

that the backward wave also decelerates relatively slowly: transition occurs at x = 0.3320,

t = 1.9371 when Q = 4. The backward wave transitions first, at a distance of 0.27 from

the point of first ignition. Thus, in contrast to the gaseous case, due to the magnified scales

involved in the asymptotic solution for γ = 3 (e.g. the relatively slow evolution timescale

of the weak detonations), one may expect that the quasi-steady structure will hold for the

backward wave also even for moderate E. This prediction is also examined via the finite

activation energy simulations in §IV.

Note that the results obtained by using a more realistic equation of state, e(p, ρ), for con-

densed phase explosives should not be qualitatively different to those of the large polytropic

index solutions. This is because the linearized equations resulting from a general equation

of state are still of the same form as Eqns. 7, but with the polytropic index γ replaced

by the constant c2, where c is the dimensionless sound speed in the initial shocked state.

Note that under our scalings, c2 is, by definition, the value of adiabatic γ at the initial

shock state. Hence c2 − 1 is expected to be of the order of unity for condensed explosives,
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and thus the solutions will be qualitatively similar to the large polytropic index results. If

changes in the thermal equation of state, T (p, ρ), are also taken into account, there will then

be a difference in how temperature feeds into acoustic fluctuations. However, the resulting

linearized equations are still of the same form as Eqns. 7.

IV. NUMERICAL SIMULATIONS FOR FINITE ACTIVATION ENERGY

In order to obtain the solutions for finite E, Eqns. 1-5 are solved numerically in the

AMRITA computational environment [20, 21]. Adaptive mesh refinement is employed as

described below. For accurate results it is important that the contact discontinuity is not

smeared out by numerical diffusion such that its effective length becomes comparable to any

other physical length-scales of the solution, as can readily occur with standard Eulerian shock

capturing schemes [22]. Since potentially very short length-scales may appear in the ignition

evolution for the current problem based on the asymptotic results in §III, the contact surface

needs to be treated essentially as a discontinuity in the numerical solutions. To achieve this

we utilize the mass-weighted Lagrangian second-order Godunov solver within the general

equation of state AMRITA package described in [23]. The contact surface is then treated

as a discontinuous material interface. However, for purposes of displaying the results, all

solutions have been converted back into the more intuitive Eulerian (x, t) co-ordinates so as

to clarify, for example, the movement of the contact surface, etc.

Our intention is to examine the generic problem of ignition between a contact surface

and a shock, rather than a specific initial value problem which produces this configuration.

Thus in the simulations, as in the asymptotic analysis, the initial conditions correspond

to the time the shock and contact surface separate, i.e. to that of an initially stationary

contact surface located at x = 0 with a shock of initial Mach number M0 moving away

from it (x > 0) into a state ahead given by Eqns. 6. Behind the contact surface the initial

conditions consist of the dimensionless constant state with p = 1, u = 0 and ρ = ρB (so that

α0 =
√

ρB). The left boundary of the numerical domain is placed sufficiently far behind

the contact surface, such that no disturbances can reach it during the calculation period

and hence is an inactive boundary. Similarly the right boundary of the domain is placed

sufficiently far ahead that the initiating shock does not reach it.

In physical problems which may lead to this set-up, such as the shock merging or shock
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tube scenarios, a backwards propagating expansion wave can also be produced behind the

contact surface, which propagates away from the contact surface leaving behind a uniform

state (in the inert case) between them where ρ = ρB, e.g. [6]. Since the rarefaction travels

at the local sound speed, any acoustic disturbances originating in the reactively evolving

induction zone ahead of the contact surface, which are subsequently transmitted into the

region behind it, cannot catch up with this expansion wave. Thus the presence of the

expansion will not affect our domain of interest and is not required as part of the calculation

(note that this fact also underlies the formulation of the radiation condition at the contact

surface in the large activation energy asymptotic solution [6]).

In the present simulations, the region behind the contact surface is taken to be inert. In

the shock merging problem, for example, where it is guaranteed that α0 > 1, the material

behind the contact surface would be reactive. In such problems though, it is assumed that

the temperature behind the contact surface resulting from the shock merging is sufficiently

low (based on a given E), that the characteristic ignition time is long (otherwise significant

reaction would have occurred before the shock merging occurs). When the contact-shock

complex is formed, the temperature behind the contact surface is lower than that behind

the second shock before the merging, while both of these temperatures are lower than that

between the contact surface and the shock. Consequently, for a sufficiently large E or α0,

to a first approximation, the reactivity of the material behind the contact surface can be

ignored on the time-scale of the induction time in the region between contact surface and

shock [6].

Even for the one-dimensional calculations, dynamical adaptive gridding is employed due

to the large disparity between the induction length and time scales and those of the main

reaction stage (these become exponentially disparate as the activation energy is increased).

Resolution studies were performed to ensure that the solutions presented here are converged.

The coarsest (base) grid, which covers the whole domain, is chosen to have a mesh spacing

of 1000 points per unit length based on the initial shocked state. Dynamic grid refinement

levels are then defined in regions when and where they are required. The Lagrangian mesh

spacing is reduced by a factor of four on each subsequent grid level. The induction region

between the contact surface (inclusive) and the shock is always covered by the first refinement

level. Subsequent to the end of the induction stage, a finer mesh spacing may be necessary

to resolve the more rapid main reaction stage. Hence the grid is also refined based on local
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pressure gradients, up to a grid refinement level N , say, which depends on the activation

energy. The most stringent condition on the resolution is to resolve the secondary shock in

the pλ plane (see below) subsequent to its formation, i.e. to ensure there is no burning within

the captured secondary shock structure. More refinement grids (larger N) are required as

the activation energy is increased. The initiating shock is always resolved on the finest grid

level defined to ensure that this captured shock remains appropriately narrow compared to

any physical length-scale of the problem. Also, in the initial conditions the shock is placed

one grid point of this finest grid level ahead of the contact surface. To ensure the length-

scales associated with the numerical shock are small compared to any of the physical scales,

a minimum of least five refinement levels are defined.

As E increases, it rapidly becomes difficult to resolve (in both space and time) the main

reaction stage, and the problem becomes very stiff, due to the exponential shortening of the

characteristic main reaction length and time scales (see the discussion in [5]). Furthermore,

as E increases, local induction times become sensitive to decreasingly small perturbations in

the temperature history. As ε = 1/E → 0, O(ε) perturbations in the temperature produce

O(1) changes in the induction times [18]. Hence as E increases, even very small amounts

of numerical noise can be amplified during the induction stage, rendering it very difficult to

obtain highly accurate solutions. Analogously, in experiments, when the temperature sensi-

tivity of the fuel becomes sufficiently large, ignition no longer occurs along a one-dimensional

locus, but thermal runaways occur at discrete isolated points (resulting in so called ‘mild ig-

nition’) due to the amplification of small inhomogeneities in the fuel or geometry [24], hence

producing a three-dimensional problem. For the above numerical reasons, the simulations

of the full evolution are hence limited to cases E ≤ 20 as in [5] for the piston driven case,

while the initial stages of the evolution are also consider for somewhat larger values of E

in order to demonstrate the trends as E increases. Indeed, the purpose of the simulations

is precisely to contrast these moderately large finite activation energy solutions with the

asymptotic prediction, and not an attempt to recover the asymptotics solutions.

At this point, it is worth comparing the values of E used in the simulations with rep-

resentative values for fuels which may be described, at least to a first approximation, by a

one-step Arrhenius rate, i.e. those for which the chemical heat release is characterised by

a weak heat release induction zone, terminated by a much more rapid thermal explosion.

Examples include methane, propane and ethane mixtures with oxygen [25, 26] and hydrogen-
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oxygen-diluent mixtures at initial temperatures below the chain-branching crossover tem-

perature, where chain-recombination is dominant over chain-branching [25, 26]. Note that

an analysis of constant volume explosions in a generic three-step chain-branching model

(which includes chain-initiation, -branching and -recombination steps) shows that, for ini-

tial temperatures sufficiently below the crossover temperature, the heat release rate and

hence temperature evolution does indeed effectively reduce to that of an overall one-step

model [27, 28]. Furthermore, the one-step model then also recovers the shock ignition dy-

namics of the chain-branching model when the initial shock temperature is below that of

the cross-over temperature [28].

Note that, for a given mixture, the effective (shock temperature scaled) activation energy,

E, will depend intimately on the initial shock strength. Values of E at different initial

temperatures (> 1000K) and pressures were found by considering changes of the constant

volume explosion induction time with temperature [25], giving E ∼ 15 for methane-oxygen,

∼ 15 − 25 for ethane-oxygen, and ∼ 20 − 25 for hydrogen-oxygen-diluent mixtures in the

region below the cross-over temperature. The induction time data given in [26] also indicates

that an upper bound for E is 20 for methane-oxygen, 18 for propane-oxygen, and 25 for

hydrogen-air, for initial temperatures greater than ∼1000K.

In order to interpret the results of the simulations we use the diagnostic methods described

in [29], which involve plotting the solutions in the pressure-specific volume, pV , and pressure

concentration, pλ, planes. These pV and pλ diagrams allow one to identify components of

quasi-steady reaction waves, induction zones, unsteady combustion zones and burnt regions

in the solution, as well as where these various features occur [4, 5, 29].

A. Results

We consider first the case α0 = 0.5. Recall that for this value of α0, in the high activation

energy asymptotic limit, thermal runaway occurs first at x = 0.00125 and t = 1.3203, while

the backward and forward weak detonation waves transition to strong detonation at 9×10−5

and x = 0.013, respectively (Fig. 2).

Figure 6 shows the initial evolution during the induction phase for E = 15. For the

finite activation energy cases, we will define the induction phase as lasting until the time

when λ reaches 0.5 at the contact surface. During this stage when E = 15, the temperature
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and reaction progress variable profiles remain monotonically increasing as one moves back

from the shock to the contact surface, as in the finite activation energy piston driven shock

scenario. Note, however, that the contact surface has been pushed backwards (relative to

its position at any given time in the corresponding non-reactive case) due to the reaction

induced thermal expansion ahead of it. The temperature maximum remains at the contact

surface, even up to the point when half the fuel is consumed there. This is in contrast to the

asymptotic prediction that rapid burning first occurs a small distance ahead of the contact

surface.

Figure 7 shows the later time evolution for E = 15. At the the first time shown, cor-

responding to t = 1.693, the temperature maximum has now moved ahead of the contact

surface. The pressure profiles also indicate that the pressure maximum has begun to move

forward again. While the temperature maximum does move into the interior region between

the contact surface and the shock for E = 15, it only does so once the fuel is largely con-

sumed there, specifically λ = 0.85 in the region near the temperature maximum at the time

it moves off the contact surface. This is in contrast to the movement of the temperature

maximum off the contact surface during the O(ε) induction phase evolution that occurs in

the large activation energy limit. Indeed, the progression of the temperature maximum away

from the contact surface only occurs for E = 15 since the rate of heat release is diminishing

at the contact surface due to the near total consumption of fuel there.

At the second time shown in Fig. 7, the fuel near the contact surface has fully depleted,

and the temperature and pressure maxima have moved further forward towards the shock,

with the location of the maximum in the temperature beginning to catch up with that

in the pressure. Subsequent profiles show the emergence and propagation of a reaction

wave structure. This is clearly shown in the pV diagrams (Fig. 7c), which reveal that as

one moves back from the shock various different reaction regimes begin to arise. Initially

following the shock is a region which has positive slope in the pV plane, representing an

unsteady induction region. This is followed by a region through which pressure increases

along an approximately straight line in the pV plane with negative slope. This region of the

solution thus constitutes part of a quasi-steady, supersonic weak detonation [29]. As was

also found in the finite activation energy numerical simulations of the piston-shock scenario

[5], this wave-like behaviour does not begin at the point where reactions first became rapid.

Instead, Fig. 7 shows that it takes a finite time for the weak detonation to form: the slope
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of the pV trajectories inside the reaction zone complex only become negative between the

second and third times (t = 1.715 and t = 1.737) shown in Fig. 7(c). The quasi-steady weak

detonation regime thus emerges in the region x > 0 in Fig. 7(b), at which time the contact is

at x = −0.08. This is in contrast to the large activation energy asymptotic solution in both

cases, where weak detonations effectively originate at the point of first thermal runaway

(e.g. at the piston face (x = 0) in the limit α0 → ∞).

As time progresses, the magnitude of the slope corresponding to the weak detonation

regime decreases in Fig. 7, showing that the weak detonation part of the reaction structure

is decelerating [29]. The weak detonation regime is in turn followed by highly curved, and

hence highly unsteady [29], reaction regime in the pV plane. The final part of the reaction

zone lies within a second region of negative slope through which the pressure decreases,

which thus constitutes a subsonic fast-flame regime[29]. An expansion wave in the fully

burnt material then connects the rear of the reaction zone to the contact surface (Fig.

7a). The reaction wave complex moves towards the shock. A backward (toward the contact

surface) propagating reaction complex does not form, in contrast to the asymptotic solutions

described in §III.
The pλ trajectories in Fig. 7(d) show that at the beginning of the reaction wave complex

propagation stage, the pressure maximum occurs near the fully burnt state (λ ≈ 0.95 there),

so that the bulk of the reaction wave comprises of the weak detonation regime. As the

pressure maximum begins to move forward through the reaction zone complex, both the

unsteady and fast-flame parts of the wave structure become more pronounced. The pressure

profile ahead of the maximum also begins to rapidly steepen. This steepening results in the

formation of a weak interior shock, which occurs at t = 1.775 and can be observed at the last

time shown in Fig. 7(d). The secondary shock forms at x = 0.23, in poor agreement with

the asymptotic prediction of the point of slowing to the CJ detonation speed, x = 0.013, for

the forward moving weak detonation wave.

The above evolution for α0 = 0.5, E = 15, involving the emergence of a single, forward

moving, unsteady reaction wave complex, is qualitatively similar to the piston driven shock

initiation evolution with the same activation energy described in [5]. For a more direct

comparison, the loci of the shock pressure maximum from the piston driven case with E = 15

[5] are also shown in Fig. 7(b-d). Figure 7(b) shows that spatially the growth of the pressure

is slower for α0 = 0.5 compared to the α0 → ∞ solution. In terms of the evolution in the pV
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and pλ planes, however, the two cases are similar. The pressure maximum for α0 = 0.5 lies

only slightly behind that of the piston case, indicating that both cases have similar extents

of a quasi-steady weak detonation structure in the pλ plane [5]. The point of formation of

the secondary shock also occurs at almost the same degree of reaction within the wave, cf

[5]. The evolution for E = 15 subsequent to that shown in figure 7, including the mechanism

of strong detonation formation, is also similar to that for the piston case when E = 15 as

described in [5].

In order to examine how the solution depends on the activation energy, its value was

increased to E = 20, keeping α0 = 0.5. The evolution for this case is shown in Figs. 8 to

10. Figure 8 shows the induction stage evolution (up to the point where λ approaches 0.5

at the contact surface). The initial evolution is similar to that for E = 15 above (cf Fig. 6),

except now the region of initial rapid temperature rise occurs in a narrower layer close to

the contact surface.

The main difference with the E = 15 case considered above is that a definite interior

local maximum in temperature forms, at an earlier stage. This is revealed in Fig. 9, which

shows a zoomed-in view of the spatial profiles near the contact surface, between times 1.555

and 1.562. Figure 9(a) and (c) show that the temperature maximum begins to move ahead

of the contact surface when λ ≈ 0.4 there, as compared to λ = 0.85 for the E = 15 case.

The temperature maximum also remains close to the contact surface, and becomes more

pronounced, during the initial self-acceleration of the temperature rise. For example, at

t = 1.562 in Fig. 9, the temperature maximum occurs at x = −0.027 as compared to

the contact surface location of x = −0.036. The pressure maximum (located at x = −0.026

when t = 1.562) can also be seen to occur close to where the temperature takes its maximum.

The evolution for E = 20 is thus in better agreement with the prediction of the asymptotics

than that for E = 15. Note from Fig. 9 that, as the temperature begins to move ahead of

the contact surface, λ initially remains monotonic, but subsequently an interior maximum

in λ also forms, which lags very slightly behind that in the temperature.

Figure 10 shows the later time evolution. The interior maxima in p and λ result in a

“hook” in the pλ diagrams (Fig. 10d) at the first two times shown. Thus at these times

there exists a compressive (in the direction of increasing reaction progress) region between

the contact surface and the pressure maximum. This region hence has negative slope in

the pV diagram (Fig. 10c). However, the reaction rates both at the contact surface and
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at the temperature maximum are not substantially different at these times, so that the

material in this entire region rapidly burns out subsequent to the time where λ first reaches

unity. Consequently this compressive region quickly disappears from the pλ plane (e.g.

by the third time shown in Fig. 10d). In contrast, we recall that in the large activation

energy asymptotic scenario, the material remains virtually frozen at the contact surface

while runaway to complete reaction occurs at the temperature maximum. Thus, despite the

appearance of the internal maximum, the reactive evolution of the region between the contact

surface and the temperature maximum for E = 20 is again different to that predicted by the

large activation energy scenario. The pV diagrams in Fig. 10(c) show that a forward moving

weak detonation only begins to form (when the slope of the pV trajectories corresponding to

the region ahead of the pressure maximum becoming negative) subsequent to the complete

burnout of the fuel between the contact surface and the temperature maximum. Again, a

backwards moving reaction wave does not emerge.

The pV and pλ diagrams in Fig. 10(c,d) show that subsequently almost the entire reaction

zone complex consists of a weak detonation, with the pressure maximum occurring close to

λ = 1. Thus, as in the piston driven case [5], the quasi-steady weak detonation structure

is more readily apparent throughout the reaction zone when E = 20 than when E = 15.

This occurs due to the shortening of the main reaction zone length and time scales relative

to the induction zone scales. For comparison, the loci of the pressure maximum for the

corresponding piston case is also shown in Fig. 10. The pV and pλ evolutions are again in

quantitative agreement with the piston driven case, e.g. the locus of the pressure maximum

for α0 = 0.5 lies only slightly ahead of that for α0 → ∞ in the pλ plane. The secondary

shock forms at x = 0.056, corresponding to a distance of 0.102 from the contact surface

which is at x = −0.046 at the time of the interior shock formation. Compare this with the

shock formation distance from the piston face of 0.037 in the piston driven shock solution

for E = 20 [5]. Hence, when E = 20, as for the E = 15 case, the evolution to detonation for

the contact-shock problem is similar to that in the piston driven case.

Figure 11 shows the formation of the internal temperature maximum for E = 22 and

E = 23, which further illustrates the trends as the activation energy is increased. The

temperature maximum moves off the contact surface earlier, at a smaller value of λ, as E

increases, while the position of the maximum during the initial self-accelerating temperature

rise occurs closer to the contact surface. The peak of the temperature maximum also becomes
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more pronounced, in that differences between the temperatures at the contact surface and

at the maximum become more disparate as E increases. The distances from the contact

surface to the maximum at the last times shown in figure 11(a) and (b) are 0.006 and 0.005

for E = 22 and E = 23, respectively.

Figure 12 shows a subsequent stage of the evolution for E = 22. Initially, the compres-

sive reaction region between the contact surface and the pressure maximum is much more

pronounced in both the pV and pλ diagrams than for E = 20. It is seen that this whole

region still reacts rapidly, and hence the state at the contact surface again does not remain

frozen during the first interior ignition event, as occurs in the asymptotic solution. However,

the reaction rates at the temperature maximum and at the contact surface are now more

disparate (note the much larger change in the maximum values of p and λ over the first two

times shown in Fig. 12d as compared to the change in their values at the contact surface).

Hence a partially reacted region near the contact surface remains in evidence while the ma-

terial immediately around the temperature maximum burns out. Nevertheless, Fig. 12(c)

shows that the material at the contact surface burns out before the forward moving weak

detonation forms (at fourth time shown in Fig. 12).

Figures 13 and 14 shows the effect of α0 for a fixed activation energy of E = 15. When

α0 = 1 (Fig. 13) the ignition time is less than that for the α0 = 0.5 case, in agreement with

the asymptotic prediction that the thermal runaway time is longer for lower α0. However,

the spatial evolution between the contact surface and the shock wave is still similar to that

shown in Fig. 7(a,b) for α0 = 0.5. The pressure peak grows slightly faster for the larger

value of α0, and the deceleration of the contact surface is less due to the larger acoustic

impedance of the material behind it. The solution shown in Fig. 14, which corresponds

to α0 = 2, reveals that these trends continue as α0 is increased further. For example, the

timing of events further approach those of the piston case. Figures 13 and 14 together with

the piston driven shock results in [5] show that, in contrast to the asymptotic solutions

examined in §III, there is only a weak dependence of the evolution sequence on α0 as it is

varies from low values to infinity when E = 15. The pV and pλ evolutions are not shown

for α0 = 1 and 2 as they are quantitatively similar to those for the α0 = 0.5 case shown in

Fig. 7(c,d).

For the final case, we briefly consider a finite activation energy solution for the simple

condensed phase equation of state assuming γ = 3. In this case the large activation energy
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asymptotic solution revealed that a high polytropic index produces a qualitative change

in the evolution scenario compared to that for values of γ appropriate for the gas phase.

Figure 15 shows the evolution of the induction phase (defined here as up to the time when

λ first reaches 0.5) for the case E = 15, γ = 3, α0 = 0.5. Here, as predicted by the large E

asymptotic description, an internal temperature maximum develops at a distance of order

unity away from the contact surface as the temperature rise begins to self-accelerate. The

temperature maximum is located at x = 0.74 in Fig. 15(a), compared to x = 0.60 in the

asymptotic solution for α0 = 0.5 (Fig. 4). Furthermore, the degree of reaction at the contact

surface remains small while the first ignition event occurs around the region of the interior

temperature maximum, again in contrast to the finite activation energy solutions for values

of γ appropriate to gases as described above. In this case, a backward moving reaction wave

complex now has time to develop in the region between the contact surface and temperature

maximum before the material near the contact surface burns to completion.

Figure 16 and 17 show the evolution subsequent to the first ignition event, which reveal

that both forward and backward moving reaction waves do indeed emerge. Figure 16 shows

spatial temperature and pressure profiles, from which it can be seen that the amplitude of

the backward reaction wave complex grows more rapidly than the amplitude of the forward

wave. Figure 17 shows pV and pλ trajectories at various times to clarify the evolutionary

mechanisms of these wave. At t = 2.252, the diagrams show that several regimes exist as

one moves back from the initiating shock to the contact surface. Between the shock and the

forward moving reaction wave is an unsteady induction region, through which the forward

wave is moving. This wave can be seen to consist almost entirely of a quasi-steady weak

detonation as predicted by the asymptotic theory, and is followed by an inert expansion

wave (λ = 1 in the expansion subsequent to the pressure maxima according to Fig. 17b).

This is in turn followed by a backward moving inert expansion wave, which in turn trails a

backward moving reaction wave. The backward reaction wave again consists of an almost

complete quasi-steady weak detonation. Finally, another unsteady induction region exists

between the contact surface and the backward moving reaction wave.

At the second time shown in Fig. 17, the pV diagrams reveal that the backward moving

reaction wave is decelerating more rapidly than the forward moving wave (its slope decreases

faster in the pV plane), again in agreement with the large activation energy asymptotic

prediction. In fact, Fig. 17(d) shows that a secondary shock is about to form near the rear
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of the backward wave. This secondary shock forms at x = 0.30, in quantitative agreement

with the value of x = 0.33 obtain in the limit E → ∞. By the third time shown in Fig.

17, this secondary shock and following fast-flame in the backward wave have become a fully

coupled quasi-steady strong detonation (they lie along a common straight line in the pV

plane [29]). Meanwhile, at this time, a secondary shock has now begun to form at the rear

of the forward moving wave. The secondary shock for this wave occurs at x = 1.41, again

in good agreement with the large activation energy asymptotic prediction of x = 1.04.

In conclusion, as found for the piston case [5], while the asymptotic and finite activa-

tion energy solutions show qualitative differences when polytropic indices representative of

gaseous fuels are used, for large values of γ as employed in simple condensed phase models,

the finite activation energy solutions agree quantitatively well with the asymptotic predic-

tions even for only moderately large values of E, due to the much slower deceleration of the

the weak detonations.

V. CONCLUSIONS

In this paper, the events which lead to ignition and detonation formation of reactive

materials in the region between a contact surface and a shock were examined using both high

activation energy asymptotics and finite activation energy direct numerical simulations. For

a polytropic index appropriate to gaseous explosives, the large activation energy asymptotic

solutions differ from those of the problem of ignition between a piston and a shock wave,

in that thermal runaway first occurs off (but still very close to) the contact surface, and

hence both forward and backward quasi-steady weak detonations subsequently emerge. Both

weak detonations may subsequently transition to strong detonation. In the finite activation

energy simulations, however, the solutions are qualitatively different from these asymptotic

predictions, in that while the temperature maximum may move off the contact surface

before burning is complete there, only a forward moving reaction wave emerges. For finite

activation energies, only a weak dependence on the acoustic impedance of the material

behind the contact surface is found, such that the sequence of events leading up to detonation

initiation between the contact surface and shock wave are actually described quite well by

the piston driven solution. The differences between the asymptotic theory and the numerical

results arise due to the exponentially short reaction times of a particle traversing the weak
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detonation as compared to it evolution timescale (hence its quasi-steady structure) that

occur in the large activation energy limit. Such short reaction times are not reproduced for

finite activation energies considered.

For a polytropic index appropriate to a simple condensed phase model, the results are

qualitatively different to those described above. In the large activation energy asymptotic

limit, thermal runaway now occurs at a distance of order unity from the contact surface

due to the stronger coupling of the temperature evolution with localized rises in pressure.

Both the forward and backward moving weak detonations which emerge from this first point

of ignition decelerate more slowly than in the gas phase cases. Due to the slower rate of

deceleration, the large activation energy asymptotic description remains valid over longer

length and time scales, and consequently the finite activation energy solutions are found

to agree quantitatively with the asymptotic predictions, even for only moderately large

activation energies.

Previously, it has been shown that the ignition mechanisms may be qualitatively different

for reactive materials whose kinetics are not well described by the one-step chemistry model

[28, 30–33]. These include, for example, cases where the initial temperature is above a

chain-branching cross-over temperature, whence chain-branching is dominant over chain-

recombination [28, 33]. Simple models appropriate to this regime, entailing a mainly chain-

branching explosion rather than a thermal explosion as examined here, show that a subsonic

reaction wave emerges in the piston driven shock initiation solutions [28, 30, 31, 33]. A

preliminary examination of the contact-shock initiation solutions for these simple chain-

branching models indicate that this remains the case for when the piston is replaced by a

contact surface. For models with thermally neutral induction stages, the main reaction stage

begin at the contact surface both in the large activation energy limit and for finite activation

energies [33]. Hence the results in [33] indicate that for these kinetic models, there is only a

weak dependence of the evolutionary events on the acoustic impedance behind the contact

surface in both cases. We intend to examine the solutions for different kinetic models more

thoroughly in the future, in order to compare with the one-step results presented here.
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FIG. 2: (a) Path of weak detonations in the (x, t) plane and (b) magnitude of the inverse of the

weak detonations’ speeds, in the large activation energy asymptotic solution when α0 = 0.5. Also

shown as the dotted line is the CJ speed for Q = 4.
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FIG. 3: (a) Path of weak detonations in the (x, t) plane and (b) magnitude of the inverse of the

weak detonations’ speeds, in the large activation energy asymptotic solution when α0 = 1. Also

shown as the dotted line is the CJ speed for Q = 4.
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FIG. 5: (a) Path of weak detonations in the (x, t) plane and (b) magnitude of the inverse of the

weak detonations’ speeds, in the large activation energy asymptotic solution when α0 = 0.5 and

γ = 3. Also shown as the dotted line is the CJ speed for Q = 4.
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FIG. 8: Spatial profiles of (a) temperature, (b) pressure and (c) reaction progress variable, for
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FIG. 13: Post-leading shock spatial profiles of (a) temperature and (b) pressure, for E = 15 and

α0 = 1, at times t = 1.640, 1.662, 1.684, 1.706 and 1.718. Also shown as a dotted line is the locus

of the pressure maximum from the piston driven case (α0 → ∞), and as open circles the pressure
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FIG. 14: Post-leading shock spatial profiles of (a) temperature and (b) pressure, for E = 15 and
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FIG. 16: Post-leading shock spatial profiles of (a) temperature and (b) pressure, for E = 15, γ = 3

and α0 = 0.5, at times t = 2.245, 2.252, 2.270 and 2.291.
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FIG. 17: pV and pλ diagrams of the region between leading shock and contact surface, when
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arrows in (a) denote the direction of the trajectories corresponding to moving from the shock to
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