
promoting access to White Rose research papers

White Rose Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Automated Software
Engineering.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/3656/

Published paper
Simons, A.J.H. (2007) JWalk: a tool for lazy, systematic testing of java classes by
design introspection and user interaction, Automated Software Engineering,
Volume 14 (4), 369 - 418.

eprints@whiterose.ac.uk

JWalk: a Tool for Lazy, Systematic Testing of Java Classes by Design
Introspection and User Interaction

ANTHONY J. H. SIMONS a.simons@dcs.shef.ac.uk

Department of Computer Science, University of Sheffield, United Kingdom

Abstract. Popular software testing tools, such as JUnit, allow frequent retesting of modified code;
yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk
has therefore been developed to address the need for systematic unit testing within the context of
agile methods. The tool operates directly on the compiled code for Java classes and uses a new
lazy method for inducing the changing design of a class on the fly. This is achieved partly through
introspection, using Java’s reflection capability, and partly through interaction with the user,
constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values
that must be confirmed by the tester. Without human intervention, JWalk performs bounded
exhaustive exploration of the class’s method protocols and may be directed to explore the space of
algebraic constructions, or the intended design state-space of the tested class. With some human
interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a
specification that was acquired incrementally.

Keywords: agile methods, unit testing, state-based testing, algebraic testing, lazy specification,
lazy systematic testing, operational abstraction, JWalk, JUnit

1. Introduction

One of the strengths of agile software development methods, such as eXtreme Programming (XP),
is the renewed emphasis on rigorous testing (Beck, 2000; Beck 2005). XP advocates test-driven
development, in which the intended specification of the software is expressed as tests, which the
software must pass. The tests are created before any production code is written; and all the tests
must be passed before each coding cycle is considered complete. The JUnit tool (Beck, 2004;
JUnit, 2007) automates the re-testing process; and passing the saved tests is treated as a kind of
conformance testing.

While encouraging testing is commendable, a potential weakness is that the test cases are only
selected manually, according to the programmer’s intuition, and are therefore usually incomplete.
Tests written by hand have a tendency to confirm expected behaviour, or diagnose anticipated fault
classes. They cannot be relied upon to validate the complete functional behaviour of the software,
since they do not usually anticipate all the possible ways in which the software’s operations might

 Draft of paper published as: AJH Simons, JWalk: a tool for lazy, systematic testing of Java classes by design
introspection and user interaction, Automated Software Engineering, 14 (4), December, ed. B. Nuseibeh, (Springer,
USA, 2007), 369-418.

2

interact with each other (Holcombe, 2003). Achieving test-completeness is made more difficult in
object-oriented languages by the mechanism of inheritance, which militates against reusing saved
test suites in conformance testing. JUnit’s saved tests fail even to cover the original state-space of
the parent class in the child class, because of the state partitioning in the refinement (Simons, 2006).

1.1 Agile Testing and Completeness

The motivation for the current work was to find a more rigorous class unit-testing method suitable
for the agile software development community. The testing method has to satisfy several goals:
firstly, testing should be demonstrably complete, under some weakening assumptions about the
regularity of the intended design; secondly, the testing process should be automated, in as far as this
is possible; thirdly, any saved test sets should evolve smoothly with the constantly-changing design
of the target class; and fourthly, the testing method should be accessible to a community that
eschews any kind of formal design process.

This is quite a difficult combination of goals to achieve together. For example, most software
testing methods that aspire to functional test completeness are based on automated test generation
from formal specifications. These include state-based approaches, particularly the X-Machine
testing method (Ipate and Holcombe, 1997; Holcombe and Ipate, 1998), and algebraic approaches,
particularly the TACCLE algebraic testing method (Chen et al., 1998; 2001). What makes these
formal approaches superior to their peers is the focus on completeness for conformance testing
purposes. X-Machine test generation is based on Chow’s W-method (Chow, 1978), which
guarantees deterministic levels of confidence even in the presence of duplicated states and
transitions, something which weaker transition- or switch-coverage methods fail to obtain; see also
(Jard and von Bochmann, 1983; McGregor, 1994; Binder, 2006) for contrasting approaches.
Likewise, the systematic test generation algorithm in TACCLE creates the minimal test-set that
fully covers the algebra, by selecting all canonical test exemplars of increasing length, in contrast to
random sequence generation from axioms in other approaches, such as (Bernot et al, 1991; Doong
and Frankl, 1991; 1994).

To improve the quality of test-case selection and test coverage in agile methods, various attempts
have been made to include lightweight specifications, such as simple X-Machines derived from XP
story cards (Holcombe, et al., 2001), which were used to generate complete system acceptance tests.
Elsewhere, X-Machines were synthesized from UML use cases and used to generate complete test
sets for the lightweight UPEDU method (Dranidis, et al., 2004; Robillard and Kruchten, 2002).
When X-Machines are used for class unit testing, the generated test sets are smaller and detect more
faults than the handcrafted tests produced by programmers (Holcombe, 2003). Similarly, while
JUnit regression tests cannot confirm the preservation of behaviour in extended or modified classes
(Simons, 2005), this can be achieved by regenerating the test-sets completely from a refined
specification that is proven compatible with the base specification (Simons, 2006).

1.2 Lazy Systematic Unit Testing

While there is now considerable evidence that the addition of even very simple specifications
permits the generation of efficient, complete test sets for agile methods, it is equally clear that
aficionados of XP and similar approaches are quite unwilling to adopt any kind of up-front
specification. Partly, this is due to the overall philosophy, which rejects all “big design up-front”
(Beck, 2000; 2005), considering even simple specifications as too burdensome in a lightweight
approach.

3

Therefore, the current work seeks to provide an exhaustive testing approach by different means,
based partly on the structure of the tested code and partly on information elicited from the
programmer during the testing process. The novel testing method is known as lazy systematic unit
testing, which combines the two notions of lazy specification and systematic testing. Lazy
specification (a term used by analogy with lazy evaluation) is intended to convey an approach in
which there is no need to commit to a stable specification until as late in the design process as the
programmer wishes. Systematic testing means a deterministic approach (in contrast to random test-
case execution), in which the software unit is either exercised completely up to some criterion, or
tested exhaustively for complete conformance to a specification.

In the lazy systematic unit testing method, the implicit specification of the class-under-test is
inferred incrementally, using a combination of automatic analysis, predictive rules and hints
supplied by the programmer. As more of the specification is acquired, the testing mode moves
seamlessly from bounded exhaustive exploration, satisfying the bounded inter-method coverage
criterion (Binder, 1996), to bounded exhaustive testing, equivalent to full conformance-testing to an
independent finite state specification (Chow, 1978; Holcombe and Ipate, 1998); and the generated
test reports become shorter and more focused until full test automation is achieved.

Fig 1. JWalk in the Eclipse IDE – tracing a fault to source

The testing method is exemplified in a tool called JWalk (Simons, 2007), which performs lazy
systematic unit testing on classes compiled in the Java programming language. Currently, the tool

4

exists in two versions, as a command-line utility program, which generates test reports on standard
output, and as an API that can be integrated with third-party programs, using the standard Java
event-model to communicate between JWalk and the third-party user interface. JWalk has been
successfully integrated as a plug-in for the Eclipse IDE environment (Eclipse Foundation, 2007),
for use by a second-year class of undergraduate students (sophomores) in external public service
and business development projects. In this configuration, it is used both for conformance testing
and source debugging (see figure 1).

In its exploring modes, the tool systematically exercises the class-under-test, reporting the results of
test-sequence evaluations to the programmer and highlighting any exceptions raised, c.f. (Csallner
and Smaragdakis, 2004). These modes include protocol exploration, algebraic exploration and
design state exploration (see section 3), which progressively abstract over the notion of state, c.f.
(Xie, et al, 2004). In its testing modes, which include algebraic testing and state-based testing (see
section 3), the tool interacts with the programmer, asking him or her to confirm the correctness, or
otherwise, of certain key test results. These oracle values are used in predicting further test
outcomes, constantly raising the level of automated testing. Predictions are based on a conservative
partial order reduction that maps test sequences into equivalence classes that yield the same
outcome. The set of oracle values may be updated dynamically, as the design of the class-under-
test evolves, and the testing process adapts gracefully to changes in the implicit specification.

The tool exhibits several novel features, including: the ability to move seamlessly between
exploring and testing modes; the ability to analyse test results while testing is in progress, in order
to control dynamically the growth of test sequences by selective pruning; the ability to detect the
abstract (“high level”) design states (McGregor, 1994) of the class-under-test, using an algorithm
based on simple predicates that naturally form part of the class’s interface; and the ability to learn a
specification incrementally. The chief benefit of lazy systematic unit testing is that it brings the full
power of specification-based testing to non-formal, agile software development approaches.

1.3 Overview of the Paper

In the rest of this paper, section 2 presents an overview of object-oriented unit testing, describing
the context in which JWalk was developed. Section 3 presents the key features of JWalk, focusing
on the test sequence generation algorithms, the state-space induction algorithms, the use of
generators for arguments and stubbed objects and the test result prediction strategy used with
oracles. Section 4 describes practical experiences in using JWalk on a number of examples,
introducing the notion of oracle efficiency, a metric expressing the degree of automation achieved
during successive test cycles. Section 5 compares and contrasts JWalk in more detail with other
recent tools identified in section 2; and explains how JWalk’s lazy systematic unit testing method
converges with the proven X-Machine testing method (Holcombe and Ipate, 1998). Section 6
summarises the paper’s main findings in the conclusion.

2. Object-Oriented Unit Testing

The motivation behind JWalk is to improve the quality of quick-turnaround unit testing available for
developers in the agile software development community. The benchmark for this is JUnit and its
derivatives (Beck, 2004; JUnit, 2007). The main advantage of JUnit is its ability to save test scripts
created by programmers, in parallel with evolving production code, and repeatedly re-run the saved
tests, during regression testing. The test-driven development philosophy of XP (Beck, 2000; 2005)
requires programmers to create tests before coding is complete; and to run and re-run the saved tests
until the modified or extended code passes all the tests.

5

The test cases used in JUnit are handcrafted. Programmers write test cases, with names such as
“testX” for some desired property X, which become the methods of a test-harness class. The
method body of a test case asserts some arbitrary equivalence, inequality or other relationship that is
supposed to hold. The JUnit 4.x tool recognises and extracts such test cases automatically by code
introspection (by parsing Java’s special code annotations). While test-sets are automatically
collated and repeatedly executed on demand, it is possible to argue that this still does not make the
best use of automation during class unit testing.

Programmers find it hard to foresee problems caused by unexpected interleavings of methods,
which affect the state of the test object, especially where inherited methods are interleaved with the
new methods defined in a subclass (Simons, 2005). For this, a systematic exploration of the class’s
state-space is required (Buy, et al., 2000; Xie, et al., 2004). So, it makes sense for testing tools to
seek to explore systematically what programmers habitually fail to discover through handcrafted
tests. Ideally, systematic testing is driven from specifications (Ipate and Holcombe, 1997; Chen et
al., 2001), yet agile approaches like XP forego any formal specification stage. A common reason
cited for this is that the prototype software system inevitably evolves faster, in response to changes
in user requirements, than any specification can be sensibly maintained (Beck, 2000).

2.1 Generating Exhaustive Tests from Code

An obvious approach would therefore be to generate tests systematically from the code, which
could at least assure that the code had been exhaustively exercised. White-box testing tools, such as
Cantata++ (IPL, 2007), instrument the tested code, so that the tool can determine whether decision-
points, branches or statements have been covered. In general, the complexity in class unit testing
depends less on nested branching, and arises more from the interaction of simple, short methods
with the class’s encapsulated state variables. A number of Java testing tools, such as JTest
(Parasoft, 2007) and JCrasher (Csallner and Smaragdakis, 2004), exploit Java’s reflection
capability to infer the method signatures of a compiled class, then construct random test sequences
consisting of chains of method invocations, for which suitable arguments are randomly generated.

A disadvantage of exploration-based tools is that they cannot determine whether a raised exception
represents a program fault, or merely a violated precondition. Likewise, they cannot tell whether a
non-exceptional result is correct, or a semantic fault. This would require an independent
specification of the expected results. JCrasher and similar tools are fault-finders, rather than
conformance testing tools. They typically provide no guarantee about the coverage of randomly
generated test sets. According to Xie, et al. (2005), neither JCrasher nor JTest satisfy the branch-
coverage criterion (Bezier, 1990), let alone the stronger bounded intra-method path coverage
criterion (Ball and Larus, 2000). For these, a more systematic approach to test-case generation is
required.

2.2 Inferring Abstract States from Code

Class unit testing should at least explore the class’s state-space systematically. While (Buy, et al.,
2000) propose a number of techniques to improve the state coverage of test sequences, including
dataflow analysis, symbolic execution and automated deduction, the complete unit testing approach
favoured in this paper bears a greater affinity with the state abstraction approach used in Rostra
(Xie, et al., 2004) and Symstra (Xie, et al., 2005), although a different method is eventually used
here to identify high-level design states. Xie, et al. (2004) propose up to five different abstractions
over state (see section 5.2.1). In this, and the later work (Xie, et al., 2005), which also includes
systematic symbolic execution of the object, the emphasis is on filtering randomly generated

6

JCrasher or JTest sequences to preserve those exemplar sequences that uniquely exercise each
identified state. A significant reduction in test-set size is achieved for no loss of coverage.

Reverse-engineering approaches to state induction seek to cluster the atomic states hypothesized for
every program statement. Variations of the k-tail algorithm may be used to infer states from
execution traces (Lorenzoli, et al., 2006). Another example of low-level state clustering is Java
Pathfinder (Visser, et al., 2003; Lerda and Visser, 2001). This runs Java bytecode programs in a
specialised virtual machine that is used as an explicit state model checker. The tool explores all
potential execution paths, clustering equivalent states, finding deadlocks and unhandled exceptions.
The tool is highly effective in detecting bugs in multithreaded programs. The “state matching”
ability of Java Pathfinder has also been applied to improve the coverage of test sequences,
increasing their state-related discrimination (Visser, et al., 2006). This test-filtering goal is shared
by (Xie, et al., 2004; 2005; Marinov and Kurshid, 2001).

Partial order reduction on execution traces is the main technique used by Java Pathfinder to reduce
the state-space. State clustering may be improved by also requiring explicit branch coverage (Yuan
and Xie, 2005) and the granularity of states may be raised even higher through user-supplied
abstraction functions (Grieskamp et al., 2002; Xie, et al., 2004). A less intrusive “state matching” is
obtained through observational equivalence (Bernot et al., 1991; Doong and Frankl, 1994; Henkel
and Diwan, 2003). The latter algebraic approach is potentially expensive, because of the growth of
observer-sequences needed to characterise each state.

2.3 Testing with Partial Specifications

The handcrafted tests of XP (Beck, 2000; Beck, 2005) constitute an informal kind of specification,
since the tester supplies oracle values (“expected results”) for each test. In some ways this is better
than blind exploration, as each test seeks to assure that the software conforms to some intended
design property; but the handcrafted tests are never exhaustive. A prerequisite for automating
complete functional testing is a complete and consistent formal specification.

While programmers find simple state machines relatively easy to comprehend (Holcombe, et al.,
2001; Holcombe, 2003), these only specify the modal properties of a system. States can be
supplemented by more precise observations, such as control flow (Ural, et al., 2000) or observations
on internal variable values (Petrenko, et al., 2004). However, in the envisaged agile testing context,
it is not really tractable to accommodate more complex multi-level specification and testing for each
class, since there is already some resistance to adopting simple state-based specifications. To
specify the exact properties of a class most succinctly requires the power of an inductively defined
data type algebra (Goguen and Malcolm, 1997), and knowledge of subtle recurrence relations. This
is more in the province of mathematicians than of agile developers (but see (Henkel and Diwan,
2003), discussed below).

It is worth considering whether automatic tool support might be offered to help agile developers
induce a complete formal specification from their code. The state-of-the-art is constantly improving
here. One important strand of research is the kind of property mining carried out by the Daikon tool
(Ernst, 2000; Ernst et al., 2001; 2007; Perkins and Ernst, 2004) and its derivatives, such as Agitator
(Boshernitsan, et al., 2006; Agitar, 2007). Daikon establishes the input space of the tested unit from
an analysis of signatures and program constants, then repeatedly executes the tested unit on random
input vectors and draws inferences about invariant relationships that seem to exist between program
variables. The Agitator tool allows the tester to choose interactively whether to promote each
observation to an axiom of the system; or to ignore it as an over-generalisation; or to flag it as a
fault in the system’s implicit specification (and implementation).

7

Inferred observations are also known as “operational abstractions” in the Jov tool (Xie and Notkin,
2003), which uses Daikon as a filter on random tests generated by JTest, to establish test
equivalence classes. Daikon has been incorporated in other tools, such as DSD-Crasher (Csallner
and Smaragdakis, 2006a), a hybrid bug-finder, which combines dynamic invariant detection with
static program analysis and dynamic testing; and Eclat (Pacheco and Ernst, 2005), a test refinement
tool, which uses Daikon to induce a model from successful test-runs, then generates more
discriminating tests that are predicted to be “operational violations”.

2.4 Inferring Complete Specifications from Code

While Daikon has successfully been shown to re-learn the known invariants of a system (Ernst, et
al., 2001), it cannot guarantee that its learned specification is complete. It can help to identify tests
for “operational violations”; however, these are more often precondition violations, than indicative
of genuine software faults (Xie and Notkin, 2003). Daikon may have trouble distinguishing the
properties of an abstract interface from the properties of some satisfying implementation (Csallner
and Smaragdakis, 2006b). Perhaps the most ambitious work on the automatic induction of
specifications is the semi-automated inference of data type algebras (Henkel and Diwan, 2003).
This approach maps a Java class to an algebraic signature, then generates and evaluates many
ground terms, proposing equations, typically equivalences between ground terms. The important
generalisation step induces quantified axioms, which succinctly capture many ground term
equations. While this approach is not guaranteed to be complete, because of dynamic inference, it
seems to discover relevant axioms.

The approach has also been embedded in a tool to help programmers write and debug algebraic
specifications (Henkel and Diwan, 2004). The tool maps the candidate specification to a prototype
Java class and simulates its behaviour, which can be compared with the behaviour of some hand-
coded concrete Java class. Discrepancies inform the programmer about faults in the algebra, or
possibly in the concrete class. Eventually, this kind of supported, interactive development of
specifications may prove attractive to the agile community, if it can be persuaded that algebras are
not mathematically too difficult. Parameterizing specifications for testing purposes has received
support elsewhere (Tillmann and Schulte, 2005a; 2005b).

3. The Design of the JWalk Tool

Lazy systematic unit testing with JWalk requires no initial formal specification. Instead, aspects of
the intended design are acquired incrementally, and may also be changed as the programmer edits
the class-under-test (CUT) in an iterative design-and-test cycle (see figure 2). The signatures of the
CUT’s public operations are acquired by static analysis and observer/mutator properties are learned
by dynamic analysis. If the CUT offers any Boolean-valued state predicates, then these will be used
dynamically to identify significant design states. Finally, the programmer may also supply oracle
values when running the JWalk tool in its interactive testing modes, which accumulate over several
testing cycles and adapt gracefully to changes in the design. At any time, systematic testing from
the specification obtained so far may be carried out.

The JWalk lazy systematic unit-testing tool exists in two versions, as a command-line utility
program; and as an API toolkit for integration with third-party programs and user interfaces, such as
the Eclipse IDE (Eclipse Foundation, 2007). A stable version of the toolkit is freely available for
download at the JWalk website (Simons, 2007) and there are plans to release a version with an
integrated graphical user interface at a future date.

8

Validate Specification

Create Test Class

Explore Protocols

Update Test Class

Explore Algebra

Explore States

Test up to Specification

Test Algebra

Test States

done

done

check test
finished

Fig 2. Workflow in the JWalk design-and-test cycle

Executing the command line utility in the Java JDK environment is extremely simple:

java org.jwalk.JWalk MyClass

will invoke the JWalk tool on the compiled Java class file MyClass.class and will perform, by
default, bounded exhaustive protocol exploration of MyClass to a depth of three, generating a test
report on standard output. The behaviour of the tool is controlled by further command-line
arguments, indicating the test mode and test depth. The different test modes include:

 bounded exhaustive protocol exploration – in which all interleaved method paths (including
inherited methods) are explored to the given depth (see sections 3.2.2 and 4.1.1);

 bounded exhaustive algebraic exploration – in which all observations on all interleaved
constructor/mutator-method paths are explored to the given depth (see sections 3.3.1 and
4.1.2);

 bounded exhaustive state-based exploration – in which all interleaved method transitions are
fired from each of the abstract design states of the class, to the given depth (see sections
3.3.3 and 4.1.3);

 bounded exhaustive algebraic testing – in which oracle values are acquired interactively to
automate the confirmation of tests generated by bounded exhaustive algebraic exploration
(see sections 3.4 and 4.2.1); and

 bounded exhaustive state-based testing – in which oracle values are acquired interactively to
automate the confirmation of tests generated by bounded exhaustive state-based exploration
(see sections 3.4 and 4.2.2).

9

The test-depth represents the maximum length to which interleaved method paths are constructed
and exercised, which, in the case of the state-based styles of exploration, does not include the prefix
sequence required to reach each state. Other terms such as “protocol”, “mutator”, “observer” and
“design state” have particular senses, which are explained in more detail below.

3.1 Open Architecture of the JWalk Tool

The JWalk tool is designed in an object-oriented style, to facilitate future extensions, and it exploits
certain design patterns, such as the Strategy, Observer and Template Method patterns (Gamma, et
al., 1995), as well as specific features of the Java programming language, such as reflection. The
architecture of the JWalk tool is illustrated in figure 3, showing the organisation of its components.
The specialised functions of some of the major components are described below.

TestStrategy
«interface»

Inspector
«interface»

Explorer
«interface»

Validator
«interface»

Class
Inspector

Protocol
Explorer

Algebraic
Explorer

StateSpace
Explorer

Algebraic
Tester

StateSpace
Tester

JWalker JTalker

Question
Listener

«interface»

Report
Listener

«interface»

Test
Sequence

TestCase

Generator
«interface»

Value
Generator

Array
Generator

Object
Generator

Oracle
«interface»

Lazy
Oracle

1..*

1..*

1..*

1

Fig.3. Architecture of the JWalk testing toolkit

3.1.1 The TestStrategy Hierarchy

TestStrategy is an interface, the abstract root of a tree of different components that perform static
and dynamic analysis of the class-under-test (CUT). The subinterfaces Inspector, Explorer and
Validator describe extended capabilities appropriate to each static or dynamic strategy. Various
concrete components implement these interfaces; and may satisfy more than one. Subclass
components extend the testing capabilities of the immediately dominating superclass in figure 3, for
example:

10

 ClassInspector – performs a static analysis of the CUT by reflection, to extract its
constructors and methods, and their type signatures;

 ProtocolExplorer – performs a static analysis, and then constructs and executes test
sequences for a bounded exhaustive protocol exploration;

 StateSpaceExplorer – performs a static analysis, then executes a state-space discovery
search, before constructing and executing test sequences for a bounded exhaustive state-
based exploration; and

 StateSpaceTester – performs a static analysis and state-space discovery search, before
constructing and executing test sequences for a bounded exhaustive state-based test, whose
results are confirmed against oracle values.

The top-level JWalk program interprets the command line parameters and from these constructs a
suitable subclass of the abstract TestStrategy, according to the kind of testing to be carried out,
following the Strategy design pattern (Gamma, et al., 1995). The TestStrategy object accepts the
CUT and proceeds with a static analysis and the eventual dynamic analysis.

Other important components include TestCase and TestSequence. TestCase models a single
invocation of either a constructor or method of the CUT, while TestSequence models a chain of
such test cases, starting with a constructor and continuing with a unique combination of methods.
The TestStrategy object builds up test sequences of increasing length for later evaluation, according
to its particular strategy. Each TestCase is supplied with controlled arguments, manufactured by a
Generator object, which by default is an ObjectGenerator. A different generator may be requested
by supplying a different Generator-class name on the command line.

3.1.2 The Generator Hierarchy

JWalk’s main testing assumption is that it is the unexpected interactions of an object’s methods with
its state that give rise to faults (see the earlier discussion in section 2.1). This is different, for
example, from the category-partition testing assumption (Irvine and Offutt, 1995) that faults arise
from unexpected combinations of values in the input space. The main goal for test sequence
generation is therefore to make it possible to exercise the CUT’s methods in all possible
combinations, under repeatable conditions. For this, a relatively simple strategy may be used to
synthesize method arguments.

Generator is an interface, the abstract root of a tree of test input vector synthesizers. These play an
important role in generating controlled arguments for the TestCases, ranging from unique primitive
values and arrays of values, to symbolic objects standing for equivalence-classes of inputs and
custom stubbed objects designed to force certain kinds of behaviour under test. Three standard
generators are provided, in a specialisation hierarchy (see figure 3):

 ValueGenerator – can synthesize a sequence of quasi-unique values for any of Java’s basic
types boolean, byte, char, short, int, long, float and double;

 ArrayGenerator – in addition to basic types, can synthesize primitive arrays of increasing
lengths of any type (basic types; and object types); and

11

 ObjectGenerator – in addition to the above, can synthesize controlled exemplar instances of
any class type with a default constructor (and of certain Java library classes with other kinds
of constructor).

While ObjectGenerator is adequate for standard purposes (for example, the generated symbolic
instances allow the comparison of objects by reference across different test cycles; the default
sequence of generated integers allows testing for all of the normal, underflow and overflow
indexing cases of collections), it is expected that developers will provide further custom generators,
satisfying the Generator interface, when they wish to generate non-standard input sequences, or
supply particular stubbed objects or controlled instances. One reason to do this might be if a
category-partition style of testing was desired, where it is anticipated that different partitions in the
input space for method arguments will trigger significantly different behaviour. Instructions for
customising generators are provided in (Simons, 2007).

If one of the testing modes is selected (by executing an AlgebraicTester or a StateSpaceTester), a
LazyOracle is also deployed, to collect oracle values interactively and reuse oracles to confirm test
results automatically. The architecture is designed around the Oracle interface, so that other kinds
of oracle could eventually be deployed. One future possibility might be an AlgebraicOracle that
could predict test results from a supplied algebraic specification, for example.

3.2 Static and Dynamic Analysis Techniques

JWalk seeks to infer as much of the intended design of the CUT as possible from the compiled Java
code, before it asks the programmer for extra information. While this might require full source
code analysis in some languages, identifying the signatures of operations is made much easier in
Java by the Java Reflection API, a feature also exploited by some other tools (Csallner and
Smaragdakis, 2004).

3.2.1 Static Analysis by Reflection

Reflection refers to the facility provided in certain object-oriented languages, whereby objects and
classes may introspect at runtime about their own definitions. Reflection is available in languages
that have a strong metaobject facility (Kiczales, et al., 1991), in which classes exist also as runtime
concepts, in order to allow programmatic manipulation of their own definitions.

The information extracted by reflection includes: the type of the CUT, the names and type
signatures of its public constructors and methods (it is assumed that non-public features cannot be
invoked directly, but only indirectly through public methods). The extracted methods include all
inherited public methods for the CUT, since systematic testing must exercise all possible
interleavings of inherited and local methods (Simons, 2006). However, an optional filter is
provided to exclude the standard built-in methods inherited from Object, the root of the Java class
hierarchy, which deal with the internals of the Java kernel, such as the synchronization of threads.

Further to this basic analysis, the CUT’s methods are partitioned into procedures (which return a
void result) and functions (which return a non-void result). These are taken as first approximations
to the observers (pure functions) and mutators (side-effecting operations) of the CUT, which are
later determined empirically by dynamic analysis (see section 3.3.1). The functions are filtered
further to extract any state predicates, Boolean-valued functions with no argument. These are used
later in the dynamic discovery of abstract design states (see section 3.3.2).

12

3.2.2 Dynamic Analysis by Test Execution

All dynamic analysis is performed by constructing test sequences and executing these on new
instances of the CUT, confirming the result either semi-automatically (in the testing modes) or by
visual inspection of a test report (in the exploring modes). In some modes, the CUT may be placed
into a known starting state, before the main test sequence is executed. The basic sequence
generation strategy is supplied by ProtocolExplorer and inherited by StateSpaceExplorer, where it
is applied after the CUT has been driven into a particular state; and is adapted in AlgebraicExplorer
to remove observers from the prefix of test sequences.

The basic sequence generation strategy of ProtocolExplorer seeks to exercise the CUT’s protocol
completely. The term “protocol” here refers to any interleaved sequence of the CUT’s public
methods, prefixed by one of its public constructors. Bounded exhaustive protocol exploration
includes paths beginning with every possible constructor, continuing with all possible interleavings
of methods, up to some upper bound on the path length. The test set includes all initial constructor
sequences, treated as length 0, then all method invocation sequences of length 1, length 2, length 3
and so on, up to a maximum depth k. Mathematically, this can be expressed as the following
formula for the “protocol-walking” test set TPk:

TPk = C {1 M1 M2 … Mk}

where C is the set of unit constructor sequences, M1 is the set of unit method sequences, M2 is the
set of all method pair sequences and so on; and is the concatenated product, appending every
sequence in the right-hand set onto every sequence in the left-hand set. Listing 1 illustrates in
pseudo-code how the same test set might be constructed by an imperative algorithm (in which
extend and insert are understood to modify the sequence, or set in question):

test_set := empty
last_set := empty
for i := 0 to max_depth_k
 if i == 0 then
 for c := 1 to max_constructors
 test_seq := empty
 extend(test_seq, constructor[c])
 insert(test_set, test_seq)
 last_set := test_set
 else
 next_set := empty
 for j := 1 to size(last_set)
 if executed_ok(last_set[j])
 for m := 1 to max_methods
 test_seq := copy(last_set[j])
 extend(test_seq, methods[m])
 insert(next_set, test_seq)
 insert(test_set, test_seq)
 last_set := next_set

Listing 1. Algorithm for Exhaustive Protocol Exploration

This algorithm relies on copying every test sequence from the previous cycle (those in last_set) and
extending each copy by every possible method to yield the sequences in the next cycle (those in
next_set). Test sequences will therefore contain every single constructor, every constructor
followed by every method, and longer sequences which extend every existing sequence by every
single method. This means that sequences will eventually contain repetitions of methods, including
combinations that are not usually anticipated by human testers, such as repeated calls to the same

13

access method, or access methods embedded in the prefix, evaluated only for their possible side-
effects. These exhaustive sequences are required to satisfy the coverage criteria for the complete
state-based testing approach supported by JWalk (Chow, 1978; Holcombe and Ipate, 1998) – (see
section 5.3).

The algorithm from listing 1 assumes that test generation and test evaluation are interleaved
activities. In each test cycle, a filtering step is applied to the executed tests of the previous cycle, to
remove edges from the graph that raised exceptions in the previous cycle. This is because any
longer test sequence grown from a halting edge would automatically halt at the same point in the
next cycle. After reporting the exception, JWalk prunes halting sequences, to reduce the size of the
search space. The tool nonetheless keeps a tally of all longer (now virtual) paths that would have
halted at the same point.

3.3 Exploring Different Abstractions over State

JWalk’s main testing assumption (see section 3.1.2 above) is that it is primarily the unexpected
interactions of interleaved methods with an object’s state that reveal faults in the object’s implicit
design. This is similar in philosophy to (Xie, et al., 2004; 2005; Grieskamp, et al., 2002; Buy et
al., 2000), but not identical in approach (see detailed comparisons in section 5.2). The tool directly
supports up to three different abstractions over state:

 all interleaved methods – where every distinct sequence of methods is presumed to give rise
to a potentially different state;

 all algebraic constructions – where every distinct sequence of constructor and mutator
methods is presumed to give rise to a potentially different state; and

 all abstract design states – where every valid and unique combination of predicate
observations over an object’s variables is presumed to give rise to a potentially different
design state.

The all interleaved methods abstraction represents the finest-grained notion of state. It assumes that
any method invocation may create a unique object state (for each argument equivalence-class); and
even simple access methods are anticipated to have possible state-modifying side effects. The
default mode known as “protocol-walking” constructs sequences with this granularity, presenting an
exhaustive test report to the user (see section 4.1.1), which can grow to become lengthy for classes
with many methods, or for longer bounded path-lengths.

3.3.1 Approximating Algebraic States

The all algebraic constructions abstraction represents an intermediate-grained notion of state. In
standard functional treatments of algebra (Goguen, et al., 1993; Goguen and Malcolm, 1997) the
primitive operations of a datatype are known as (algebraic) constructors and these may be used to
create every unique instance of the datatype. The constructors of a Stack would therefore include
both newStack and push (in the functional universe), because these two operations alone may be
used to construct every conceivable Stack instance. So, the notion of algebraic states corresponds to
all (syntactically legal) interleavings of the type’s primitive constructor functions.

In an object-oriented universe (with side-effects), algebraic constructions are mapped onto a class’s
constructors and some of its mutator methods. It is impossible to distinguish automatically from
code analysis alone which of the class’s mutator methods should be counted as primitive (like push,

14

an algebraic constructor) and which are derived operations (like pop, an algebraic transformer).
This would require independent information about the algebraic category of each operation.
Instead, an approximation of the class’s primitive operations is taken to include its constructors and
all of its mutator methods. This over-estimates the number of primitive operations, but is
guaranteed to include all of them. The set of all algebraic constructions is therefore approximated
conservatively by constructing all sequences beginning with a constructor, followed by all possible
interleavings of the CUT’s mutator methods. This is guaranteed (by the above argument) to contain
more sequences than strictly necessary to reach all distinct algebraic states.

Bounded exhaustive algebraic exploration includes paths beginning with every possible
constructor, continuing with all possible interleavings of mutator methods, and terminating with a
single observer or mutator method, up to some upper bound on the method path length k.
Mathematically, this can be expressed as the following formula for the “algebra-walking” test set
TAk:

TAk = C {1 N1 N2 … Nk-1} M1

where C is the set of unit constructor sequences, N1 M1 is the set of unit mutator sequences, N2
M2 is the set of all mutator pair sequences and so on; and the final term M1 is the set of unit method
sequences, as before. The concatenated product operator is used twice to extend all constructors
with all mutator-paths, then again with all single methods. Listing 2 illustrates in pseudo-code how
the same test set might be constructed by an imperative algorithm.

test_set := empty
last_set := empty
for i := 0 to max_depth_k
 if i == 0 then
 for c := 1 to max_constructors
 test_seq := empty
 extend(test_seq, constructor[c])
 insert(test_set, test_seq)
 last_set := test_set
 else
 next_set := empty
 for j := 1 to size(last_set)
 if modified_ok(last_set[j])
 for m := 1 to max_methods
 test_seq := copy(last_set[j])
 extend(test_seq, methods[m])
 insert(next_set, test_seq)
 insert(test_set, test_seq)
 last_set := next_set

Listing 2. Algorithm for Exhaustive Algebraic Exploration

This algorithm generates a smaller test set than listing 1 (see also section 4.1.2). The only
difference is in the way that edges are filtered before they are grown in the iteration step. Only
those paths terminating in a normally-executing constructor or mutator method are extended in the
following cycle. Paths terminating in an observer method, or which raised an exception (see 3.2.2
above) are pruned on the fly, before the next generation cycle. The similarity between these two
algorithms suggested the obvious implementation strategy using the Template Method design
pattern (Gamma, et al., 1995); and in fact, variations of the same basic algorithm are used to
discover design states and then extend transition paths from these states (see section 3.3.2 below).

15

During algebraic exploration, JWalk distinguishes observer and mutator methods. These are
determined empirically by dynamic analysis, after each test execution phase and before the next test
generation phase. Initially, methods were partitioned into functions and procedures according to
their signatures (see section 3.2.1 above). The functions may qualify as observers (pure functions)
if they have no side-effects. To detect side-effects, a state vector is extracted from the CUT
instance, before and after the execution of each function, using Java’s Reflection API to bypass the
private and protected visibility of its attribute declarations. If the prior and posterior state vectors
are identical, then the function is deemed an observer. Otherwise, it has a side-effect and is deemed
a mutator, along with all other procedures.

3.3.2 Inferring Abstract Design States

The all abstract design states level of abstraction represents the coarsest-grained notion of state.
The term “design state” comes from McGregor (1994) and denotes any state that has a meaning for
the CUT’s designer. Design states are complete partitions of the CUT’s attribute space (McGregor,
1994) but may also be defined more abstractly as partitions of its observer-space (Simons, 2005).
In practice, design states correspond to modes in which the CUT’s behaviour changes in some
significant way and may encode the context for illegal calls (exceptions), ignored events (null
operations) or different execution (branching). JWalk’s method for discovering high-level design
states has evolved across different versions of the tool, in favour of increasingly less intrusive
design-for-test requirements on the CUT.

Early versions of JWalk (0.3 onward) required the CUT to provide a complete set of state
predicates, Boolean-valued methods with no argument, that exhaustively partitioned the CUT’s
attribute space, c.f. (D’Souza and Wills, 1998). For example, a Stack would supply state predicates
to report its Empty and Default states. This had the advantage that an automatic state discovery
procedure could rapidly identify every reached state. Furthermore, it was possible to check
empirically that the predicates were mutually exclusive and exhaustive. JWalk could search up to
some bounded depth, or up to memory-exhaustion, to determine that all design states had been
found and that none were overlapping.

Later versions of JWalk relaxed the requirement to provide total predicate coverage. From version
0.6, JWalk could infer at most one Default state for each CUT, being the state found when no other
state predicate returned true. The advantage was a greater economy of expression, and the ability to
infer at least one state for every object (objects without predicates have a Default state). State
completeness was defined less strictly, as finding all explicit states and optionally the Default state.
Searching proceeded to the limit if the Default state was not found. Overlapping predicates could
still be detected as ill-formed.

A further sophistication was added in JWalk 0.6 to cater for the partitioning of state caused by
subclassing (Simons, 2005; 2006), which legitimately entails overlapping predicates. For example,
an abstract Stack interface might be realised by a concrete BoundedStack, which partitions the
Stack’s Default state into distinct Normal and Full states. An object could therefore simultaneously
satisfy the Full and Default state predicates. This required a relaxation of the mutual exclusivity
rule. The state induction algorithm was amended to take account of the most specific predicates, in
cases of partitioning, which was distinguished from ill-formed cases of overlapping.

Eventually, an analysis of programming styles showed that programmers tended to introduce quasi-
orthogonal states in each subclass. For example, a LibraryBook may exist in the states: {Available,
OnLoan}. A ReservableBook subclass may introduce the orthogonal states: {Unreserved,
Reserved}, however, these states interact with the original states, resulting in a state product, which

16

completely partitions the original states. These states can all be represented in a Boolean matrix of
two variables:

OnShelf = ¬onLoan ¬reserved OnLoan = onLoan
PutAside = ¬onLoan reserved Available = ¬onLoan
Borrowed = onLoan ¬reserved Reserved = reserved
Recalled = onLoan reserved Unreserved = ¬reserved

and the programmer need only provide the predicates isOnLoan() and isReserved() to represent
these states. We believe that supporting this kind of coding style will prove most habitable to
programmers, since it imposes the fewest design-for-test restrictions.

From version 0.8 onwards, JWalk identifies abstract design states from the Boolean product of state
predicate observations. Searching attempts to find all truth-value combinations of atomic
observations, but may still succeed without having found the full product. This may occur if
predicates are not orthgonal, either because they are mutually exclusive, or because a superclass
predicate includes one or more refined subclass predicates. In the ReservableBook example, all
truth-value combinations are meaningful states, and will be found, since the atomic predicates are
orthogonal. In the BoundedStack example, no logical state corresponding to empty full exists,
since the associated predicates are mutually exclusive.

The guarantees of complete state discovery are not as obviously strong. In general, no assumption
can be made about predicate dependency (one way or the other). The posterior check for complete
state discovery is a heuristic, based on every atomic predicate having returned both true and false at
some point. This correctly identifies redundant predicates (states that are never reached) and lack of
progress (states that are never left). In practice, state discovery seems to be extremely effective.
This can only be explained by an analogy with the anthropic principle (“the universe is the way it is,
because we are here to view it”). If a CUT provides state predicates, then it expects the design
states derived from these to be found within a reasonable space of constructions. (See also the
discussion in section 5).

3.3.3 Exploring Design States

When exploring all design states, JWalk first computes the state cover (see below), then drives the
CUT into each of its abstract design states, using each prefix from the state cover, then exercises all
possible interleavings of methods, up to some chosen path depth k. The exhaustive exploration
ensures that all combinations of transitions are attempted from each design state. For k = 1, the
generated tests correspond to the transition cover. For k = 2, they correspond to the switch cover.
For k 3, test sequences can even validate ill-formed implementations with duplicated states and
transitions, in the style of X-Machine testing (Holcombe and Ipate, 1998).

Let S stand for the state cover set that will drive the CUT into each of its intended design states.
Each sequence in S already consists of a constructor, followed by zero or more mutator methods.
Test sequences are constructed by extending each prefix sequence in S by increasingly longer
sequences of methods in M1, M2, etc. This can be expressed as a mathematical formula for the
“state-walking” test set TSk:

TSk = S {1 M1 M2 … Mk}

where M1, M2, etc. are sets of method sequences of increasing length, containing all possible
singletons, pairs, and so on. This “state-walking” set is calculated algorithmically in a similar

17

manner to the “protocol-walking” test set, described in listing 1, but with the state cover S
substituted in place of the set of constructors C.

The state cover is discovered by a prior exploration of the CUT’s state-space. JWalk constructs
probe sequences, consisting of a constructor followed by interleaved mutator methods and ending in
a predicate, to determine whether the predicate holds for that particular sequence. Mathematically,
this can be expressed as a formula for the probe set Qk:

Qk = C {1 N1 N2 … Nk} P

where C is the set of unit constructor sequences, P is the set of unit predicate sequences and N1, N2,
etc. are sets of state-modifying sequences of increasing length, containing all possible singletons,
pairs, and so on, of mutator methods (mutators were defined in section 3.3.1). In each exploratory
cycle, the state-space of the CUT is explored in a breadth-first way and a predicate vector is
evaluated for each path. One of the decision rules (from section 3.3.2) is applied to determine
whether a new design state has been detected. If so, the exploratory sequence is added to the state
cover. In this way, the state cover S always consists of the shortest sequences that reach each new
state. The depth criterion k is a safety cut-off point. This can be set at less than the memory-
exhaustion limit, to reduce searching time (which is typically around 3-5 seconds), but can be
extended up to memory-exhaustion. JWalk recovers gracefully from this condition, with all
discovered information intact.

3.4 Lazy Systematic Testing with Oracles

The algebraic testing and state-based testing modes of JWalk seek progressively to automate the
execution of complete unit test-sets. The programmer is invited to confirm or reject particular test
results that JWalk detects as being in some sense “novel”; and the tool repeatedly applies each
learned judgement, unless told that it no longer applies. As more information is gleaned, the size of
the test report generated for human inspection is reduced. At the limit, testing becomes completely
automatic, producing a summary report.

Automated validation compares each actual test result against a known reference value, or oracle.
In many other testing methods, including JUnit (Beck, 2004; JUnit, 2007), the programmer is
expected to provide oracle values in each of the handwritten tests. For a moderate number of unit
tests, this is tractable, but in the context of JWalk, which performs bounded exhaustive testing, the
prospect of having to input many such oracle values by hand would be daunting.

3.4.1 Minimal Intervention Strategy

As a first effort-saving strategy, JWalk saves the programmer from having to input any reference
data at all, by suggesting the result first. The programmer need only confirm whether this is correct
or not, with a keystroke. There is no requirement to input any reference data, since the correction
strategy is always to fix the software until JWalk can predict all of the desired results. This feature
is designed especially to suit the agile development philosophy (Beck, 2000; 2005), in which the
only durable artifacts are the production code and the saved tests. The second effort-saving strategy
is to avoid presenting the programmer with every unseen test case. JWalk need only select certain
TestSequences for interactive confirmation by the programmer, since it can predict many other
expected results from information already known (see section 3.4.2 below).

During a validation cycle, the programmer is asked to confirm each presented result and may key
Enter to accept (quicker than typing in “Y”); or type in “N”, to reject the result; or type in “Q” to

18

exit early from the validation process, if an error was found that would have consequential effects in
later tests. After one such pass, the set of confirmed oracles are saved and any failed test-cases are
printed in a test report. The programmer may then fix the CUT and re-run the validation process,
which re-presents all the modified cases for confirmation, but checks all unchanged cases
automatically, whether these are known to be correct, or incorrect. The programmer edits the CUT
until all predictions are judged to be correct.

From small-scale experiments, it was found that programmers learn quickly how to read and judge
the presented test cases (see section 4). It is reasonable to expect a trained programmer to confirm
10-12 oracle values per minute. The actual number of confirmations requested depends on the size
of the CUT’s public interface and the depth to which testing is carried out. If editing and testing are
carried out in an iterative fashion, the burden of oracle creation is amortized over the development
cycle. The time taken ranges from a few seconds (5 confirmations) to around 7 minutes (80
confirmations).

3.4.2 Rule-Based Prediction of Test Results

In the testing modes, JWalk uses previously saved oracles to make predictions about future test
results, in an effort to automate more of the validation process. This uses strong and weak
predictive rules. Strong predictions allow JWalk to confirm test results automatically, and are
guaranteed (see below). Weak predictions allow JWalk to assume results, unless these are
contradicted, but they are not guaranteed. Where the predictions hold, JWalk checks the result
automatically. Only novel test results (which contradict expectations) are presented for interactive
confirmation.

An example of a weak prediction, from a static analysis of signatures, is that a sequence ending in a
procedure is expected to return a void result. If this weak assumption holds, then validation is
automatic. If it is violated, for example, because the procedure call raises an exception, then this
unexpected result is noticed and is presented to the human tester for confirmation. There is little to
be lost if the prediction fails to hold, since JWalk will eventually learn the exceptions to the rule
(and from these, may construct new predictions). Weak predictions are only valid in one direction.
For example, if a procedure is supposed to raise an exception, but does not, then this will not be
detected automatically. However, a subsequent observation on this sequence will unexpectedly be
presented, and so draw attention.

An example of a strong prediction, based on a dynamic analysis of states, is that observer methods
have no effect upon state. This allows JWalk to map many test sequences containing prefix
observers into equivalence-classes. So, a sequence whose prefix contains a function, which has
previously been found empirically to have no side-effects, may be mapped onto a shorter sequence
from which the function is eliminated. JWalk uses the existing oracle value for the shorter sequence
to confirm the longer sequence. Sequences are eventually mapped onto equivalent sequences with
no prefix observers. A strong prediction is always guaranteed to be valid. If a test sequence
contained a function with unwanted side-effects in its prefix, which were later reversed by another
faulty method, then the reduction rule would simply not apply, since the faulty prefix function
would be classed as a mutator. If the prefix function were accidentally side-effect free (assuming
this was not intended), then the prediction made by the reduction rule would still be valid
(irrespective of the faulty function).

These predictive rules still work in degenerate circumstances. For example, if the CUT instance has
an illegal path, JWalk will present the first observation on the illegal path for confirmation (e.g. a
ReservableBook that is first reserved, then wrongly issued to a different person, who is

19

unexpectedly returned as the borrower). If the CUT instance has a duplicated path leading to a
redundant state that randomly produces different observations, the first observation will be
confirmed on first sight (as a pass, or fail) and will abnormally reappear for confirmation in a
subsequent cycle (the cycle in which the random value first changes), so drawing attention.

When using JWalk in its testing modes, the assumptions made by the predictive rules are in practice
highly useful. For higher-coverage state-based tests, the oracles learned during algebraic testing
allow over 90% of the state-transition paths to be confirmed automatically (see section 4.3). In
general, a balance should be maintained between using the exploring and testing modes, since the
former present all cases for visual inspection. Testing assumes that the inferred specification is
mostly valid (but it could be inconsistent in places). Exploring assumes that the implicit
specification is still being validated.

3.4.3 Reuse of Symbolic Oracle Values

The storage of oracle values for reuse in subsequent test cycles poses non-trivial problems. While
simple types, such as int or char, have printed representations from which the original values can be
reconstructed by reading, object types do not in general have readable representations. Java’s built-
in serialisation mechanism permits the saving and restoring of equivalent (in the sense of
isomorphic) graphs of objects, provided that the class of each implements the Serializable interface.
Enforcing this as a design-for-test condition proved somewhat restrictive and prevented testing any
CUTs that referenced non-serialisable classes from the Java kernel.

However, the more serious problem was trying to judge when the original and reconstructed objects
should be counted as pair-wise equal. By default, objects are compared by identity, which does not
yield a useful measure of equality after reconstruction, since a reconstructed object is always non-
identical to the original. The equals() method was unreliable, since this uses a mixture of deep,
shallow and identical comparison, according to which version of the method is obtained. For this
reason, serialisation was abandoned as the storage policy for oracle values.

Instead, the JWalk tool constructs symbolic oracle values for every object type, based on its type
name and the point in its TestSequence when it was created. By default, every Generator class
constructs a map from objects created in each test cycle to their canonical oracle representations.
Objects constructed from the same argument values at the same point in a test-run will map to the
same oracle. This means that, on subsequent test-runs, newly generated instances, which normally
would be treated as non-identical and therefore not equal to the original instances, are judged to be
in the same oracle equivalence class. This notion of equality is mediated by the Generator classes,
so may be adapted by the programmer in more specialised generators, if this is required.

3.4.4 Code Evolution and Graceful Degredation

Lazy systematic testing allows the programmer to be more or less relaxed about the amount of
specification-related information supplied, before systematic testing can begin. This is helpful,
since it allows continued experimental evolution of the unit’s coding in the early development
stages. Even if the design of the CUT is modified, the JWalk tool adapts to any implicit changes in
the specification; and the validity of any saved oracle values degrades gracefully. This is an
important property for the tool to support the goals of agile software development.

Initially, the programmer may choose to exercise the CUT in one of the exploring modes. Later, he
or she may switch to one of the testing modes. Oracle values are acquired in a cumulative way, up
to the path depth requested. Retesting in either of the testing modes will reuse oracle values from

20

the existing saved set, confirming known results automatically and only interacting with the
programmer when longer, or novel test sequences are first encountered.

If the result of a test is recognised as incorrect, the programmer can confirm this provisionally as a
fault. JWalk will remember the negative result in exactly the same way as positive results,
confirming all retest failures automatically, until the programmer edits the faulty code, such that it
generates a different result. This is useful if there are many faults to fix, which cannot be addressed
in a single editing pass. Eventually, the code will be fixed to generate the correct result, which will
require confirmation in the next test cycle.

If the design of the CUT is now changed, by adding a new method to the class’s interface, retesting
will confirm automatically all previously encountered sequences, but will seek confirmation for
novel interleaved sequences (one exemplar from each new equivalence class). If a method is edited
and this affects the value of its result, JWalk will recognise that one oracle has been invalidated and
will seek confirmation of the new result (once for each equivalence class). In this way, the set of
oracles is constructed incrementally and converges with the desired behaviour of the CUT.

4. Testing Experiences using JWalk

During early development of the JWalk tool, test examples consisting of simple abstract data types,
such as Stack, Queue and Vector, were used to evaluate the tool’s performance. These experiences
helped to focus the reporting style, promote the reuse of oracle values across different testing modes
and develop the tool’s recovery strategy after precondition violations. Later evaluation
concentrated on testing merged properties of classes after inheritance. The AbstractStack and
BoundedStack pair were used to validate the interleaving of local and inherited methods; and
likewise to demonstrate the detection and partitioning of inherited states. These and the
LibraryBook and ReservableBook pair were used to evaluate the product algorithm for state
inference; and to extend saved oracles to test subclasses.

To demonstrate its ability to scale, JWalk was used to exercise some of the library classes from the
standard Java distribution, such as Object, Character, Integer and String. This was to ensure that
the static and dynamic analyses could handle much larger units, for which only the compiled library
code was available. Other third-party classes from the nanoxml project (De Scheemaecker, 2007)
were tested. A weakness was found in ObjectGenerator’s failure to synthesize instances of Streams
without default constructors. An interim solution was found using custom generators, but further
work is needed for a general solution.

Finally, the effectiveness and efficiency of oracle-based learning was evaluated. An interactive
workshop invited participants to make arbitrary modifications to test classes, for which oracles had
previously been trained. Retesting found all mutation faults, within an exploration depth of 1-3.
Data was also collected on the ratio of new manual confirmations to automatic validations, for
cumulative testing up to different depths in the two testing modes.

4.1 Bounded Exhaustive Exploration

JWalk produces several different kinds of report, depending on the test mode chosen by the
programmer. In the early stages of development, it is anticipated that one of the exploring modes
will be used. These generate one of:

 the protocol-walking report – which details the full results of all interleaved method
invocations (see sections 3.2.2 and 4.1.1);

21

 the algebra-walking report – which details a subset of the above, showing only observations
on interleaved constructor/mutator sequences (see sections 3.3.1 and 4.1.2); or

 the state-walking report – which details exhaustive transition paths explored from each
discovered design state (see sections 3.3.3 and 4.1.3).

JWalk version 0.8 was used to generate sample exploration reports for a test class BoundedStack,
from which excerpts are displayed below. Complete versions of these reports, as well as source
code for the tested class, are available on the JWalk website (Simons, 2007).

4.1.1 The Protocol-Walking Report

Listing 3 shows excerpts from the test report generated for the “protocol-walking” exploration of a
BoundedStack class that is derived by inheritance from an AbstractStack class. The notion here is
to view all interleavings of methods, especially the interaction of local and inherited methods, as a
means of validating the possible behaviours of the class. Listing 3 illustrates sequences that
interleave inherited methods, such as isEmpty(), with locally-defined methods, such as push(), in all
combinations.

Exploring all method protocols of length: 0

BoundedStack target = new BoundedStack();
==> BoundedStack#0

Exploring all method protocols of length: 1

BoundedStack target = new BoundedStack();
target.pop();

==> EmptyStackException#0 *exception*

BoundedStack target = new BoundedStack();
target.push(Object Object#0);

==> void

BoundedStack target = new BoundedStack();
target.top();

==> EmptyStackException#0 *exception*

BoundedStack target = new BoundedStack();
target.isFull();

==> false

BoundedStack target = new BoundedStack();
target.size();

==> 0

BoundedStack target = new BoundedStack();
target.isEmpty();

==> true
...

BoundedStack target = new BoundedStack();
target.isEmpty();
target.isEmpty();
target.isFull();

==> false

22

BoundedStack target = new BoundedStack();
target.isEmpty();
target.isEmpty();
target.size();

==> 0

BoundedStack target = new BoundedStack();
target.isEmpty();
target.isEmpty();
target.isEmpty();

==> true

Test summary for class: BoundedStack

Test class: BoundedStack
Test mode: Protocol exploration
Test depth: 3

Exercised 111 test sequences that executed normally
Terminated 28 test sequences that raised an exception
Discarded 120 test sequences whose prefixes had failed

Listing 3. Excerpts from the “Protocol-Walking” Report

All executed TestSequences are presented for human inspection, grouped in order of increasing path
depth. The program-style layout and visualisation make the reports familiar and easy to read. Note
how the result of a test may be void, a value, an object or an exception. Exceptions are flagged, c.f.
(Csallner and Smaragdakis, 2004), but the tester must decide whether these indicate faults, or
merely broken preconditions. Semantic faults are as likely to be found in the non-exceptional
results. The protocol-walking mode is useful for investigating unexpected interactions between
methods in the early stages of design.

A test summary is given at the end of the report, detailing how many sequences completed normally
or terminated with exceptions. The summary also reports how many other sequences were
discarded, due to the prefix having already halted. JWalk prunes these dead-ends on-the-fly, but
keeps a total tally of how many interleaved sequences might eventually terminate with exceptions.

4.1.2 The Algebra-Walking Report

Listing 4 shows excerpts from the test report generated for the “algebra-walking” exploration
performed on the same BoundedStack class. The notion here is to focus more closely on
constructions that are more likely to reflect the normal use of the CUT. In this mode, JWalk builds
all algebraic constructions, consisting of interleaved constructor/mutator prefixes, terminating in
either an observer or a mutator, whose behaviour is the real point of interest.

...

Exploring all algebraic constructions of length: 2

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.top();

==> Object#0

BoundedStack target = new BoundedStack();
target.push(Object Object#0);

23

target.isFull();
==> false

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.size();

==> 1

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.isEmpty();

==> false

Exploring all algebraic constructions of length: 3

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();
target.pop();

==> EmptyStackException#0 *exception*

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();
target.top();

==> EmptyStackException#0 *exception*

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();
target.isFull();

==> false

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();
target.size();

==> 0
...

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.push(Object Object#1);
target.size();

==> 2

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.push(Object Object#1);
target.isEmpty();

==> false

Test summary for class: BoundedStack

Test class: BoundedStack
Test mode: Algebraic exploration
Test depth: 3

Withheld 6 void results predicted from signatures

24

Exercised 21 test sequences that executed normally
Terminated 4 test sequences that raised an exception
Discarded 234 test sequences whose prefixes were pruned

Listing 4. Excerpts from the “Algebra-Walking” Report

The “algebra-walking” test report is shorter than the “protocol-walking” test report in two respects.
Firstly, it avoids generating sequences containing observer methods in the prefix (see section 3.3.1).
Secondly, the report is filtered, so that it only displays the results of observations made on
sequences. A void procedural sequence will not be displayed, unless it raises an exception.
“Algebra-walking” mimics a certain style of developer-testing, in which the CUT is modified, then
the update is observed. It is most useful during build-and-test cycles, as a first confirmation that the
CUT behaves as anticipated, before one of the more rigorous testing modes is chosen.

The test summary indicates, along with the tally of normal and exceptional sequences, how many
void results were predicted automatically; and finally how many sequences were pruned, whose
prefixes either contained observers, or raised exceptions. These are considered non-unique in
algebraic mode. This exploratory mode generates the shortest reports, for a given depth of
exploration, so is sometimes used to investigate behaviour to a greater depth.

4.1.3 The State-Walking Report

Listing 5 shows excerpts from the test report generated for the “state-walking” exploration,
performed on the same BoundedStack. The notion here is to discover the CUT’s intended abstract
design states, in order to identify places where the behaviour of its methods might change in some
significant way. For example, the BoundedStack will react differently in its Empty and Full states,
from when it is in a Default state.

State space of class: BoundedStack
found state: Empty
found state: Default
found state: Full

Empty state: Exploring all state transitions of length: 0

BoundedStack target = new BoundedStack();
==> BoundedStack#0

Empty state: Exploring all state transitions of length: 1

BoundedStack target = new BoundedStack();
target.pop();

==> EmptyStackException#0 *exception*

BoundedStack target = new BoundedStack();
target.push(Object Object#0);

==> void
...

Default state: Exploring all state transitions of length: 0

BoundedStack target = new BoundedStack();
target.push(Object Object#0);

==> void

25

Default state: Exploring all state transitions of length: 1

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();

==> void

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.push(Object Object#1);

==> void

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.top();

==> Object#0
...

Full state: Exploring all state transitions of length: 0

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.push(Object Object#1);
target.push(Object Object#2);
target.push(Object Object#3);
target.push(Object Object#4);
target.push(Object Object#5);
target.push(Object Object#6);
target.push(Object Object#7);
target.push(Object Object#8);
target.push(Object Object#9);

==> void

Full state: Exploring all state transitions of length: 1
...

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.push(Object Object#1);
target.push(Object Object#2);
target.push(Object Object#3);
target.push(Object Object#4);
target.push(Object Object#5);
target.push(Object Object#6);
target.push(Object Object#7);
target.push(Object Object#8);
target.push(Object Object#9);
target.push(Object Object#10);

==> void

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.push(Object Object#1);
target.push(Object Object#2);
target.push(Object Object#3);
target.push(Object Object#4);
target.push(Object Object#5);
target.push(Object Object#6);

26

target.push(Object Object#7);
target.push(Object Object#8);
target.push(Object Object#9);
target.top();

==> Object#9
...

Test summary for class: BoundedStack

Test class: BoundedStack
Test mode: State space exploration
Test depth: 3

Exercised 601 test sequences that executed normally
Terminated 44 test sequences that raised an exception
Discarded 132 test sequences whose prefixes had failed

Listing 5. Excerpts from the “State-Walking” Report

There are two interesting aspects to highlight about state discovery. The first is that JWalk’s prior
exploration of the BoundedStack’s state space correctly identifies the three distinct states {Empty,
Default, Full}, even though these were distributed over two classes. The inherited {Empty,
Default’} states are correctly partitioned by splitting the Default’ state into {Default, Full}. The
second is that JWalk finds the shortest sequences to reach the Empty, Default and Full states,
bypassing longer constructions that fall into the Default category to reach the Full state, even
though this is at some distance from the others. JWalk also reports if any anticipated state is not
found, or if no progress is made out of a given state (see section 3.3.2 above).

All executed TestSequences are presented, grouped by starting state and increasing path depth. The
state cover is indicated by transition paths of length 0, while longer paths of length 1, 2, 3 above
indicate transition sequences of all interleaved methods, explored from each state. This achieves
identical coverage to complete state-based testing approaches (Chow, 1978; Holcombe and Ipate,
1998). The resizing behaviour of the BoundedStack can be observed in the Full state, as well as the
exceptional behaviour in the Empty state. The “state-walking” mode is useful for confirming that
the CUT behaves correctly at the limits of its representation. Design states encode important
conditions affecting branches in a CUT’s implementation, so are useful for testing the major
branches of the code, sometimes achieving branch coverage.

4.2 Bounded Exhaustive Testing

JWalk produces two more kinds of report for the interactive testing modes. In these modes, the tool
interacts with the programmer to elicit oracle values, as described above (see section 3.4). These
are quickly confirmed or rejected by a keystroke. When an interactive testing cycle is completed,
JWalk generates one of:

 the algebra-testing report – which validates observations on interleaved constructor/mutator
sequences, after interactive confirmation (see sections 3.4 and 4.2.1); or

 the state-testing report – which validates bounded exhaustive transition paths from each
design state, after interactive confirmation (see sections 3.4 and 4.2.2).

27

JWalk version 0.8 was used to generate sample test reports for the same test class as used above,
BoundedStack, from which excerpts are displayed below. Complete versions of these reports are
available on the JWalk website (Simons, 2007).

4.2.1 The Algebra-Testing Report

Listing 6 shows excerpts from the report generated for the “algebra-testing” mode, performed on
the same BoundedStack. The test sequence generation strategy is exactly the same as for the
“algebra-walking” mode (see section 3.3.1), but this time, the results of each test must be
confirmed, either manually (see section 3.4.1), or automatically by rule-prediction (see section
3.4.2). The interest here is in building up a test oracle for all the key observations on the CUT for
as little effort as possible. Every sequence presented is an observation on a unique
constructor/mutator prefix, whose result could be used to predict the outcome of further tests in the
state-based testing mode (see section 4.2.2). Some void-results are predictable.

...
Validating all algebraic constructions of length: 2

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.top();

==> Object#0
Confirm (y|n|q) ? : y

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.isFull();

==> false
Confirm (y|n|q) ? : y

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.size();

==> 1
Confirm (y|n|q) ? : y

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.isEmpty();

==> false
Confirm (y|n|q) ? : y

Validating all algebraic constructions of length: 3

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();
target.pop();

==> EmptyStackException#0 *exception*
Confirm (y|n|q) ? : y

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();
target.top();

==> EmptyStackException#0 *exception*
Confirm (y|n|q) ? : y

28

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();
target.isFull();

==> false
Confirm (y|n|q) ? : y

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();
target.size();

==> 0
Confirm (y|n|q) ? : y
...

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.push(Object Object#1);
target.size();

==> 2
Confirm (y|n|q) ? : y

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.push(Object Object#1);
target.isEmpty();

==> false
Confirm (y|n|q) ? : y

Test summary for class: BoundedStack

Test class: BoundedStack
Test mode: Algebraic validation
Test depth: 3

Passed 6 test sequences automatically from oracles
Passed 19 test sequences that were manually confirmed
Exercised 21 test sequences that executed normally
Terminated 4 test sequences that raised an exception
Discarded 234 test sequences whose prefixes were pruned

Listing 6. Excerpts from the “Algebra-Testing” Report

In addition to the usual statistics on the number of normal, exceptional and discarded test
sequences, the test summary reports how many tests passed or failed. Passed tests are those, whose
results were confirmed as correct; while failed tests (none in this example) are those, whose results
were rejected as incorrect. Results are further split into those that were manually confirmed by the
tester and those that were automatically confirmed, in the current cycle, which gives a measure of
test-oracle reuse. Out of the 259 possible sequences, 234 were discarded as non-unique (see above),
19 unique observations were confirmed manually and 6 void-results were predicted. In the above
example, the test cycle began with no prior saved oracle values; and an oracle was constructed to
depth 3 in one pass.

Typically, oracles are constructed over several test cycles, of increasing depth, as the design of the
CUT gradually stabilizes, in which case the value of oracles increases during retesting. JWalk
remembers both positive and negative confirmations, so that both passes and fails may be
automatically reconfirmed. Any failed test cases (none arising here) would be listed for inspection

29

before the test summary. On test completion, the behaviour of the BoundedStack has been validated
for all algebraic constructions up to length 3. This would be satisfactory coverage of an abstract
algebraic specification, under the usual assumption of regularity (Doong and Frankl, 1991; Chen, et
al. 1998), but has not yet properly tested the behaviour of the concrete Full state, which is a feature
of the implementation.

4.2.2 The State-Testing Report

Listing 7 shows excerpts from the report generated for the “state-testing” mode, performed on the
same BoundedStack. The test sequence generation strategy is exactly the same as for the “state-
walking” mode (see section 3.3.3). The results of each test were confirmed, either manually or
automatically (see section 3.4). In this example, the “state-test” was carried out immediately
following on from the “algebra-test” above (see section 4.1.1), in order to permit JWalk to reuse
some of the oracle values already collected for the previous test. This eventually leads to a
considerable increase in the level of test automation.

State space of class: BoundedStack
found state: Empty
found state: Default
found state: Full

Empty state: Validating all state transitions of length: 0

Empty state: Validating all state transitions of length: 1

Empty state: Validating all state transitions of length: 2

Empty state: Validating all state transitions of length: 3

Default state: Validating all state transitions of length: 0

Default state: Validating all state transitions of length: 1

Default state: Validating all state transitions of length: 2

Default state: Validating all state transitions of length: 3

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();
target.push(Object Object#1);
target.top();

==> Object#1
Confirm (y|n|q) ? : y

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.pop();
target.push(Object Object#1);
target.isFull();

==> false
Confirm (y|n|q) ? : y
...

Full state: Validating all state transitions of length: 1

BoundedStack target = new BoundedStack();
target.push(Object Object#0);

30

target.push(Object Object#1);
target.push(Object Object#2);
target.push(Object Object#3);
target.push(Object Object#4);
target.push(Object Object#5);
target.push(Object Object#6);
target.push(Object Object#7);
target.push(Object Object#8);
target.push(Object Object#9);
target.top();

==> Object#9
Confirm (y|n|q) ? : y

BoundedStack target = new BoundedStack();
target.push(Object Object#0);
target.push(Object Object#1);
target.push(Object Object#2);
target.push(Object Object#3);
target.push(Object Object#4);
target.push(Object Object#5);
target.push(Object Object#6);
target.push(Object Object#7);
target.push(Object Object#8);
target.push(Object Object#9);
target.isFull();

==> true
Confirm (y|n|q) ? : y
...

Test summary for class: BoundedStack

Test class: BoundedStack
Test mode: State space validation
Test depth: 3

Passed 605 test sequences automatically from oracles
Passed 40 test sequences that were manually confirmed
Exercised 601 test sequences that executed normally
Terminated 44 test sequences that raised an exception
Discarded 132 test sequences whose prefixes had failed

Listing 7. Excerpts from the “State-Testing” Report

The early part of this listing contains summary headings, indicating which sets of tests have been
automatically checked without the need for user-interaction. These are state-transition paths for
which the saved oracle values and predictive rules were sufficient to determine the result. Note that
many previously unseen test cases, such as novel sequences that interleave observers in their prefix,
are also automatically tested using predictive rules.

It is not until constructions of a previously unseen length are discovered (paths of length 3 in the
Default state are equivalent to algebraic constructions of length 4, for example) that JWalk requests
new confirmations. Naturally, all observations on paths leading to the distant Full state must be
confirmed. Nonetheless, only one test case from each equivalence-class need be confirmed, since
the rest are predicted. On test completion, the behaviour of the BoundedStack has been validated
exhaustively under the assumption that the implementation contains unwanted duplicated paths of
lengths less than 3 (Holcombe and Ipate, 1998; Simons, 2006).

31

The test summary indicates how many results in total were confirmed manually and automatically,
in the current cycle. The overwhelming majority of results (605 out of 645) were predicted using
the oracle. Test automation achieved more than this, since 777 unique paths were originally
proposed, of which 132 were pruned (with halting prefixes) and only 645 were eventually
constructed for testing. During this cycle, only 40 confirmations were requested (less than 4
minutes’ work). Counting the 19 manual confirmations in the algebraic-testing cycle above, only
59 confirmations were requested, or 9.15% of the total number of executed tests. The
complementary level of result prediction was therefore 90.85%; but the level of automated decision-
making was 92.41%, when the filtering of pruned sequences is taken into account.

4.3 Efficiency of Oracle Reuse

It is interesting to gather statistics on the percentage of tests confirmed automatically, for different
CUTs and for test cycles of different depths, at different stages during the development process. In
the following tables, the oracles were grown in left-to-right order, first for “algebra-testing” and
then for “state-testing”, for paths of depth 1-3, following the recommended develop-and-test cycle.
Algebraic testing is always performed first, since this populates the oracle with key values and
maximises the opportunity for oracle reuse in state-based testing (see sections 4.2.1, 4.2.2).

In tables 1 and 2, the oracles were built from scratch for each CUT, such that the oracle values
elicited during cycles 1..k could be reused predictively in cycle k. In tables 3 and 4, larger CUTs
were constructed by inheritance, respectively extending the classes in tables 1 and 2. These
automatically reused the oracles of their parent class as a starting basis; otherwise oracle values
were elicited as above, to confirm novel interleaved sequences. The tables mostly illustrate the
incremental cost of manual confirmation (per test cycle), amortized over the entire development.
For comparison, the cumulative cost is given in the final column.

Table 1. Incremental Oracle Efficiency for the LibraryBook
LibraryBook Class Algebra 1 Algebra 2 Algebra 3 State 1 State 2 State 3 Merged
Manual (cycle) 3 5 7 0 0 5 20
Predicted (cycle) 2 8 18 18 38 133 118
Manual (total) 3 8 15 0 0 5 20
Executed (total) 5 13 25 18 38 138 138
Discarded (total) 0 8 60 0 4 32 32
% Manual (cycle) 60.00% 38.46% 28.00% 0.00% 0.00% 3.62% 14.49%
% Predicted (cycle) 40.00% 61.54% 72.00% 100.00% 100.00% 96.38% 85.51%
% Automated (cycle) 40.00% 76.19% 91.76% 100.00% 100.00% 97.06% 88.24%

Table 2. Incremental Oracle Efficiency for the BoundedStack
BoundedStack Class Algebra 1 Algebra 2 Algebra 3 State 1 State 2 State 3 Merged
Manual (cycle) 6 4 9 4 8 28 59
Predicted (cycle) 1 9 16 17 109 617 586
Manual (total) 6 10 19 4 12 40 59
Executed (total) 7 13 25 21 117 645 645
Discarded (total) 0 30 234 0 12 132 132
% Manual (cycle) 85.71% 30.77% 36.00% 19.05% 6.84% 4.34% 9.15%
% Predicted (cycle) 14.29% 69.23% 64.00% 80.95% 93.16% 95.66% 90.85%
% Automated (cycle) 14.29% 90.70% 96.53% 80.95% 93.80% 96.40% 92.41%

32

In the tables, the upper rows 1-2 indicate the per cycle number of new manual confirmations and
predicted results (including all reconfirmed results of lesser depth). The middle rows 3-5 give the
cumulative number of manual confirmations, executed and pruned sequences, for the given mode
and depth. The lower rows 6-8 give the per cycle measures of oracle efficiency: the
(complementary) ratios of manual and predicted outcomes to executed tests and the ratio of
automated decisions (including pruning and predictions) made over the total number of proposed
test sequences. The columns Algebra 1–3 give the incremental efficiency for algebraic testing,
likewise the columns State 1-3 for the following incremental state-based tests. The final Merged
column gives adjusted figures for when the testing is conducted in a single block, rather than
incrementally. This is as if testing had been delayed until the end and conducted in one algebraic,
and one state-based pass, to depth 3.

 Table 3. Incremental Oracle Efficiency for the ReservableBook
ReservableBook Class Algebra 1 Algebra 2 Algebra 3 State 1 State 2 State 3 Merged
Manual (cycle) 3 14 56 0 11 83 167
Predicted (cycle) 6 27 89 36 241 1649 1565
Manual (total) 3 17 73 0 11 94 167
Executed (total) 9 41 145 36 252 1732 1732
Discarded (total) 0 32 440 0 40 608 608
% Manual (cycle) 33.33% 34.15% 38.62% 0.00% 4.37% 4.79% 9.64%
% Predicted (cycle) 66.67% 65.85% 61.38% 100.00% 95.63% 95.21% 90.36%
% Automated (cycle) 66.67% 80.82% 90.43% 100.00% 96.23% 96.45% 92.86%

Table 4. Incremental Oracle Efficiency for the BoundedVector
BoundedVector Class Algebra 1 Algebra 2 Algebra 3 State 1 State 2 State 3 Merged
Manual (cycle) 3 1 9 1 12 88 114
Predicted (cycle) 6 16 32 26 175 1219 1193
Manual (total) 3 4 13 1 13 101 114
Executed (total) 9 17 41 27 187 1307 1307
Discarded (total) 0 56 544 0 32 608 608
% Manual (cycle) 33.33% 5.88% 21.95% 3.70% 6.42% 6.73% 8.72%
% Predicted (cycle) 66.67% 94.12% 78.05% 96.30% 93.58% 93.27% 91.28%
% Automated (cycle) 66.67% 98.63% 98.46% 96.30% 94.52% 95.40% 94.05%

In table 1, the simple LibraryBook had 5 public operations, including a constructor. “Algebra-
testing” covered much of the design state space, such that few manual confirmations were requested
in “state-testing” mode. In table 2, the BoundedStack (described above) had 7 public operations,
including a constructor. Further manual confirmations were requested in “state-testing” mode,
because of the distant Full state that had not been visited before. In table 3, ReservableBook had 9
public operations, adding 4 and replacing 2 of LibraryBook’s operations, including the constructor.
New confirmations were requested for novel observations on interleaved local and inherited
methods in “algebra-testing” mode. The increase in confirmations for “state-testing” to depth 3
reflected deeper searches starting in the OnLoan&Reserved state. In table 4, BoundedVector also
had 9 public operations, adding 2 operations to BoundedStack and replacing the constructor. The
few additional confirmations requested in “algebra-testing” mode reflect the small incremental
change. “State-testing” to depth 3 caused the first real increase in confirmations.

What is most significant about all of these cases is the high degree of test automation possible in the
lazy systematic approach. The total number of executed test cases typically exceeds the number of

33

manually confirmed cases by more than an order of magnitude. Even when the number of manual
confirmations is high, such as in the State-3 columns in figures 3 and 4, this is only around eight
minutes’ work for the tester, which is quite tractable, given the quality of the testing result. The
cumulative cost of building an oracle should be compared against the time taken to develop manual
tests for JUnit (Beck, 2004; JUnit, 2007). JWalk can test literally thousands of test cases
automatically, for just a few minutes’ properly focused effort.

4.4 Detecting Seeded Faults

It is interesting to demonstrate the fault-finding capability of a fully trained test oracle. Further
testing experiments were carried out by seeding faults deliberately in the CUT, after an oracle had
been trained on the correct version. This was conducted as an interactive workshop, where
participants were invited to suggest faults in the kinds of datatype described in the introduction to
section 4. The suggested faults ranged from simple counter update failures and indexing errors, to
subtle changes in the semantics of the datatype in question. Faults were independently proposed, by
participants not involved in creating the original software.

The experimental procedure was to create a reference class, test it exhaustively in both testing
modes, then archive the oracle data file. A copy was taken both of the class and the oracle file, for
use in fault seeding and mutation testing. The class source code was modified by hand, to introduce
semantic faults, and recompiled. When the faulty CUT was retested with JWalk, a copy of the fully
trained oracle of correct observations was used to predict test outcomes.

4.4.1 Mutant Detection

The detection of mutants was signalled whenever JWalk asked the tester to confirm novel results
that differed from the saved oracle values. The tester rejected each such discrepancy (as incorrect).
JWalk stored the new incorrect result in the oracle, and used this to predict further test failures. At
the end of the test, a report was generated listing all of the failed test cases. Subsequently, the re-
trained oracle could be reused to detect all passed and failed test cases automatically. If the CUT
was edited to fix the seeded faults, the same oracle could be used again to confirm the absence of
faults, automatically. Conversely, if editing introduced further faults, these were signalled as new
discrepancies.

Examples of faults introduced in a simple Stack class are reported on the JWalk website (Simons,
2007). Faults include failure to update the stack counter, failure to reallocate memory, and
substitution of the FIFO semantics of a Queue for the LIFO semantics of a Stack. The counter
update fault is detectable for observations made after the first push operation. In state-based testing
mode, failure to proceed beyond the Empty state is also reported. The memory reallocation fault is
first detected in state-based mode, after a push operation in the Full state causes an unexpected out
of bounds exception. The substitution of FIFO for LIFO semantics is detected by observations
made after two push operations.

JWalk found all seeded faults, using test sequences of path length 1-3. Sometimes the visible
consequences of a fault were multiple, reported many times over. It is clear that the strong fault-
finding ability of JWalk comes from the complete information stored in the oracle, resulting from
the systematic oracle construction method, using bounded exhaustive testing.

34

4.4.2 Testing Third-Party Software

It is potentially interesting to see how JWalk functions when testing third-party software. Work in
progress includes unit testing Java code developed by others. One useful case study is the nanoxml
project (De Scheemaecker, 2007) that has been offered for use in software testing experiments (SIR,
2007). SIR provides tools to support a number of different kinds of testing. The complete nanoxml
project exists in both “clean” and “fault-seeded” versions. A SIR preprocessor program is used to
enable or disable the faults seeded in the nanoxml java source.

In its default configuration, JWalk was initially able to analyse only some of the components in this
collection, such as XMLElement.java, but failed to analyse other components, which referenced
certain Stream classes that JWalk could not yet synthesize. This was due to the Streams in question
having no default constructor, as ObjectGenerator expects, by default. An obvious workaround
was to create a custom StreamGenerator, specifically to synthesize controlled Stream instances (see
section 3.1.2). The StreamGenerator was derived from ObjectGenerator, and intercepted specific
requests for Stream objects, delegating other requests to the superclass. Created Streams were
wrapped around standard text files of the kind anticipated by the application. In JWalk, this strategy
is commonly adopted when it is desired to create specific kinds of mock, or stub objects. After this
action, other classes from the nanoxml library were analysed successfully.

5. Improvements over Previous Approaches

The aim of the current work is to provide the agile development community with a rigorous, rapid-
turnaround testing method, equivalent in strength to complete functional testing methods. These
use a formal specification to drive the selection of test cases in a deterministic way, and validate the
tested implementation exhaustively, under some weakening assumptions about regularity (see
section 5.3 below). Agile methods are mostly opposed to writing formal specifications, partly
because of the extra overhead involved, partly because of the risk of the software evolving
independently and partly because of the perceived mathematical difficulty.

While some might find it daunting to construct the kind of recurrence relations found in an
algebraic specification (Goguen, et al., 1993; Goguen and Malcolm, 1997), most programmers are
capable of detecting when an instance of a property is violated. This leads to the idea of confirming
oracle values incrementally in the lazy systematic testing approach, whereby the specification is
acquired gradually, and always evolves in step with the code. The systematic sequence generation
strategy mimics the exhaustive path generation found in specification-based methods, proposing
difficult interleaved test cases that programmers frequently fail to notice. Some recurrence relations
are constructed automatically using simple predictive rules, which greatly reduce the number of
cases for manual confirmation.

5.1 More than Fault-Finding Approaches

JWalk bears only superficial similarity with previous fault-finding approaches. Like JCrasher
(Csallner and Smaragdakis, 2004) and JTest (Parasoft, 2007), JWalk exploits Java’s Reflection API
to extract the signatures of the CUT’s public constructors and methods, prior to constructing test
sequences. Like tools derived from Daikon (Ernst, et al., 2001; 2007), such as DSD-Crasher
(Csallner and Smaragdakis, 2006a) and Agitator (Boshernitsan, et al., 2006), JWalk seeks to infer
recurrent properties of the tested software and re-apply these in further testing. But apart from these
similarities, the tools behave in completely different ways.

35

5.1.1 Comparison with JCrasher

JCrasher uses the method signatures to determine the size of their input parameter space, and
thereafter constructs unit tests with random input data chosen from within and around the
boundaries of this space, seeking to trigger exceptions. Test sequences are randomly generated,
such that no guarantee can be made about protocol or algebraic coverage. The main benefit of the
tool is to draw attention to raised exceptions. Heuristics must be used to determine whether the
exceptions are merely due to violated preconditions, or whether they signify genuine software faults
(Csallner and Smaragdakis, 2004).

By contrast, JWalk achieves deterministic coverage of the CUT’s method protocols, algebraic
constructions and abstract state-transition graph. (The current version does not aim to perform
complete category-partition testing on input parameters; this is a work in progress). JWalk learns
the difference between violated preconditions and genuine faults; likewise it learns the difference
between semantically correct and incorrect results (of the non-exceptional kind) from hints supplied
by the human tester, so eventually is much better at discriminating between a correct and incorrect
result than JCrasher.

5.1.2 Comparison with Daikon

Daikon monitors all kinds of input, local and loop parameters to infer simple program invariants.
These may include equality, inequality and linear relationships, ranges, ordering, containment and
sortedness, among other properties (Ernst, et al., 2007). Regular observations are converted into
hypotheses, which the human tester may promote to assertions in Agitator (Boshernitsan, et al.,
2006), for use in conformance testing. Similar combinations of specification inference and testing
have been applied in DSD-Crasher (Csallner and Smaragdakis, 2006a) to improve the quality of
static analysis; and in Jov (Xie and Notkin, 2003) and Eclat (Pacheco and Ernst, 2005), to filter test-
sets to find more fault-revealing inputs (although Jov tended to discover inputs that violated
preconditions).

The Daikon learning strategy is sophisticated, yet the results vary in usefulness. The learned
invariants may correspond to key semantic properties of the software, or alternatively, may
correspond to derived properties, or even irrelevant properties that are not especially intended
(Agitar Software, 2007). By contrast, the oracle values learned by JWalk are always key properties
of the software, irreducible observations that are used in further result predictions. In “algebra-
testing” (see section 4.2.1), the strategy is to populate the oracle systematically, using the algebraic
structure of the CUT to drive the elicitation process. As a result, the coverage of learned atomic
properties is exhaustive, up to the limit of exploration, and is later found capable of detecting all
illegal software mutations (see section 4.4.1).

5.2 More than State-Filtering Approaches

JWalk bears comparison with other attempts to abstract over the state-space of the CUT, for
example (Xie, et al., 2004; 2005), but explores the sate-space more efficiently, with dynamic
feedback to prune unwanted paths, rather than using state filters on randomly-generated paths.
JWalk is also quite different in the way that it detects its most abstract design states from other
approaches that use predicates (Grieskamp, et al., 2002; Boyapati, et al., 2002). Eventually, JWalk
requires far less intrusive design-for-test requirements.

36

5.2.1 Comparison with Rostra and Symstra

Rostra (Xie, et al., 2004) proposes up to five different abstractions over object state, from the most
detailed “whole variable state” (the attribute product space), via the “whole method sequence” (c.f.
JWalk’s all method protocols) and “modifying method sequence” (c.f. JWalk’s all algebraic
constructions), to the “pairwise equals” and “monitor equals” functions (external oracles over two
object states, the second of which observes a subset of attributes). These increasingly abstract
filters over state are applied to randomly generated test sequences, in order to group these into
equivalence-classes, with the aim of reducing the size of the retained test-set, by selecting
exemplars from each equivalence-class.

Rostra’s “whole variable state” offers no abstraction, so is not useful as a filter. JWalk’s method
sequence abstractions over state are similar to Rostra’s, with the proviso that JWalk detects
observer/mutator distinctions empirically, and not from signatures alone. JWalk’s detection of
design states is entirely different from Rostra’s oracle functions (see section 5.2.2). Apart from
this, JWalk is not random in its exploration, does not adopt a generate-and-test filtering approach to
select its test sequences (which is expensive, because of the initial over-generation of sequences)
and even uses dynamic feedback to prune the size of the next test-cycle, removing test sequences
with failed prefixes, and non-discriminating sequences with observer-prefixes. Parallel work on
dynamic pruning of sequences with failed prefixes has also recently been reported for the Randoop
tool (Pacheco, et al., 2007).

JWalk shares the symbolic execution goals of Symstra (Xie, et al., 2005), which seeks to abstract
over classes of inputs to a binary tree sorting algorithm, by using a smaller set of symbolic values
that exercise each branching function in a deterministic way. JWalk may use custom Generators to
create symbolic objects, under the control of the tester, in a similar way to mock-objects, or stubs.

5.2.2 Comparison with Korat and Java Pathfinder

JWalk’s more subtle use of natural internal predicates to infer abstract design states improves on the
use of external functions, widely used as state observers elsewhere (Grieskamp, et al., 2002; Xie, et
al., 2004). Other approaches insist on an exhaustive set of internal state predicates, as a design-for-
test requirement, e.g. Catalysis (D’Souza and Wills, 1998). These approaches are considered overly
intrusive: the former requires an external specification of states, which might not be supported
internally by the CUT, whereas the latter imposes more restrictive design-for-test requirements on
the CUT. JWalk’s Boolean product algorithm is far less intrusive, and always makes the best use of
whatever state information is supplied.

Although JWalk uses predicates, it is not related to some other predicate-based approaches, such as
Korat (Boyapati, et al., 2002), which generates executable Java predicates from formal
specifications. Preconditions are converted into test input filters, and postconditions into test
oracles. The specifications supplied in Korat may be compared with other JML-based annotation
and testing methods (Cheon and Leavens, 2002), where a partial algebraic specification is
constructed in the JML annotation language, prior to generating tests from the specification. By
contrast, JWalk requires no external formal specification, relies only on predicates that naturally
form part of the CUT’s interface, and uses these in a different way to detect significant design
states.

JWalk’s ability to find recurrent states, by partial order reduction on test sequences, may be
compared superficially with a similar approach used by Java Pathfinder (Vissner, et al., 2003;
2006). The latter works directly on bytecode traces in the Java Virtual Machine, merging similar

37

traces to match fine-grained states (see section 2.2), whereas JWalk works at a higher level on
observer/mutator method sequences, to discover regularities in algebraic constructions.

5.3 Convergence with Complete State-based Testing

The most important property of lazy systematic unit testing is its convergence with complete state-
based testing (Chow, 1978; Holcombe and Ipate, 1998; Simons, 2006). The notion of convergence
refers to JWalk’s gradual acquisition of the specification required to perform testing to this high
standard. Complete state-based testing offers stronger guarantees of correctness after testing than
other approaches, due to the progressively relaxed assumptions about the regularity of the
implementation.

5.3.1 State-based Testing for Objects

Early state-based testing methods include (Chow, 1978; Jard and von Bochmann, 1983), which
proposed generating test sequences from simple finite state automata, to test communications
protocols and finite-state devices. McGregor (1994) exploited state-based testing for object-
oriented software, using incrementally-derived state machines to model the partitioning of states in
subclasses. A complete formal treatment of subtyping and state partitioning, and their relationship
to test coverage and process algebra, may be found in (Simons, 2006). Bounded exhaustive unit
testing from state-based specifications is tractable (McGregor, 1994), but synthesizing the state-
space of entire systems from object state machines produces a state explosion (Binder, 1996) unless
a suitable formal strategy is found for partitioning the tests (Holcombe and Ipate, 1998; Ipate and
Holcombe, 1997).

5.3.2 Complete State-based Testing

The complete state-based testing approach is based on (Chow, 1978), which relates a minimal state
specification to a possibly non-minimal implementation, with redundant states and transitions. This
was taken up by Holcombe and Ipate (1998) in their X-Machine testing method, which replaced
simple input/output transitions by arbitrary processing functions, which are subsequently
decomposed into sub-machines. The method uses a divide-and-conquer approach that tests the
components of a system exhaustively and then proves the correct integration of these by formal
verification (Ipate and Holcombe, 1997).

When testing an individual unit, completeness refers to the ability to achieve full positive and
negative testing; and to relax assumptions about the regularity of the implementation, while still
proving conformance to the specification. The testing method drives the unit into all of its design
states (using the state cover) and then constructs progressively longer transition sequences to
exercise the unit, starting in each state. Full positive and negative testing is achieved, confirming
the presence of all desired paths and the absence of all undesired paths, by algorithmically
attempting all possible interleaved transitions. Whereas other testing methods may stop after
sequences of length 1 or 2 (the transition cover, or switch cover), longer sequences are explored.
This is to account for passing through possibly longer chains of redundant, duplicated states in a
poorly-coded unit, which might at the limit exhibit faulty behaviour.

After testing is over, the unit is guaranteed to be correct, up to the assumption that it contains
duplicated paths of length less than k, the upper bound on test generation. In practice, relatively
small values of k 5 account for even unreasonably tangled implementations. Systems have been
developed to very high levels of confidence; for example, the Stamp Dealer Trading System
reported in (Holcombe and Ipate, 1998) has functioned without faults since its delivery. Further

38

examples of the effectiveness of test coverage are given in (Holcombe, 2003; Holcombe, et al.,
2001).

5.3.3 JWalk Compared to X-Machine Testing

It is possible to contrast JWalk’s “algebra-testing” mode with the formal testing methodology
adopted in algebraic testing (Bernot et al., 1991; Doong and Frankl, 1991; 1994; Chen, et al., 1998;
2001). As oracle values are confirmed, more and more of the algebraic structure of the CUT is
validated. However, JWalk does not yet synthesize canonical test exemplars in the same way as
TACCLE (Chen, et al., 1998; 2001), since this explores all method arguments recursively as
algebraic types in the same way. On the other hand, JWalk can test for properties, such as the
absence of unwanted side-effects, that a functional algebra cannot even predict. JWalk is not tied to
the regularity assumption that recurrence in the algebra’s axioms necessarily corresponds to
recurrence in the implementation.

JWalk is capable, in its “state-based” testing mode, of identifying redundant states that exhibit
equivalent algebraic properties, but encode implementation differences (e.g. the Full and Default
states of a BoundedStack). JWalk’s state discovery procedure (see section 3.3.2) identifies the state
cover necessary to begin state-based testing. The states are discoverable, because the CUT’s
designer expects the state predicates to be satisfiable within a reasonable space, similar to the test-
completeness requirement in the X-Machine method (Holcombe and Ipate, 1998). The reached
states are identified by direct observation (Simons, 2006), rather than by applying further
characterisation sequences (Chow, 1978).

It is fairly easy to see how testing all transition paths of increasing depth, starting from each state,
corresponds exactly to the exhaustive X-Machine testing method. JWalk performs full positive and
negative testing, attempting all paths, including paths that should be ignored (nullops), or refused
(illegal actions). The generation of longer JWalk transition sequences corresponds to the higher
values of k in the X-Machine method, which test redundant implementations. JWalk makes precise
observations on all outputs, similar to methods that supplement state-space validation with precise
variable observations (Petrenko, et al., 2004). In this way, JWalk obtains the best of both worlds,
but completely satisfies the unit testing assumptions of X-Machine testing.

6. Conclusions

JWalk has been exercised both with simple classes and more complex library classes in Java
(Simons, 2007). Further recent work has compared tests generated with JWalk against manual test-
sets created by an experienced user of JUnit (Simons and Thomson, 2007). Work in progress
involves using JWalk to test third-party software, in particular a fault-seeded version of the nanoxml
project (De Scheemaecker, 2007; SIR, 2007). Another current project aims to extend test oracle
value generation to follow a category-partition style, c.f. (Irvine and Offutt, 1995).

6.1 Integrating JWalk with Other Tools

The current stable version is JWalk 0.8 (Simons, 2007), which includes the modular toolkit.
Interested readers are invited to explore the possibility of integrating JWalk with their preferred
third-party software environment. As an example of this, JWalk has recently been integrated
successfully as a plugin component for the IBM open source Eclipse IDE software environment
(Eclipse Foundation, 2007). Apart from the pleasant graphical user interface, this brings certain
benefits of synergy, in that testing with JWalk can be linked to editing sessions in the Eclipse IDE.
Editing and testing sessions are interwoven (see figure 1, above). Where the tested class raises a

39

Java exception, it is possible to trace back to the point in the source code where this was raised,
placing the relevant file in the editor.

The main integration issues are at the top level, where the third-party system interfaces to the JWalk
unit testing framework via the APIs in JWalker, a component whose purpose is to accept the test
parameters from third-party input sources, and JTalker, a component whose purpose is to establish
call-backs to display user prompts and test results via third-party display facilities (see figure 1).
Internally, all interactive queries and all publishing of test results are carried out by Java’s event
handling mechanism. The third-party system must register suitable components that satisfy the
QuestionListener and ReportListener interfaces. These respectively accept QuestionEvent and
ReportEvent events, which encapsulate the different kinds of communication to and from the
environment (Simons, 2007).

6.2 Future Extensions to JWalk

Current work on JWalk is directed toward extending the power of the Generator hierarchy. At the
moment, the deterministic output of the generators is sufficient to achieve full coverage of method
protocols, algebraic constructions and design state spaces (of the CUT in question). Further
extensions are required to generate key data points in the input space of method arguments
automatically, such as would be required in category-partition testing. The first step involves a
heuristic determination of partitions in the value-space of each basic type. The second step involves
a prior automated exploration of the structure of other objects, when these are used as arguments to
methods.

For the moment, custom generators are used wherever particular input argument properties are
desired. These are also used to create instances of classes that have particular construction
requirements that cannot be anticipated by the tool. Future work will attempt to generalise the
argument generation approach to synthesise inputs from classes with arbitrary construction
requirements.

The measures taken so far to reduce the size of the search space when generating all algebraic
constructions permits the testing of CUTs with 5-15 public operations, to a depth of 3-5. Larger
CUTs can realistically be tested only to shallower depths. A far greater pruning of this state space,
with a concomitant reduction in the number of requested manual confirmations, may in future be
made possible by tracking all revisited concrete attribute states in a different way. This would
permit a strong prediction rule to eliminate algebraic transformer prefixes, in much the same way as
the current rule to eliminate observer prefixes.

6.3 JWalk Challenges JUnit

The testing tool most widely used in the agile software development community is JUnit (Beck,
2004; JUnit, 2007), which captures manual test suites and re-executes them on demand. JWalk is
able to challenge JUnit on several fronts, including the completeness of testing, the productive use
of automation in testing, the optimal deployment of human expertise in testing and the selective
adaptation of test-sets to modified and extended objects.

6.3.1 Human Effort and the Use of Automation in Testing

The main benefit of a tool such as JUnit is that it automates the repeated execution of handwritten
tests. For this reason, it has become a mainstay in object-oriented regression testing. Yet, consider
how JUnit does not make the best use of automation in testing. The human effort involved in

40

thinking up suitable test-cases is considerable and is not guaranteed to be effective. By contrast,
JWalk proposes suitable test-cases automatically, each of which are guaranteed to exercise a unique
property, or make a unique observation. Furthermore, JWalk will systematically detect all the
difficult and commonly forgotten cases. In related work (Simons and Thomson, 2007), JWalk was
used to test up to two orders of magnitude more test cases than the best suites developed by an
experienced JUnit tester, in the same limited time period.

JWalk gains by having fewer intellectual overheads than JUnit. The human effort goes into
reviewing the key test results, rather than having to identify these important cases and then create
the tests. No time is wasted writing non-revenue earning code to inject suitable oracle values,
because these are generated by the production code itself, and are accepted (or rejected) by a
keystroke. With JWalk, automation is used to discover the important test cases and the human
tester merely has to be alert and patient to build powerful oracles. For each large increase in
exhaustive, automatic validation, the human input is still proportionately small (see section 4.3).

6.3.2 Test Completeness in the Presence of Subclassing

In previous work, formal weaknesses were found in the practice of reusing JUnit tests as regression
test suites (Simons, 2005). Not only are manual tests incomplete and possibly redundant, but they
also fail to exercise the state-space of the CUT as testers intuitively expect. This is due formally to
the partitioning of states, brought about by modifications and extensions to objects. Rather than
covering the same state-space as in the original object, the saved tests cover a geometrically
decreasing fraction of the same state-space in the modified or extended object.

Because of this loss of coverage, a different state-based approach to retesting called test
regeneration was proposed (Simons, 2006). This re-created the test sets from scratch, according to
the coverage criteria described above (see section 5.3.2), from the evolving state-based
specification. JWalk follows this test regeneration approach, since the tests evolve in step with the
code. All novel interleavings of old and new methods are exercised, reusing existing test results
only where these are still valid. JWalk therefore provides repeatable guarantees of confidence, after
retesting up to the chosen path depth, instead of the progressively weaker guarantees offered by
regression testing (Simons, 2006).

Acknowledgement

Thanks are due to Christopher Thomson, for help in integrating JWalk with the IBM open source
Eclipse IDE, and running comparative tests with JUnit.

References

Agitar Software. 2007. Agitator. http://www.agitar.com/products/20040518-agitator.html.
Accessed 12 February.

Ball, T. and Larus, J. R. 2000. Using paths to measure, explain and enhance program behaviour.
IEEE Computer, 33 (7): 57-65.

Beck, K. 2000. Extreme Programming Explained: Embrace Change, 1st edn. New York: Addison-
Wesley.

Beck, K. 2004. The JUnit Pocket Guide, 1st edn. Beijing: O’Reilly.

41

Beck, K. 2005. Extreme Programming Explained: Embrace Change, 2nd edn. New York: Addison-
Wesley.

Bernot, B. Gaudel M.-C. and Marre, B. 1991. Software testing based on formal specifications: a
theory and a tool. Softw. Eng. J., 6 (6): 387-405.

Bezier, B. 1990. Software Testing Techniques. International Thomson Computer Press.

Binder, R. V. 1996. Testing object-oriented software: a survey. Softw. Test., Verif. Reliab., 6
(3/4), 125-252.

Binder, R. V. 2006. TOOTSIE, a high-end OO development environment.
http://www.rbsc.com/pages/tootsie.html. Accessed 28 April.

Boshernitsan, M., Doong, R. and Savoia, A. 2006. From Daikon to Agitator: Lessons and
challenges in building a commercial tool for developer testing. Proc. 5th ACM Sigsoft Int. Symp.
on Softw. Testing and Analysis, Portland Maine, pp. 169-180.

Boyapati, C., Khurshid, S. and Marinov, D. 2002. Korat: Automated testing based on Java
predicates. Proc. ACM Sigsoft 3rd Int. Symp. on Softw. Test. and Analysis (ISSTA ’02), Rome,
Italy, pp. 123-133.

Buy, U., Orso, A. and Pezzè, M. 2000. Automated testing of classes. Proc. 2nd ACM Sigsoft Int.
Symp. on Softw. Testing and Analysis, Portland, Oregon, pp. 39-48.

Chen, H. Y., Tse, T. H., Chan F. T. and Chen, T. Y. 1998. In black and white: an integrated
approach to class-level testing of object-oriented programs. ACM Trans. Softw. Eng. Meth., 7 (3):
250-295.

Chen, H. Y., Tse, T. H. and Chen, T. Y. 2001. TACCLE: a methodology for object-oriented
software testing at the class and cluster levels. ACM Trans. Softw. Eng. Meth., 10 (1): 56-109.

Cheon, Y. and Leavens, G. T. 2002. A simple and practical approach to unit testing: the JML and
JUnit way. Proc. 16th European Conf. Obj.-Oriented Progr., LNCS 2374, Springer Verlag, Malaga,
Spain, pp. 231-255.

Chow, T. 1978. Testing software design modeled by finite state machines. IEEE Trans. Softw.
Eng., 4(3): 178-187.

Csallner, C. and Smaragdakis, Y. 2004. JCrasher: An automatic robustness tester for Java.
Software – Practice and Experience, 34 (11): 1025-1050.

Csallner, C. and Smaragdakis, Y. 2006a. DSD-Crasher: A hybrid analysis tool for bug finding.
Proc. 5th ACM Sigsoft Int. Symp. on Softw. Testing and Analysis, Portland, Maine, pp. 245-254.

Csallner, C. and Smaragdakis, Y. 2006b. Dynamically discovering likely interface specifications,
Proc. 28th Int. Conf. on Softw. Eng. (ICSE ’06), Shanghai, pp. 861-864.

De Scheemaecker, M. 2007. NanoXML 2.2.1. Sourceforge. http://nanoxml.sourceforge.net/orig/.
Accessed 23rd February.

42

Doong, R. K. and Frankl, P. 1994. The ASTOOT approach to testing object-oriented programs.
ACM Trans. Softw. Eng. Meth., 3 (4): 101-130.

Doong, R. K. and Frankl, P. 1991. Case studies on testing object-oriented programs. Proc. 4th
Symp. Softw. Testing, Analysis and Verif., ACM Press, pp. 165-177.

Dranidis, D., Tigka, K. and Kefalas, P. 2004. Formal modelling of use cases with X-machines.
Proc. 1st South East European Workshop on Formal Methods, Thessaloniki, Greece, pp. 72-83.

D’Souza D. F. and Wills, A. C. 1999. Objects, Components and Frameworks with UML: the
Catalysis Approach, Reading MA: Addison Wesley Longman.

Eclipse Foundation. 2007. Eclipse: an open development platform. http://www.eclipse.org/.
Accessed 14 February.

Ernst, M. D. 2000. Dynamically discovering likely program invariants. PhD Thesis, University of
Washington Department of Computer Science and Engineering, Seattle, Washington.

Ernst, M. D., Cockrell, J., Griswold, W. G. and Notkin, D. 2001. Dynamically discovering likely
program invariants to support program evolution, IEEE Trans. Softw. Eng., 27 (2): 99-123.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S. and Xiao, C.
2007. The Daikon system for dynamic detection of likely invariants, Science of Computer
Programming. In press.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software, Reading, Massachusetts: Addison-Wesley.

Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K. and Jouannaud, J.-P. 1993. Introducing OBJ.
Technical Report, Oxford Programming Research Group and SRI International, Menlo Park, CA,
90425.

Goguen, J. and Malcolm, G. 1997. Algebraic Semantics of Imperative Programs. Cambridge MA:
MIT Press.

Grieskamp, W., Gurevich, Y., Schulte, W. and Veanes, M. 2002. Generating finite state machines
from abstract state machines. Proc 3rd ACM Sigsoft Int. Symp. on Softw. Testing and Analysis
(ISSTA ’02), Rome, Italy, 112-122.

Henkel, J. and Diwan, A. 2003. Discovering algebraic specifications from Java classes. Proc. 17th.
European Conf. Obj.-Oriented Progr., Darmstadt, Germany, LNCS 2743, Springer Verlag, 431-456.

Henkel, J. and Diwan, A. 2004. A tool for writing and debugging algebraic specifications. Proc.
26th Int. Conf. Softw. Eng., IEEE Computer Society, 449-458.

Holcombe, W. M. L. 2003. Where do unit tests come from? Proc. 4th Int. Conf. on Extreme Progr.
and Flexible Proc. in Softw. Eng., LNCS 2675, Springer Verlag, Genova, Italy, pp. 161-169.

Holcombe, M., Bogdanov, K. and Gheorghe, M. 2001. Functional test generation for eXtreme
Programming. Proc. 2nd Int. Conf. on Extreme Progr. and Flexible Proc. in Softw. Eng., Sardinia,
Italy, pp. 109-113.

43

Holcombe, W. M. L. and Ipate, F. 1998. Correct Systems: Building a Business Process Solution.
Applied Computing Series. Berlin: Springer Verlag.

Ipate, F. and Holcombe, W. M. L. 1997. An integration testing method that is proved to find all
faults. Int. J. Comp. Math., 63: 159-178.

IPL (Information Processing, Ltd., UK) 2007. Cantata++ for testing C, C++ and Java.
http://www.ipl.com/. Accessed 12 February, 2007.

Irvine, A. and Offutt, A. 1995. The effectiveness of category partition testing of object-oriented
software. ISSE Department, George Mason University, Fairfax VA, 22030.

Jard, C. and von Bochmann G. 1983. An approach to testing specifications. Journal of Systems
and Softare, 3 (4): 315-323.

JUnit. 2007. The JUnit project website. http://www.junit.org/. Accessed 12 February, 2007.

Kiczales, G., des Rivieres, J. and Bobrow, D. G. 1991. The Art of the Metaobject Protocol,
Cambridge MA: MIT Press.

Lerda, F. and Visser, W. 2001. Addressing dynamic issues of program model checking, Proc. 8th

Int. SPIN Workshop (SPIN ’01), Toronto, pp. 80-102.

Lorenzoli, D., Mariani, L. and Pezzè, M. 2006. Inferring state-based behaviour models, Workshop
on Dynamic Analysis (WODA ’06), Shanghai, China, pp. 25-32.

Marinov, D. and Khurshid, S. 2001. TestEra: A novel framework for testing Java programs. Proc.
16th IEEE Conf. Automated Softw. Eng. (ASE ’01), San Diego, California, pp. 22-31.

McGregor, J. D. 1994. Constructing functional test cases using incrementally-derived state
machines. Proc. 11th Int. Conf. on Testing Computer Software, USPDI, Washington.

Pacheco, C. and Ernst, M. D. 2005. Eclat: Automatic generation and classification of test inputs.
Proc. 19th European Conf. Obj.-Oriented Prog., pp. 504-527.

Pacheco, C., Lahiri, S. K., Ernst, M. D. and Ball, T. 2007. Feedback-directed random test
generation. Proc. 29th Int. Conf. Softw. Eng., Minneapolis, MN, USA, IEE Computer Society, 75-
84.

Parasoft. 2007. Parasoft Jtest ® product description, http://www.parasoft.com/, Parasoft, Monrovia
CA, Accessed 22 August 2007.

Perkins, J. H. and Ernst, M. D. 2004. Efficient incremental algorithms for dynamic detection of
likely invariants. Proc. ACM Sigsoft 12th Symp. Found. Softw. Eng. (FSE ’04), Newport,
California, pp. 23-32.

Petrenko, A., Boroday, S. and Groz, R. 2004. Confirming configurations in EFSM testing. IEEE
Trans. Softw. Eng., 30 (1): 29-42.

Robillard, P. N. and Kruchten, P. 2002. Software Engineering Process with the UPEDU. Addison-
Wesley.

44

Simons, A. J. H. 2005. Testing with guarantees and the failure of regression testing in eXtreme
Programming. Proc. 6th Int. Conf. on Extreme Progr. and Flexible Proc. in Soft. Eng., LNCS 3556,
Springer Verlag, Sheffield: 118-126.

Simons, A. J. H. 2006. A theory of regression testing for behaviourally compatible object types.
Softw. Testing, Verif. and Reliability, 16 (3): 133-156.

Simons, A. J. H. 2007. JWalk: Lazy systematic class unit testing.
http://www.dcs.shef.ac.uk/~ajhs/jwalk/. Accessed 12 February 2007.

Simons, A. J. H. and Thomson, C. D. 2007. Lazy systematic testing: JWalk versus JUnit. Proc 2nd

Testing in Academia and Industry Conference – Practice and Research Techniques (TaicPart ’07),
Windsor Great Park, London, IEEE Computer Society, 138.

SIR. 2007. Software-artifact Infrastructure Repository: the nanoxml project.
http://sir.unl.edu/content/sir.html. Accessed 22 February.

Tillmann, N. and Schulte, W. 2005a. Parameterized unit tests. Proc. 5th European Softw. Eng.
Conf. and ACM Sigsoft Symp. on Found. Softw. Eng. (ESEC/FSE ’05), pp. 253-262.

Tillmann, N. and Schulte, W. 2005b. Parameterized unit tests with Unit Meister. Proc. 5th

European Softw. Eng. Conf. and ACM Sigsoft Symp. on Found. Softw. Eng. (ESEC/FSE ’05), pp.
241-244.

Ural, H., Saleh, K. and Williams, A. W. 2000. Test generation based on control and data
dependencies within system specifications in SDL. Computer Communications, 23 (7): 609-627.

Visser, W., Havelund, K., Brat, G., Park, S. and Lerda, F. 2003. Model checking programs.
Automated Softw. Eng. J., 10 (2): 203-232.

Visser, W., Pasareaunu, C. S. and Pelánek, R. 2006. Test input generation for Java containers
using state matching. Proc. 5th ACM Sigsoft Int. Symp. Softw. Testing and Analysis (ISSTA ’06),
Portland Maine, pp. 37-48.

Xie, T., Marinov, D. and Notkin, D. 2004. Rostra: A framework for detecting redundant object-
oriented unit tests. Proc. 19th IEEE Conf. Automated Softw. Eng., Washington DC, pp. 196-205.

Xie, T., Marinov, D., Schulte, W. and Notkin, D. 2005. Symstra: A framework for generating
object-oriented unit tests using symbolic execution. Proc. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS/ETAPS ‘05), Edinburgh, pp. 365-381.

Xie, T. and Notkin, D. 2003. Tool-assisted unit test selection based on operational violations.
Proc. 18th IEEE Int. Conf. Automated Softw. Eng. (ASE ’03), Montreal Canada, pp. 40-48.

Yuan, H. and Xie, T. 2005. Automatic extraction of abstract-object-state machines based on
branch coverage. Proc. 1st Int. Workshop on Reverse Engineering to Requirements (RETR ’05),
Pittsburgh Pennsylvania, pp. 5-11.

