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Abstract

Heisenberg’s uncertainty principle is usually taken to express a limitation of operational possibil-

ities imposed by quantum mechanics. Here we demonstrate that the full content of this principle

also includes its positive role as a condition ensuring that mutually exclusive experimental op-

tions can be reconciled if an appropriate trade-off is accepted. The uncertainty principle is

shown to appear in three manifestations, in the form of uncertainty relations: for the widths

of the position and momentum distributions in any quantum state; for the inaccuracies of any

joint measurement of these quantities; and for the inaccuracy of a measurement of one of the

quantities and the ensuing disturbance in the distribution of the other quantity. Whilst concep-

tually distinct, these three kinds of uncertainty relations are shown to be closely related formally.

Finally, we survey models and experimental implementations of joint measurements of position

and momentum and comment briefly on the status of experimental tests of the uncertainty

principle.
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“It is the theory which decides what can be observed.”
(Albert Einstein according to Werner Heisenberg [1])

1. Introduction

It seems to be no exaggeration to say that Heisenberg’s uncertainty principle, symbol-
ized by the famous inequality for position and momentum,

∆q · ∆p & ~, (1)

epitomizes quantum physics, even in the eyes of the scientifically informed public. Never-
theless, still now, 80 years after its inception, there is no general consensus over the scope
and validity of this principle. The aim of this article is to demonstrate that recent work
has finally made it possible to elucidate the full content of the uncertainty principle in
precise terms. This will be done for the prime example of the position-momentum pair.

The uncertainty principle is usually described, rather vaguely, as comprising one or
more of the following no-go statements, each of which will be made precise below:
(A) It is impossible to prepare states in which position and momentum are simultane-

ously arbitrarily well localized.
(B) It is impossible to measure simultaneously position and momentum.
(C) It is impossible to measure position without disturbing momentum, and vice versa.
The negative characterization of the uncertainty principle as a limitations of quan-

tum preparations and measurements has led to the widespread view that this principle
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is nothing but a formal expression of the principle of complementarity. 1 This limited
perspective has led some authors to question the fundamental status of the relation (1)
[3].

Here we will show that the uncertainty principle does have an independent content
and role that in our view has not yet been duly recognized. In fact, instead of resigning
to accept the negative verdicts (A), (B), (C), it is possible to adopt a positive perspec-
tive on the underlying questions of joint preparation and measurement: according to
the uncertainty principle, the qualitative relationship of a strict mutual exclusiveness of
sharp preparations or measurements of position and momentum is complemented with
a quantitative statement of a trade-off between competing degrees of the concentration
of the distributions of these observables in state preparations or between the accuracies
in joint measurements. Similarly, it turns out that the extent of the disturbance of (say)
momentum in a measurement of position can be controlled if a limitation in the accuracy
of that measurement is accepted.

Only if taken together, the statements (A), (B), (C) and their positive counterparts can
be said to exhaust the content of the uncertainty principle for position and momentum.
It also follows that the uncertainty principle comprises three conceptually distinct types
of uncertainty relations.

We will give a systematic exposition of these three faces of the uncertainty principle,
with an emphasis on elucidating its positive role. After a brief discussion of the well
known uncertainty relation for preparations, we focus on the less well established mea-
surement uncertainty relations, the formulation of which requires a careful discussion of
joint measurements, measurement accuracy and disturbance.

We present a fundamental result, proved only very recently, which constitutes the
first rigorous demonstration of the fact that the uncertainty relation for measurement
inaccuracies is not only a sufficient but also a necessary condition for the possibility of
approximate joint measurements of position and momentum.

Finally, we discuss some models and proposed realizations of joint measurements of
position and momentum and address the question of possible experimental tests of the
uncertainty principle.

The idea of the uncertainty principle ensuring the positive possibility of joint albeit
imprecise measurements, which is rather latent in Heisenberg’s works 2 has been made
fully explicit and brought to our attention by his former student Peter Mittelstaedt, our
teacher and mentor, to whom we dedicate this treatise.

2. From “no joint sharp values” to approximate joint localizations

Throughout the paper, we will only consider the case of a spin zero quantum system
in one spatial dimension, represented by the Hilbert space H = L2(R). The states of the

1 A more balanced account of the interplay and relative significance of the principles of complementarity
and uncertainty has been developed in a recent review [2] which complements the present work.
2 A judicious reading of Heisenberg’s seminal paper of 1927 [4] shows that both the double role and the
three variants of the uncertainty principle discussed here are already manifest, if only expressed rather
vaguely. In fact, in the abstract, Heisenberg immediately refers to limitations of joint measurements;
later in the paper, he links this with a statement of the uncertainty relation for the widths of a Gaussian
wave function and its Fourier transform; finally he gives illustrations by means of thought experiments
in which the idea of mutual disturbance is prominent.
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system are described by positive trace one operators ρ on H, the pure states being given
as the one-dimensional projections. We occasionally write |ψ 〉〈ψ| for the pure state in
question, and we call unit vectors ψ ∈ H vector states. We denote the set of vector states
by H1.

The position and momentum of the system are represented as the Schrödinger pair
of operators Q̂, P̂ , where Q̂ψ(x) = xψ(x), P̂ψ(x) = −i~ψ′(x). We denote their spectral
measures by the letters Q and P, respectively, and recall that they are Fourier-Plancherel
connected. The probability of obtaining the value of position in a (Borel) subset X of R

on measurement in a vector state ψ is then given by the formula pQ
ψ(X) = 〈ψ|Q(X)ψ〉 =∫

X
|ψ(x)|2 dx. Similarly, the probability of obtaining the value of momentum in a (Borel)

set Y on measurement in a vector state ψ is given by pP
ψ(Y ) :=

∫
Y
|ψ̂(p)|2 dp, where ψ̂ is

the Fourier-Plancherel transform of ψ.
In the formalization of all three types of uncertainty relations, we will use two different

measures of the width, or degree of concentration, of a probability distribution. These
are the standard deviation and the overall width. The standard deviations of position
and momentum in a state ψ are

∆(Q, ψ) :=
(
〈ψ|Q̂2ψ〉 − 〈ψ|Q̂ψ〉2

)1/2

,

∆(P, ψ) :=
(
〈ψ|P̂ 2ψ〉 − 〈ψ|P̂ψ〉2

)1/2

.

(2)

The overall width of a probability measure p on R is defined, for given ε ∈ (0, 1), as
the smallest interval length required to have probability greater or equal to 1 − ε; thus:

Wε(p) := inf
X
{|X| | p(X) ≥ 1 − ε}, (3)

where X run through all intervals in R. For the overall widths of the position and mo-
mentum distribution in a vector state ψ we will use the notation

Wε1(Q, ψ) := Wε1(p
Q
ψ), Wε2(P, ψ) := Wε2(p

P
ψ). (4)

The no-go statement (A) says, broadly speaking, that the distributions pQ
ψ and pP

ψ of
position and momentum cannot simultaneously (i.e., in the same state ψ) be arbitrarily
sharply concentrated. To appreciate this fact, we note first that position and momentum,
being continuous quantities, cannot be assigned absolutely sharp values since they have
no eigenvalues. But both quantities can separately have arbitrarily sharply concentrated
distributions. We discuss two different ways of formalizing this idea, in terms of standard
deviations and overall widths. Each of these formalizations gives rise to a precise form of
(A). We then proceed to complement the no-go statement (A) with descriptions of the
positive possibilities of simultaneous approximate localizations of position and momen-
tum.

The first formalization of arbitrarily sharp localizations makes use of the standard
deviation of a distribution (stated here for position):

for any q0 ∈ R and any ε > 0, there is a vector state ψ

such that 〈ψ|Q̂ψ〉 = q0 and ∆(Q, ψ) < ε.
(5)

Thus there is no obstacle to concentrating the distributions of position or momentum
arbitrarily sharply at any points q0, p0 ∈ R, if these observables are considered separately,
on different sets of states.
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But the corresponding state preparation procedures are mutually exclusive; this is
the operational content of the negative statement (A). What is positively possible if one
considers both observables together in the same state will be described by an appropriate
uncertainty relation. Property (5) gives rise to the following formalization of (A):
Theorem 1 For all states ψ and for any ε > 0,

if ∆(Q, ψ) < ε, then ∆(P, ψ) > ~/2ε; and vice versa. (6)

This is a statement about the spreads of the position and momentum probability distri-
butions in a given state: the sharper one is peaked, the wider the other must be. This
limitation follows directly from the uncertainty relation for standard deviations, valid for
all vector states ψ:

∆(Q, ψ) · ∆(P, ψ) ≥ ~

2
. (7)

The vector states ηa,b(x) = (2a/π)1/4 e−(a+ib)x2

, a, b ∈ R, a > 0, give ∆(Q, ηa,b)
2 =

1/4a and ∆(P, ηa,b)
2 = ~

2(a2 + b2)/a, so that the following positive statement comple-
menting the no-go Theorem 1 is obtained:
Theorem 2 For all positive numbers δq, δp for which δq · δp ≥ ~/2, there is a state ψ
such that ∆(Q, ψ) = δq and ∆(P, ψ) = δp.

The vector state ηa,0 is a minimal uncertainty state in the sense that it gives ∆(Q, ηa,0)·
∆(P, ηa,0) = ~/2. Every minimum uncertainty state is of the form eicxηa,0(x−d) for some
c, d ∈ R. Minimal uncertainty states have a number of distinctive properties (see, e.g.,

[5]). For instance, if ψ is a vector state which satisfies |ψ|2 ≤ |ηa,0|2 and |ψ̂|2 ≤ |η̂a,0|2,
for some a, then ψ is a minimal uncertainty state.

We now turn to the second way of saying that position and momentum can separately
be localized arbitrarily well (expressed again only for position):

for any bounded interval X (however small), there exists a vector state ψ

such that pQ
ψ(X) = 1.

(8)

The corresponding formalization of (A) then is given by the following theorem.
Theorem 3 For all vector states ψ and all bounded intervals X,Y , pQ

ψ(X) = 1 implies

0 6= pP
ψ(Y ) 6= 1, and vice versa.

This means that whenever the position is localized in a bounded interval then the mo-
mentum cannot be confined to any bounded interval (nor to its complement), and vice
versa.

For any two bounded intervals X and Y and for any vector state ψ, Theorem 3 implies
that pQ

ψ(X) + pP
ψ(Y ) < 2. However, for any such intervals, one can construct a vector

state ψ0 for which the sum of the probabilities pQ
ψ0

(X) and pP
ψ0

(Y ) attains its maximum
value. The precise statement is given in the following theorem, which can be regarded as
a positive complement to Theorem 3.
Theorem 4 For any vector state ψ and for any bounded intervals X and Y ,

pQ
ψ(X) + pP

ψ(Y ) ≤ 1 +
√
a0 < 2, (9)

where a0 is the largest eigenvalue of the operator Q(X)P(Y )Q(X) which is positive and
trace class. There exists an optimizing vector state ϕ0 such that

pQ
ϕ0

(X) + pP
ϕ0

(Y ) = 1 +
√
a0. (10)
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This result follows from the work of Landau and Pollak [6] and Lenard [7] (for details,
see [8]).

We will say that position Q is approximately localized in an interval X for a given state
ψ whenever pQ

ψ(X) ≥ 1 − ε for some (preferably small) ε, 0 < ε < 1, and similarly for
momentum. Then Eq. (10) describes the maximum degree of approximate localization
that can be achieved in any phase space cell of given size |X| · |Y |.

The largest eigenvalue a0 is invariant under a scale transformation applied simultane-
ously to Q̂ and P̂ ; it is therefore a function of the product |X| · |Y | of the interval lengths
|X| and |Y |. A simple calculation gives tr [Q(X)P(Y )Q(X)] = |X| · |Y |/(2π~), so that we
obtain

|X| · |Y | ≥ 2π~ · a0. (11)

If position and momentum are both approximately localized withinX and Y , respectively,
so that pQ

ψ(X) ≥ 1 − ε1 and pP
ψ(Y ) ≥ 1 − ε2, then due to inequality (9), one must have

1 − ε1 − ε2 ≤ √
a0, and then (11) implies:

|X| · |Y | ≥ 2π~ · (1 − ε1 − ε2)
2 (12)

if pQ
ψ(X) ≥ 1 − ε1, pP

ψ(Y ) ≥ 1 − ε2, and ε1 + ε2 < 1.
It is convenient to express this uncertainty relation for approximate localization widths

in terms of the overall widths: if ε1 + ε2 < 1 then

Wε1(Q, ψ) ·Wε2(P, ψ) ≥ 2π~ · (1 − ε1 − ε2)
2
. (13)

If ε1 + ε2 ≥ 1, then the product of widths has no positive lower bound [6]. In the case
ε1 + ε2 < 1, the inequality is tight in the sense that even for fairly small values of ε1, ε2,
the product of overall widths can be in the order of 2π~; we quote a numerical example
given in [6]: if ε1 = ε2 = .01, then |X| · |Y | can still be as small as 6.25 × (2π~).

We will make repeated use of this uncertainty relation; since we are only interested
in “small” values of ε1, ε2, we will assume these to be less than 1/2; then the condition
ε1 + ε2 < 1 is fulfilled and need not be stated explicitly.

An inequality of the form (13) has been given by J.B.M. Uffink in his doctoral thesis
of 1990 [81]; using a somewhat more involved derivation, he obtained the sharper lower

bound 2π~ ·
(√

(1 − ε1)(1 − ε2) −
√
ε1ε2

)2

.

Several other measures of uncertainty have been introduced to analyze the degree of
(approximate) localizability of position and momentum distributions pQ

ψ and pP
ψ, ranging

from extensive studies on the support properties of |ψ|2 and |ψ̂|2 to various information
theoretic (“entropic”) uncertainty relations. It is beyond the scope of this paper to review
the vast body of literature on this topic. The interested reader may consult e.g. [9], [10]
or [11, Sect. V.4] for reviews and references.

To summarize: instead of leaving it at the negative statement that position and mo-
mentum cannot be arbitrarily sharply localized in the same state, the uncertainty relation
for state preparations offers precise specifications of the extent to which these two ob-
servables can simultaneously be approximately localized.

3. Joint and sequential measurements

In order to go beyond the no-go theorems of (B) and (C) and establish their positive
complements, one needs to use the full-fledged apparatus of quantum mechanics. The
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general representation of observables as positive operator measures will be required to
introduce viable notions of joint and sequential measurements and an appropriate quan-
tification of measurement inaccuracy. Furthermore, some tools of measurement theory
will be needed to describe and quantify the disturbance of one observable due to the
measurement of another.

In the present context of the discussion of position and momentum and their joint mea-
surements, observables will be described as normalized positive operator measures X 7→
E(X) on the (Borel) subsets of R or R

2. This means that the map X 7→ 〈ψ|E(X)ψ〉 =:
pEψ (X) is a probability measure for every vector state ψ. The operators E(X) in the
range of an observable E are called effects. An observable E will be called sharp if it is
a spectral measure, that is, if all of the effects E(X) are projections. 3

For an observable E on R, we will make use of the notation E[1], E[2] for the first
and the second moment operators, defined (weakly) as E[k] :=

∫
xkE(dx) (k = 1, 2). 4

We let ∆(E,ψ) denote the standard deviation of pEψ ,

∆(E,ψ)2 :=

∫ ∞

−∞

(
x−

∫ ∞

−∞

x′pEψ (dx′)

)2

pEψ (dx)

= 〈ψ|E[2]ψ〉 − 〈ψ|E[1]ψ〉2.
(14)

It is a remarkable feature of an observable E, defined as a positive operator measure,
that it need not be commutative; that is, it is not always the case that E(X1)E(X2) =
E(X2)E(X1) for all sets X1, X2. This opens up the possibility of defining a notion of
joint measurability for not necessarily commuting families of observables.

Indeed, it will become evident below that in the set of noncommuting pairs of observ-
ables, the jointly measurable ones are necessarily unsharp, that is, they cannot be sharp.
It is to be expected intuitively that the degree of mutual noncommutativity determines
the necessary degree of unsharpness required to allow a joint measurement. Here we
present two ways of indicating the inherent unsharpness of an observable E on R.

We define the intrinsic noise operator of E as

Ni(E) := E[2] − E[1]2. (15)

This is a positive operator. If E[1] is selfadjoint, then the intrinsic noise Ni(E) is zero
exactly when E is a sharp observable [13, Theorem 5]. A measure Ni(E;ψ) of intrinsic
noise is then given by the expectation value of the intrinsic noise operator (for all vector
states ψ for which this expression is well defined):

Ni(E;ψ) := 〈ψ|Ni(E)ψ〉. (16)

The overall intrinsic noise is defined as

Ni(E) := sup
ψ∈H1

Ni(E;ψ). (17)

3 For a more detailed technical discussion of the notion of a quantum observable as a positive oper-

ator measure, the reader may wish to consult, for example, the monograph [12]; a gentle, less formal,
introduction may be found in the related review of Ref. [2].
4 It is important to bear in mind that the domain of the symmetric operator E[k] is not necessarily
dense; it consists of all vectors ϕ ∈ H for which the function x 7→ xk is integrable w.r.t. the complex
measure X 7→ 〈ψ|E(X)ϕ〉 for all ψ ∈ H. Here and in subsequent formulas it is understood that the
expectations of unbounded operators are only well defined for appropriate subsets of states.
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The next definition applies to observables E on R whose support is R. 5 The resolution
width of E (at confidence level 1 − ε) is [14]

γε(E) := inf{d > 0 | for all x ∈ R there exists ψ ∈ H1 with pEψ (Jx;d) ≥ 1 − ε}. (18)

Here Jx;d denotes the interval [x− d
2 , x+ d

2 ].
We note that positive resolution width is a certain indicator that the observable E

is unsharp. This measure describes the possibilities of concentrating the probability dis-
tributions to a fixed confidence level across all intervals. However, the requirement of
vanishing resolution width does not single out sharp observables [14].

3.1. Joint measurements

Two observables E1 and E2 on R are called jointly measurable if there is an observable
M on R

2 such that

E1(X) = M(X × R), E2(Y ) = M(R × Y ) (19)

for all (Borel) sets X,Y . Then E1 and E2 are the marginal observables M1 and M2 of the
joint observable M . If either E1 or E2 is a sharp observable, then they are jointly mea-
surable exactly when they commute mutually. In that case, the unique joint observable
M is determined by M(X × Y ) = E1(X)E2(Y ). In general, the mutual commutativ-
ity of E1 and E2 is not a necessary (although still a sufficient) condition for their joint
measurability.

The above notion of joint measurability is fully supported by the quantum theory of
measurement, which ensures that E1 and E2 are jointly measurable exactly when there
is a measurement scheme which measures both E1 and E2 [15].

Considering that the (sharp) position and momentum observables Q and P do not
commute with each other, we recover immediately the well-known fact that these ob-
servables have no joint observable, that is, they are not jointly measurable. This is a
precise formulation of the no-go statement (B).

In preparation of developing a positive complementation to (B), we give an outline of
the notion that sharp position and momentum may be jointly measurable in an approxi-
mate sense. While there is no observable on phase space whose marginals coincide with Q

and P, one can explore the idea that there may be observables M on R
2 whose marginals

M1 and M2 are approximations (in some suitably defined sense) of Q and P, respectively.
Such an M will be called an approximate joint observable for Q and P. An appropriate
quantification of the differences between M1 and Q and between M2 and P may serve as
a measure of the (in)accuracy of the joint approximate measurement represented by M .

3.2. Sequential measurements

In order to analyze measurements of two observables E1 and E2 performed in immedi-
ate succession, it is necessary to take into account the influence of the first measurement
on the object system. The tool to describe the state changes due to a measurement is
provided by the notion of an instrument ; see the Appendix for an explanation.

5 This means that for every interval J there is a vector state ψ such that pE
ψ

(J) 6= 0.
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Let I1 be the instrument associated with a measurement of E1, that is, I1 determines
the probability tr [ρE1(X)] = tr [I1(X)(ρ)] for every state ρ and set X. The number
tr [I1(X)(ρ)E2(Y )] is the sequential joint probability that the measurement of E1, per-
formed on the system in state ρ, gives a result in X and a subsequent measurement of
E2 leads to a result in Y . Using the dual instrument I∗

1 (cf. the Appendix), this prob-
ability can be written as tr [ρI∗

1 (X)(E2(Y ))]. The map (X,Y ) 7→ tr [ρI∗
1 (X)(E2(Y ))] is

a probability bimeasure and therefore extends uniquely to a joint probability for each ρ,
defining thus a unique joint observable M on R

2 via

M(X × Y ) = I∗
1 (X)(E2(Y )). (20)

Its marginal observables are

M1(X) = I∗
1 (X)(E2(R)) = E1(X), (21)

M2(Y ) = I∗
1 (R)(E2(Y )) =: E′

2(Y ). (22)

Thus the first marginal is the first-measured observable E1 and the second marginal is a
distorted version E′

2 of E2.
This general consideration shows that one must expect that a measurement of an

observable E1 will disturb (the distribution of) another observable E2. In fact, it is a
fundamental theorem of the quantum theory of measurement that there is no nontrivial
measurement without some state changes. In other words, if a measurement leaves all
states unchanged, then its statistics will be the same for all states; in this sense there is
no information gain without some disturbance.

If the first-measured observable E1 is sharp, the distorted effects I∗
1 (R)(E2(Y )) must

commute with E1(X) for all X,Y , whatever the second observable E2 is. Thus, if we
consider a sequential measurement of the sharp position and momentum observables Q

and P as an attempted joint measurement, we see that such an attempt is bound to
fail. If (say) one first measures position Q, with an instrument IQ, then all distorted
momentum effects P′(Y ) := I∗

Q(R)(P(Y )) are functions of the position operator Q̂. In
this sense, a measurement of sharp position completely destroys any information about
the momentum distribution in the input state. This result formalizes the no-go statement
(C).

The formulation of a positive complement to (C) is based on the idea that one may
be able to control and limit the disturbance due to a measurement of Q, by measuring
an observable Q′ which is an approximation (in some sense) to Q. One can then hope
to achieve that the distorted momentum P′ is an approximation (in some sense) to P.
We note that this amounts to defining a sequential joint observable M with marginals
M1 = Q′ and M2 = P′. Any appropriate quantification of the difference between M1

and Q is a measure of the inaccuracy of the first (approximate) position measurement;
similarly any appropriate quantification of the difference between M2 and P is a measure
of the disturbance of the momentum due to the position measurement.

In this way the problem of defining measures of the disturbance of (say) momentum
due to a measurement of position has been reduced to defining the inaccuracy of the
second marginal of a sequential joint measurement of first position and then momentum.

9



3.3. On measures of inaccuracy

The above discussion shows that it is the noncommutativity of observables such as
position and momentum which forces one to allow inaccuracies if one attempts to make
an approximate joint measurement of these observables. This shows clearly that the
required inaccuracies are of quantum-mechanical origin, which will also become manifest
in the models of approximate position measurements and phase space measurements
presented below. With this observation as proviso, we believe that it is acceptable to
use the classical terms of measurement inaccuracy and error, particularly because their
operational definitions are essentially the same as in a classical measurement context.

In fact, every measurement, whether classical or quantum, is subject to noise, which
results in a deviation of the actually measured observable E1 from that intended to be
measured, E. We will refer to this deviation and any measure of it as error or inaccu-
racy. In general there can be systematic errors, or bias, leading to a shift of the mean
values, and random errors, resulting in a broadening of the distributions. Any measure
of measurement noise should be operationally significant in the sense that it should be
determined by the probability distributions pEψ and pE1

ψ .
In the following we will discuss three different approaches to quantifying measurement

inaccuracy.

3.3.1. Standard measures of error and disturbance
Classical statistical analysis suggests the use of moments of probability distributions

for the quantification of error and disturbance in measurements. Thus, the standard
approach found in the literature of defining a measure of error is in terms of the average
deviation of the value of a readout observable of the measuring apparatus from the value
of the observable to be measured approximately. If these observables are represented as
selfadjoint operators Z and A (acting on the apparatus and the object Hilbert spaces),
respectively, this standard error measure is given as the root mean square

ǫ(Z,A, ψ) := 〈U(ψ ⊗ Ψ)|(Z −A)2U(ψ ⊗ Ψ)〉1/2, (23)

where U is the unitary map modelling the measuring interaction and Ψ is the initial
state of the apparatus. This measure of error has been studied in recent years in the
foundational context, for example, by Appleby [16,17], Hall [18] and Ozawa [19].

If we denote by E the observable actually measured by the given scheme, we define
the relative noise operator,

Nr(E,A) := E[1] −A; (24)

the standard error can then be rewritten as [19]

ǫ(E,A;ψ)2 = 〈ψ|(E[1] −A)2ψ〉 + 〈ψ|(E[2] − E[1]2)ψ〉
= 〈ψ|Nr(E,A)2ψ〉 + 〈ψ|Ni(E)ψ〉 (25)

(for any vector state ψ for which the expressions are well-defined). We note that ǫ(E,A;ψ) =
0 for all ψ exactly when E is sharp and E[1] = A. The relative noise term cannot, in
general, be determined from the statistics of measurements of E and A alone, so that the
standard error measure ǫ(E,A;ψ) does not always satisfy the requirement of operational
significance [20]. However, we will encounter important cases where this quantity does
turn out to be operationally well defined.

10



The standard error is a state-dependent quantity. This stands in contrast to the fact
that estimates of errors obtained in a calibration process are meant to be applicable to
a range of states since in a typical measurement the state is unknown to begin with. In
order to obtain state independent measures, we define the global standard error of an
observable E relative to A as 6

ǫ(E,A) := sup
ψ∈H1

ǫ(E,A;ψ). (26)

We will say that E is a standard approximation to A if E has finite global standard
error relative to A. This definition provides a possible criterion for selecting joint or
sequential measurements schemes as approximate joint measurements of Q and P; but it
is not always possible to verify this criterion if the standard error fails to be operationally
significant.

3.3.2. Geometric measure of approximation and disturbance
Following the work of Werner [21], we define a distance d(E1, E2) on the set of observ-

ables on R.
We first recall that for any bounded measurable function h : R → R, the integral∫

R
h dE defines (in the weak sense) a bounded selfadjoint operator, which we denote by

E[h]. Thus, for any vector state ψ the number 〈ψ|E[h]ψ〉 =
∫

R
h dpEψ is well-defined.

Denoting by Λ the set of bounded measurable functions h : R → R for which |h(x) −
h(y)| ≤ |x− y|, the distance between the observables E1 and E2 is defined as

d(E1, E2) := sup
ψ∈H1

sup
h∈Λ

|〈ψ|(E1[h] − E2[h])ψ〉| . (27)

This measure is operationally significant, using only properties of the distributions to be
compared. Furthermore, it is a global measure in that it takes into account the largest
possible deviations of the expectations 〈ψ|E1[h]ψ〉 and 〈ψ|E2[h]ψ〉. It gives a geometri-
cally appealing quantification of how well a given observable can be approximated by
other observables.

We will say that an observable E1 is a geometric approximation to E2 if d(E1, E2) <
∞. We shall apply this condition of finite distance as a criterion for a joint or sequential
measurement scheme to define an approximate joint measurement of Q and P. It is not
clear whether this criterion is practical since the distance is not related in any obvious way
to concepts of measurement inaccuracy commonly applied in an experimental context.

3.3.3. Error bars
We now present a definition of measurement inaccuracy in terms of likely error intervals

that follows most closely the usual practice of calibrating measuring instruments. In the
process of calibration of a measurement scheme, one seeks to obtain estimates of the likely
error and perhaps also the degree of disturbance that the scheme contains. To estimate
the error, one tests the device by applying it to a sufficiently large family of input states
in which the observable one wishes to measure with this setup has fairly sharp values.
The error is then characterized as an overall measure of the bias and the width of the
output distribution across a range of input values. Error bars give the minimal average

6 This definition was used by Appleby [17] for the special case of position and momentum observables.
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interval lengths that one has to allow to contain all output values with a given confidence
level.

For each ε ∈ (0, 1), we say that an observable E1 is an ε-approximation to a sharp
observable E if for all δ > 0 there is a positive number w < ∞ such that for all x ∈ R,
ψ ∈ H1, the condition pEψ (Jx;δ) = 1 implies that pE1

ψ (Jx,w) ≥ 1 − ε. The infimum of
all such w will be called the inaccuracy of E1 with respect to E and will be denoted
Wε,δ(E1, E). Thus,

Wε,δ(E1, E) := inf{w | for all x ∈ R, ψ ∈ H1,

if pEψ (Jx;δ) = 1 then pE1

ψ (Jx,w) ≥ 1 − ε}. (28)

The inaccuracy describes the range within which the input values can be inferred from
the output distributions, with confidence level 1 − ε, given initial localizations within δ.
We note that the inaccuracy is an increasing function of δ, so that we can define the
error bar width 7 of E1 relative to E:

Wε(E1, E) := inf
δ
Wε,δ(E1, E) = lim

δ→0
Wε,δ(E1, E). (29)

If Wε(E1, E) is finite for all ε ∈ (0, 1
2 ), we will say that E1 approximates E in the sense

of finite error bars. We note that the finiteness of either ǫ(E1, E) or d(E1, E) implies the
finiteness of Wε(E1, E). Therefore, among the three measures of inaccuracy, the condition
of finite error bars gives the most general criterion for selecting approximations of Q and
P.

4. From “no joint measurements” to approximate joint measurements

Position Q and momentum P have no joint observable, they cannot be measured to-
gether. However, one may ask for an approximate joint measurement, that is, for an
observable M on R

2 such that the marginals M1 and M2 are appropriate approxima-
tions of Q and P. In this section we study two important cases and then consider the
general situation.

4.1. Commuting functions of position and momentum

The first approach is related with the fact that although Q and P are noncommutative,
they do have commuting spectral projections. Indeed, let Qg be a function of Q, that is,
Qg(X) = Q(g−1(X)) for all (Borel) sets X ⊆ R, with g : R → R being a (Borel) function.
Similarly, let Ph be a function of momentum. The associated operators are g(Q̂) and
h(P̂ ). The following result, proved in [23, Theorem 1] and in a more general setting in
[24], characterizes the functions g and h for which Qg(X)Ph(Y ) = Ph(Y )Qg(X) for all
X and Y .
Theorem 5 Let g and h be essentially bounded Borel functions such that neither g(Q̂)
nor h(P̂ ) is a constant operator. The functions Qg of position and Ph of momentum
commute if and only if g and h are both periodic with minimal positive periods a, b
satisfying 2π

ab ∈ N.

7 This definition and all subsequent results based on it can be found in [22].
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If Qg and Ph are commuting observables, then they have the joint observable M , with
M(X × Y ) = Qg(X)Ph(Y ), meaning that Qg and Ph can be measured jointly. The price
for this restricted form of joint measurability of position and momentum as given by
Theorem 5 is that they are to be coarse-grained by periodic functions g and h with
appropriately related minimal periods a, b.

The functions g and h can be chosen as characteristic functions of appropriate periodic
sets. This allows one to model a situation known in solid state physics, where an electron
in a crystal can be confined arbitrarily closely to the atoms while at the same time its
momentum is localized arbitrarily closely to the reciprocal lattice points.

Simultaneous localization of position and momentum in periodic sets thus constitutes
a sharp joint measurement of functions of these observables. However, bounded func-
tions Qf of Q provide only very bad approximations to Q since ǫ(Qf , Q), d(Qf ,Q) and
Wε,δ(Q

f , Q) are all infinite. One also loses the characteristic covariance properties of
position and momentum.

4.2. Uncertainty relations for covariant approximations of position and momentum

Next we will discuss approximate joint measurements of position and momentum based
on smearings of these observables by means of convolutions.

Let µ, ν be probability measures on R. We define observables Qµ,Pν via

Qµ(X) =

∫

R

µ(X − q) Q(dq), Pν(Y ) =

∫

R

ν(Y − p) P(dp). (30)

These observables have the same characteristic covariance properties as Q,P and they
are approximations in the sense that they have finite error bar widths relative to Q,P.
Hence we call them approximate position and momentum.

For given Qµ,Pν we ask under what conditions they are jointly measurable, that is,
there is an observable M on R

2 such that M1 = Qµ and M2 = Pν . In order to answer
this question, we need to introduce the notion of covariant phase space observables.

Covariance is defined with respect to a unitary (projective) representation of phase
space translations in terms of the Weyl operators, defined for any phase space point

(q, p) ∈ R
2 via W (q, p) = e

i
2~
qp e−

i
~
qP̂ e

i
~
pQ̂. An observable M on R

2 is a covariant phase
space observable if

W (q, p)M(Z)W (q, p)∗ = M(Z + (q, p)) (31)

for all Z. It is known 8 that each such observable is of the form GT , where

GT (Z) =
1

2π~

∫

Z

W (q, p)TW (q, p)∗ dqdp, (32)

and T is a unique positive operator of trace one. The marginal observables GT1 and GT2
are of the form (30) where µ = µT = pQ

ΠTΠ∗ and ν = νT = pP
ΠTΠ∗ and Π is the parity

operator, Πψ(x) = ψ(−x).
Our question is answered by the following fundamental theorem which was proven in

the present form [29, Proposition 7] as a direct development of the work of [21].

8 This result is due to Holevo [25] and Werner [26]. Alternative proofs with different techniques were
recently given in [27] and [28].
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Theorem 6 An approximate position Qµ and an approximate momentum Pν are jointly
measurable if and only if they have a covariant joint observable GT . This is the case
exactly when there is a positive operator T of trace equal to 1 such that µ = µT , ν = νT .

We next quantify the necessary trade-off in the quality of the approximations of Q,P by
GT1 , G

T
2 , using the three measures of inaccuracy introduced above. First we state uncer-

tainty relations for the measures of intrinsic unsharpness. The probability distributions
associated with these marginals of GT are the convolutions pQ

ψ ∗µT and pP
ψ ∗νT ; this indi-

cates that statistically independent noise is added to the distributions of sharp position
and momentum. In accordance with this fact, the standard deviations are obtained via
the sums of variances,

∆(GT1 , ψ)2 = ∆(Q, ψ)2 + ∆(µT )2, ∆(GT2 , ψ)2 = ∆(P, ψ)2 + ∆(νT )2. (33)

The noise interpretation is confirmed by a determination of the intrinsic noise operators
of GT1 , G

T
2 , which are well-defined whenever the operator T is such that Q̂2

√
T and P̂ 2

√
T

are Hilbert-Schmidt operators [13, Theorem 4]; in that case one obtains

Ni(G
T
1 ) = ∆(µT )2 I, Ni(G

T
2 ) = ∆(νT )2 I. (34)

Since T , and with it ΠTΠ∗, has the properties of a state, the uncertainty relation (7)
applies to the probability measures µT and νT , giving the following uncertainty relation
for intrinsic noise, valid for any GT :

Ni(G
T
1 ) · Ni(G

T
2 ) = ∆(µT )2 · ∆(νT )2 ≥ ~

2

4
. (35)

Equations (33) and (35) yield the following version of state-preparation uncertainty
relation with respect to GT , which also reflects the presence of the intrinsic noise:

∆(GT1 , ψ) · ∆(GT2 , ψ) ≥ ~. (36)

The resolution widths of GT1 , G
T
2 are given by

γε1(G
T
1 ) = Wε1(µT ), γε2(G

T
2 ) = Wε2(νT ), (37)

so that the uncertainty relation for overall widths then entails:

γε1(G
T
1 ) · γε2(GT2 ) = Wε1(µT ) ·Wε2(νT ) ≥ 2π~ · (1 − ε1 − ε2)

2. (38)

The standard errors are

ǫ(GT1 ,Q;ψ)2 =
(
µT [1]

)2
+ ∆(µT )2, ǫ(GT2 ,P;ψ)2 =

(
νT [1]

)2
+ ∆(νT )2, (39)

and the inequality

ǫ(GT1 ,Q) · ǫ(GT2 ,P) ≥ ~

2
(40)

holds as an immediate consequence of the noise uncertainty relation (35).
The distances of GT1 , G

T
2 from Q,P are

d(GT1 ,Q) =

∫
|q|µT (dq), d(GT2 ,P) =

∫
|p|νT (dp), (41)

and they satisfy the trade-off inequality

d(GT1 ,Q) · d(GT2 ,P) ≥ C~, (42)

where the value of the constant C can be numerically determined as C ≈ 0.3047 [21].
There is a unique covariant joint observable GT attaining the lower bound in (42), but
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the optimizing operator T = |η 〉〈 η| is not given by the oscillator ground state [21, Section
3.2].

Finally considering the error bar widths of GT1 , G
T
2 relative to Q,P, one finds:

Wε1(G
T
1 ,Q) ≥Wε1(Q, T ), Wε2(G

T
2 ,P) ≥Wε2(P, T ). (43)

Therefore, (13) implies that

Wε1(G
T
1 ,Q) · Wε2(G

T
2 ,P) ≥ 2π~ · (1 − ε1 − ε2)

2
. (44)

We note that error bar widths in this inequality are always finite, in contrast to the
standard errors or distances, which are infinite for some GT .

The existence of covariant phase space observables GT establishes the positive comple-
ment to the no-go statement (B). We have given Heisenberg uncertainty relations for the
necessary inaccuracies in the approximations of Q,P by means of the marginal observ-
ables GT1 , GT2 . For each pair of values of the inaccuracies allowed by these uncertainty
relations there exists a GT which realizes these values. This confirms the sufficiency of the
inaccuracy relations for the existence of an approximate joint measurement of position
and momentum, in the form of a covariant joint observable.

There is a (perhaps unexpected) reward for the positive attitude that led to the search
for approximate joint measurements of position and momentum: the family of covariant
phase space observables GT contains the important class of informationally complete
phase space observables. An example is given by the choice T = |ηa,0 〉〈 ηa,0|.

4.3. Uncertainty relations for general approximate joint measurements

While the uncertainty relations are necessary for the inaccuracies inherent in jointly
measurable covariant approximations Qµ and Pν , there remains the possibility that one
can overcome the Heisenberg limit by some clever choice of non-covariant approximations
of Q and P. Here we show that this possibility is ruled out. It follows that covariant
phase space observables constitute the optimal class of approximate joint observables for
position and momentum.

Let M be an observable on R
2. It was shown by Werner [21] that if M1,M2 have finite

distances from Q,P, respectively, then there is a covariant phase space observable GT

associated with M with the following property: d(M1,Q) ≥ d(GT1 ,Q) and d(M2,P) ≥
d(GT2 ,P). The same kind of argument can be carried out in the case of the global standard
error and the error bar width 9 so that the inequalities (40), (42) and (44) entail the
universally valid Heisenberg uncertainty relations

ǫ(M1,Q) · ǫ(M2,P) ≥ ~

2
, (45)

d(M1,Q) · d(M2,P) ≥ C~, (46)

Wε1(M1,Q) · Wε2(M2,P) ≥ 2π~ · (1 − ε1 − ε2)
2
. (47)

We propose the conjecture that these inaccuracy relations can be complemented with
equally general trade-off relations for the intrinsic noise and resolution width of the
marginals of an approximate joint observable of Q,P:

Ni(M1) · Ni(M2) ≥
~

2
, (48)

9 See [22]; inequality (45) was deduced by different methods in [17].
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γε1(M1) · γε2(M2) ≥ 2π~ · (1 − ε1 − ε2)
2. (49)

Considering now examples of noncovariant observables on phase space, we recall first
that the commutative observable M on R

2 of subsection 4.1 has marginals with infinite
error bars. Here we give an example of an observable M on phase space which is not
covariant but is still an approximate joint observable for Q,P. Let GT be a covariant
phase space observable and define M := GT ◦ γ−1, where γ(q, p) := (γ1(q), γ2(p)). We
assume that γ1, γ2 are strictly increasing continuous functions such that γ1(q) − q and
γ2(p)− p are bounded functions. Then it follows that the marginals Mγ

1 = GT1 ◦ γ−1
1 and

Mγ
2 = GT2 ◦ γ−1

2 have finite error bars with respect to Q,P. If γ is a nonlinear function
then M will not be covariant.

5. From “no measurement without disturbance” to sequential joint

measurements

As concluded in Subsection 3.2 there is no way to determine the (sharp) position
and momentum observables in a sequential measurement. We show now that there are
sequential measurements which are approximate simultaneous determinations of position
and momentum. As discussed above, the inaccuracy of the second measurement defines
an operational measure of the disturbance of momentum due to the first, approximate
measurement of position. It therefore follows that for any sequential joint observableM on
R

2 the inaccuracies satisfy the trade-off relations (45), (46) and (47) and, moreover, these
relations constitute now the long-sought-for inaccuracy-disturbance trade-off relations.

Insofar as there are sequential measurement schemes in which these error and distur-
bance measures are finite, we have thus established the positive complement to the no-go
statement (C): the associated sequential joint observable constitutes an approximate joint
measurement, so that it is indeed possible to limit the disturbance of the momentum by
allowing the position measurement to be only approximate.

The existence of sequential measurements of approximate position and momentum can
be demonstrated by means of the “standard model” of an unsharp position measurement
introduced by von Neumann [30]. In this model, the position of the object is measured

by coupling it to the momentum Pp of the probe system via U = e−(i/~)λQ̂⊗P̂p , and using
the position Qp of the probe as the readout observable. If Ψp is the initial probe state,
then the instrument of the measurement can be written in the form 10

I(X)(ρ) =

∫

X

KqρK
∗
q dq, (50)

with Kq denoting the multiplicative operator (Kqψ)(x) =
√
λ Ψp(λ(q − x))ψ(x). The

approximate position realized by this measurement is Qµ, where µ is now the probability
measure with distribution function λ|Ψp(−λx)|2.

Suppose now that one is carrying out first an approximate position measurement, with
the instrument (50), and then a sharp momentum measurement. As shown by Davies
[31], this defines a unique sequential joint observable M , in fact, a covariant phase space
observable with marginals

10 In formula (50) we assume that the probe state Ψp is a bounded function. As shown in [14, Section
6.3], this assumption can be lifted by defining the instrument in a slightly different way.
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M1(X) = I∗(X)(P(R)) = Qµ(X), M2(Y ) = I∗(R)(P(Y )) = Pν(Y ). (51)

Here the distorted momentum is Pν , where ν is the probability measure with the distri-
bution 1

λ |Ψ̂p(− p
λ )|2. It is obvious that µ = µT and ν = νT , where T = |Ψ(λ) 〉〈Ψ(λ)| with

Ψ(λ)(q) =
√
λΨp(λq). This makes it manifest thatM obeys the uncertainty relations (45),

(46) and (47), here in their double role as accuracy-accuracy and accuracy-disturbance
trade-off relations.

6. Illustration: the Arthurs-Kelly model

The best studied model of a joint measurement of position and momentum is that
of Arthurs and Kelly [32]. In this model, a quantum object is coupled with two probe
systems which are then independently measured to obtain information about the object’s
position and momentum respectively. Arthurs and Kelly showed that this constitutes a
simultaneous measurement of position and momentum in the sense that the distributions
of the outputs reproduce the quantum expectation values of the object’s position and
momentum. They also derived the uncertainty relation for the spreads of the output
statistics corresponding to our Eq. (36). As shown in [33], the model also satisfies the
more stringent condition of an approximate joint measurement, that the output statistics
determine a covariant phase space observable whose marginals are smeared versions of
position and momentum. This work also extended the model to a large class of probe
input states (Arthurs and Kelly only considered Gaussian probe inputs), which made it
possible to analyze the origin of the uncertainty relation for the measurement accuracies
and identify the different relevant contributions to it. This will be described briefly below.
For a detailed derivation of the induced observable and the state changes due to this
measurement scheme, see [33] and [11, Chapter 6]. Further illuminating investigations of
the Arthurs-Kelly model can be found, for instance, in [34] and [35].

The Arthurs-Kelly model is based on the von Neumann model of an approximate po-
sition measurement introduced in Sec. 5. The position Q̂ and momentum P̂ of the object
are coupled with the position Q̂1 and momentum P̂2 of two probe systems, respectively,
which serve as the readout observables. Neglecting the free evolutions of the three systems
the combined time evolution is described by the measurement coupling

U = exp

(
− iλ

~
Q̂⊗ P̂1 ⊗ I2 +

iκ

~
P̂ ⊗ I1 ⊗ Q̂2

)
. (52)

If ψ is an arbitrary input (vector) state of the object, and Ψ1,Ψ2 are the fixed initial
states of the probes (given by suitable smooth functions, with zero expectations for the
probes’ positions and momenta), the probabilities for values of Q̂1 and P̂2 to lie in the
intervals λX and κY , respectively, determine a covariant phase space observable GT of
the form (32) via

〈ψ|GT (X × Y )|ψ〉 := 〈Uψ ⊗ Ψ1 ⊗ Ψ2|I ⊗ Q1(λX) ⊗ P2(κY )|Uψ ⊗ Ψ1 ⊗ Ψ2〉. (53)

The variances of the accuracy measures µ, ν associated with the marginals Qµ,Pν of GT

can readily be computed:
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∆(µ)2 =
1

λ2
∆(Q̂1,Ψ1)

2 +
κ2

4
∆(Q̂2,Ψ2)

2,

∆(ν)2 =
1

κ2
∆(P̂2,Ψ2)

2 +
λ2

4
∆(P̂1,Ψ1)

2.

(54)

If the two measurements did not disturb each other, only the first terms on the right
hand sides would appear; the second terms are manifestations of the presence of the other
probe and its coupling to the object. Since the observable defined in this measurement
scheme is a covariant phase space observable, it follows immediately that the accuracy
measures satisfy the trade-off relation (35), ∆(µ)∆(ν) ≥ ~/2. It is nevertheless instructive
to verify this explicitly by evaluating the product of the above expressions:

∆(µ)2∆(ν)2 = Q + D,

Q :=
1

4
∆(Q̂1,Ψ1)

2∆(P̂1,Ψ1)
2 +

1

4
∆(Q̂2,Ψ2)

2∆(P̂2,Ψ2)
2 ≥ ~

2

8

D :=
1

(λκ)2
∆(Q̂1,Ψ1)

2∆(P̂2,Ψ2)
2 +

(λκ)2

16
∆(Q̂2,Ψ2)

2∆(P̂1,Ψ1)
2

≥ ~
2

16

(
x+

1

x

)
≥ ~

2

8
,

where x :=
16

(λκ~)2
∆(Q̂1,Ψ1)

2∆(P̂2,Ψ2)
2.

(55)

Here we have repeatedly used the uncertainty relations for the probe systems, ∆(Q̂k,Ψk)∆(P̂k,Ψk) ≥
~/2.

It is evident that there are two independent sources of inaccuracy in this joint mea-
surement model. Indeed, each of the terms Q and D alone would suffice to guarantee an
absolute positive lower bound for the inaccuracy product. The first term, Q, is composed
of two independent terms which reflect the quantum nature of the probe systems; there
is no trace of a mutual influence of the two measurements being carried out simultane-
ously. This feature is in accordance with Bohr’s argument concerning the possibilities of
measurement, which he considered limited due to the quantum nature of parts of the
measuring setup (the probe systems).

By contrast, the term D reflects the mutual disturbance of the two measurements as
it contains the coupling parameters and product combinations of variances associated
with both probe systems. This feature of the mutual disturbance of measurements was
frequently highlighted by Heisenberg in thought experiments aiming at joint or sequential
determinations of the values of position and momentum.

A suitable modification of the measurement coupling U leads to a model that can
be interpreted as a sequential determination of position and momentum. Consider the
unitary operator, dependent on the additional real parameter γ,

U (γ) = exp

(
− iλ

~
Q̂⊗ P̂1 ⊗ I2 +

iκ

~
P̂ ⊗ I1 ⊗ Q̂2 −

iγλκ

2~
I ⊗ P̂1 ⊗ Q̂2

)
. (56)

The Baker-Campbell-Hausdorff decomposition of this coupling yields

U (γ) =exp

(
−(γ + 1)

i

2~
λκI ⊗ P̂1 ⊗ Q̂2

)
×

× exp

(
− i

~
λQ̂⊗ P̂1 ⊗ I2

)
exp

(
i

~
κP̂ ⊗ I1 ⊗ Q̂2

)
.

(57)
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It turns out that this coupling defines again a covariant phase space observable. The
variances of the inaccuracy measures µγ , νγ associated with the marginals are given as
follows:

∆(µγ)
2 =

1

λ2
∆(Q̂1,Ψ1)

2 + (γ − 1)2
κ2

4
∆(Q̂2,Ψ2)

2,

∆(νγ)
2 =

1

κ2
∆(P̂2,Ψ2)

2 + (γ + 1)2
λ2

4
∆(P̂1,Ψ1)

2.

(58)

These accuracies still satisfy the uncertainty relation (35), but this time the contribu-
tions corresponding to Q and D will both depend on the coupling parameters unless
κ = 0. In particular, it does not help to make the coupling look like that of a sequential
measurement, by putting γ = −1. In that case, ∆(ν−1) is the accuracy of an undisturbed
momentum measurement, and ∆(µ−1) contains a term which reflects the disturbance of
the subsequent position measurement through the momentum measurement. The distur-
bance of the position measurement accuracy is now given by κ∆(Q̂2,Ψ2), and together
with the momentum inaccuracy it satisfies the uncertainty relation

[ 1

κ2
∆(P̂2,Ψ2)

2
] [
κ2∆(Q̂2,Ψ2)

2
]
≥ ~

2

4
. (59)

7. On experimental implementations and tests of the uncertainty principle

“Turning now to the question of the empirical support [for the uncertainty principle],
we unhesitatingly declare that rarely in the history of physics has there been a principle
of such universal importance with so few credentials of experimental tests.” [36, p. 81]
This assessment was written by the distinguished historian of physics Max Jammer

at a time when studies of phase space observables based on positive operator measures
were just beginning. He qualifies it with a survey of early proposed and actual tests of
the preparation uncertainty relation, and he refers to some early model studies of joint
measurements, the first of which being that by Arthurs and Kelly [32].

Jammer’s verdict still holds true today. There are surprisingly few publications that
address the question of experimental tests of the uncertainty principle. Some of these
report confirmations of the uncertainty principle, while a few others predict or suggest
violations. We will briefly comment on some of this work below.

7.1. Tests of preparation uncertainty relations

The most commonly cited version of uncertainty relation is the preparation relation,
usually in the familiar version in terms of standard deviations. Confirmations of this
uncertainty relation have been reported by Shull [37] for a single-slit diffraction experi-
ment with neutrons, by Kaiser et al [38] and Klein et al [39] in neutron interferometric
experiments, and more recently by Nairtz et al [40] in a slit experiment for fullerene
molecules.

In these slit diffraction and interferometric experiments, typical measures used for the
width of the spatial wave function are the slit width and slit separation, respectively. The
width of the associated momentum wave function is given in terms of the width at half
height of the central peak. It must be noted that in the mathematical modeling of single
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slit diffraction, the standard deviation of the momentum distribution is infinite. Hence it
is indeed necessary to use another, operationally significant measure of the width of that
distribution. There does not seem to be a universally valid uncertainty relation involving
width at half height (in short, half width), but the authors of these experiments make
use of a Gaussian shape approximation of the central peak, which is in agreement with
the data within the experimental accuracy. This allows them to relate the half widths to
standard deviations and confirm the correct lower bound for the uncertainty product.

A model independent and thus more direct confirmation of the uncertainty principle
can be obtained if the widths of the position and momentum distributions are measured
in terms of the overall width defined in Eq. (4). It is likely that the data collected in these
experiments contain enough information to determine these overall widths for different
levels of total probability 1 − ε1 and 1 − ε2. In the case of the neutron interference
experiment, it was pointed out by Uffink [41] that a more stringent relation is indeed
at stake, namely, a trade-off relation, introduced by Uffink and Hilgevoord [42], between
the overall width of the position distribution and the fine structure width (mean peak
width) of the momentum distribution.

It should be noted that these experiments do not, strictly speaking, constitute direct
tests of the uncertainty relations for position and momentum observables. While the
position uncertainty, or the width of the position distribution, is determined as the width
of the slit, the momentum distribution is inferred from the measured position distribution
at a later time, namely when the particles hit the detection screen. This inference is based
on the approximate far-field description of the wave function (Fraunhofer diffraction in
optics), and is in accordance with the classical, geometric interpretation of momentum
as mass times velocity. Thus, what is being tested is the uncertainty relation along with
the free Schrödinger evolution and the Fourier-Plancherel connection between position
and momentum.

An alternative interpretation can be given in the Heisenberg picture, noting that the
operators Q̂, P̂ ′ := mQ̂(t)/t are canonically conjugate, given the free evolution Q̂(t) =
Q̂ + P̂ t/m. Here m is the mass of the particle, and t is the time of passage of the wave
packet from the slit to the detection screen. (If the distance between the slit and the
detection screen is large compared to the longitudinal width of the wave packet, the
time t is fairly well defined.) The width of the distribution of Q̂ is determined by the
preparation (passage through the slit), and the distribution of P̂ ′ is measured directly.

7.2. On implementations of joint and sequential measurements

To the best of our knowledge, and despite some claims to the contrary, there is presently
no experimental realization of a joint measurement of position and momentum. Thus
there can as yet be no question of an experimental test of the uncertainty relation for
inaccuracies in joint measurements of these quantities. But there are reports on the
successful experimental implementation of joint measurements of canonically conjugate
quadrature components of quantum optical fields using multiport homodyne detection.

There seem to be several communities in quantum optics and optical communication
where these implementations were achieved independently. The experiment of Walker
and Carrol [43] is perhaps the first realization, with a theoretical analysis by Walker
[44] yielding the associated phase space observable. This seems to have been anticipated
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theoretically by Yuen and Shapiro [45]. See also Lai and Haus [46] for a review. A more
recent claim of a quantum optical realization of a joint measurement was made by Beck et
al [47]. It must be noted that in these works it is not easily established (in some cases for
lack of sufficiently detailed information) whether the implementation criterion is merely
that of reproducing the first moments of the two quadrature component statistics, or
whether in fact the statistics of a joint observable have been measured.

By contrast, Freyberger et al [48], [49] and Leonhardt et al [50] [51] showed that the
eight port homodyne schemes for phase difference measurements carried out by Noh et
al [52], [53] yield statistics that approach the Q-function of the input state for a suitable
macroscopic coherent state preparation of the local field mode. This is manifestly a
realization of a joint observable. A simple analysis is given in [11, Sec. VII.3.7.].

Turning to the question of position and momentum proper, the Arthurs-Kelly model
is particularly well suited to elucidate the various aspects of the uncertainty principle
for joint and, as we have seen, sequential joint measurements of approximate position
and momentum. However, it is not clear whether and how an experimental realization
of this scheme can be obtained. Apart from the quantum optical realizations of joint
measurements of conjugate quadrature components, there are a few proposals of realistic
schemes for position and momentum, e.g., [54], [55], and [56] mainly in the context of atom
optics. In the latter two models the probe systems are electromagnetic field modes, and
the readout probe observables are suitable phase-sensitive quantities. The measurement
coupling differs from the Arthurs-Kelly coupling in accordance with the different choice
of readout observables.

The experimental situation regarding the inaccuracy-versus-disturbance relation is far
less well developed. This is probably because, as we have seen above, rigorous, opera-
tionally relevant formulations of such a relation had not been found until recently. Apart
from some model considerations of the kind considered here in Sec. III there seems to be
no experimental investigations of accuracy-disturbance trade-off relations.

7.3. On some alleged violations of the uncertainty principle

Throughout the history of quantum mechanics, the joint measurement uncertainty
relation has been the subject of repeated challenges. There are two lines of argument
against it which start from logically contrary premises. The conclusion is, in either case,
that only the preparation uncertainty relation is tenable (as a statistical relation) within
quantum mechanics.

The first argument against the joint measurement relation was based on the claim that
there is no provision for a notion of joint measurement within quantum mechanics. Based
on a careful assessment of the attempts existing at the time, Ballentine [57] concludes
that a description of joint measurements of position and momentum in terms of joint
probabilities could not be obtained without significant modifications or extensions of the
existing theory. Here we have shown that the required modification was the introduction
of positive operator measures and specifically phase space observables, which is entirely
within the spirit of the traditional formulation of quantum mechanics; it amounts merely
to a completion of the set of observables.

The second argument was based on the claim that joint measurements of position and
momentum are in fact possible with arbitrary accuracy, and its authors, among them
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Karl Popper and Henry Margenau, attempted to demonstrate their claim by means of
appropriate experimental schemes.

Popper [58] conceived a joint measurement scheme that was based on measurements of
entangled particle pairs. That this proposal was flawed and untenable was immediately
noted by von Weizsäcker [59]. While Popper later accepted this criticism, he suggested
[60, footnote on p. 15] that his example may nevertheless have inspired Einstein, Podolsky
and Rosen [61] to conceive their famous thought experiment. In fact, this experiment can
be construed as a scheme for making a joint measurement of the position and momentum
of a particle that is entangled with another particle in a particular state: provided that
Einstein, Podolsky and Rosen’s assumption of local realism is tenable, a measurement
of the position of the latter particle allows one to infer the position of the first particle
without disturbing that particle in any way. At the same time, one can then also measure
the position of the first particle.

It would follow that the individual particle has definite values of position and mo-
mentum while quantum mechanics provides only an incomplete, statistical description.
However, it a well-known consequence of arguments such as the Kochen-Specker-Bell the-
orem [62,63] and Bell’s theorem [64] that such value assignments are in contradiction with
quantum mechanics. Moreover, this contradiction has been experimentally confirmed in
the case of Bell ’s inequalities, and these tests turned out in favor of quantum mechanics.

Another proposal of a joint determination of arbitrarily sharp values of the position and
momentum of a quantum particle was made by Park and Margenau [65] who considered
the time of flight determination of velocity. As shown in a quantum mechanical analysis
in [66], this scheme is appropriately understood as a sequential measurement of first
sharp position and then sharp momentum, and does therefore not constitute even an
approximate joint measurement of position and momentum. But Park and Margenau are
only interested in demonstrating that it is possible to ascribe arbitrarily sharp values of
position and momentum to a single system at the same time.

An analogous situation arises in the slit experiment, where one could formally infer
arbitrarily sharp values for the transversal momentum component from the bundle of
geometric paths from any location in the slit to the detection point. This bundle is
arbitrarily narrow if the separation between slit and detection screen is made sufficiently
large. Thus the width of the spot on the detection screen and the width of the possible
range of the inferred momentum value can be made small enough so that their product
is well below the order of ~.

In both situations, the geometric reconstruction of a momentum value from the two
position determinations at different times, which is guided by classical reasoning, con-
stitutes an inference for the time between the two measurements and cannot be used to
infer momentum distributions in the state before the measurement or to predict the out-
comes of future measurements. Hence such values are purely formal and of no operational
significance. One could be inclined to follow Heisenberg who noted in his 1929 Chicago
lectures [67, p. 25] that he regarded it as a matter of taste whether one considers such
value assignments to past events as meaningful.

However, it has been shown, by an extension of the quantum mechanical language to
incorporate propositions about past events, that hypothetical value assignments to past
events lead to Kochen-Specker type contradictions. This result was obtained by Quadt
[68] in his diploma thesis written under P. Mittelstaedt’s supervision at the University
of Cologne in 1988; the argument is sketched in [69].
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Popper returned to the subject many years later [60, pp. 27-29] with a novel ex-
perimental proposal with which he aimed at testing (and challenging) the Copenhagen
interpretation. In a subsequent experimental realization it is reported that the outcome
seems to confirm Popper’s prediction, thus amounting to an apparent violation of the
preparation uncertainty relation.

In Popper’s new experiment, EPR-correlated pairs of quantum particles are emitted
from a source in opposite directions, and then each particle passes through a slit, a narrow
one on one side, the one on the opposite side of wide opening. The particles are then
recorded on a screen on each side. Popper predicts that independent diffraction patterns
should build up on each side, according to the appropriate slit width; according to Popper,
the Copenhagen interpretation should predict that the particle passing through the wider
slit actually shows the same diffraction pattern as the other particle. In the extreme of
no slit on one side, this would still be the case. Popper’s interpretation of his experiment
as a test of the Copenhagen interpretation was criticized soon afterwards, see, e.g., the
exchange in [70,71,72] or [73].

The experimental realization of Popper’s experiment by Kim and Shih [74] shows,
perhaps at first surprisingly, a behavior in line with Popper’s prediction. Moreover, taking
the width of the “ghost image” of the first, narrow slit at the side of the second particle
(confirmed in [75]) as a measure of the position uncertainty of the second particle, then
this value together with the inferred width of the momentum distribution form a product
smaller than allowed by the preparation uncertainty relation. Kim and Shih hasten to
assert that this result does not constitute a violation of the uncertainty principle but
is in agreement with quantum mechanics; still, the experiment has aroused some lively
and controversial debate (e.g., [76,77,78]). As pointed out by Short [79], Kim and Shih
overlook the fact that the two width parameters in question should be determined by the
reduced quantum state of the particle and thus should, according to quantum mechanics,
satisfy the uncertainty relation. Short gives an explanation of the experimental outcome
in terms of the imperfect imaging process which leads to image blurring, showing that
there is indeed no violation of the uncertainty relation.

Finally, it seems that papers with claims of actual or proposed experiments indicating
violations of the uncertainty relation hardly ever pass the threshold of the refereeing
process in major journals. They appear occasionally as contributions to conference pro-
ceedings dedicated to realistic (hidden variable) approaches to quantum mechanics.

8. Conclusion

In this exposition we have elucidated the positive role of the uncertainty principle as a
necessary and sufficient condition for the possibility of approximately localizing position
and momentum. We have also noted that approximate position measurements can allow
a control of the disturbance of the momentum. Uncertainty relations for position and
momentum thus come in three variants: for the widths of probability distributions, for
accuracies of joint measurements, and for the trade-off between the accuracy of a position
measurement and the necessary momentum disturbance (and vice versa).

In his seminal paper of 1927, Heisenberg gave intuitive formulations of all three forms
of uncertainty relations, but it was only the relation for state preparations that was made
precise soon afterwards. It took several decades until the conceptual tools required for a
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rigorous formulation of the two measurement-related uncertainty relations had become
available. Here we identified the following elements of such a rigorous formulation.

First, a theory of approximate joint measurements of position and momentum had
to be developed; this possibility was opened up by the representation of observables
as positive operator measures. Second, a criterion of what constitutes an approximate
measurement of one observable by means of another must be based on operationally
significant and experimentally relevant measures of inaccuracy or error. Here we discussed
three candidate measures: standard error, a distance of observables, and error bars. For
each of these, a universal Heisenberg uncertainty relation holds, showing that for any
observable on phase space the marginal observables cannot both approximate position
and momentum arbitrarily well.

The proofs of these uncertainty relations are first obtained for the distinguished class
of covariant phase space observables, for which they follow mathematically from a form
of uncertainty relation for state preparations. This formal connection between the prepa-
ration and joint measurement uncertainty relations is in accordance with a postulate
formulated by N. Bohr [80] in his famous Como lecture of 1927 which states that the
possibilities of measurement should not exceed the possibilities of preparation. The un-
certainty relation for a general approximate joint observable for position and momentum
can then be deduced from that for some associated covariant joint observable.

Apart from the limitations on the accuracy of joint approximations of position and
momentum, we have found Heisenberg uncertainty relations which quantify the neces-
sary intrinsic unsharpness of two observables that are jointly measurable, provided they
are to be approximations of position and momentum, respectively. Both limitations are
consequences of the noncommutativity of position and momentum.

Finally, the idea of a measurement of (say) position disturbing the momentum has been
made precise by recognizing that a sequential measurement of measuring first position
and then momentum constitutes an instance of a joint measurement of some observables,
of which the first marginal is an (approximate) position and the second a distorted
momentum observable. The inaccuracy inherent in the second marginal gives a measure
of the disturbance of momentum. The joint measurement uncertainty relations can in
this context be interpreted as a trade-off between the accuracy of the first position
measurement against the extent of the necessary disturbance of the momentum due
to this measurement.

Last we have surveyed the current status of experimental implementations of joint
measurements and the question of experimental tests of the uncertainty principle. While
there do not seem to exist any confirmed violations of the uncertainty principle, there
do exist several experimental tests of uncertainty relations which have shown agreement
with quantum mechanics.
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Appendix: Operations and instruments
In this appendix we recall briefly the concepts of an operation and an instrument,

which are the basic tools for describing the changes experienced by a quantum system
under the influence of a measurement or other interactions with external systems. In
the Schrödinger representation these changes are described in terms of the states of
the system whereas in the dual Heisenberg picture they are described in terms of the
observables of the system. For more details, see e.g. [12, Chapter 4].

Let T (H) be the Banach space of the trace class operators on a Hilbert space H and
let L(T (H)) be the set of bounded linear mappings on T (H). We recall that a linear
operator ρ ∈ T (H) is a state if it is positive, ρ ≥ 0, and of trace one, tr [ρ] = 1. A linear
map φ : T (H) → T (H) is an operation if it is positive, that is, φ(ρ) ≥ 0 for all ρ ≥ 0,
and has the property 0 ≤ tr [φ(ρ)] ≤ 1 for all states ρ. A positive linear map on T (H) is
necessarily bounded, so that any operation φ is an element of L(T (H)).

An operation φ : ρ 7→ φ(ρ) comprises the description of the state change of a system
under a measurement in the following way: if the initial state is ρ, the final state (modulo
normalization) is given by φ(ρ) provided this is a nonzero operator. The number tr [(φ(ρ)]
gives the probability for the occurrence of the particular measurement outcome associated
with φ, and hence, for this particular state change.

The adjoint φ∗ : L(H) → L(H) of an operation φ : T (H) → T (H), also called the dual
operation, is defined by the formula tr [ρφ∗(A)] = tr [φ(ρ)A], A ∈ L(H), ρ ∈ T (H), and
it is a normal positive linear map with the property 0 ≤ φ∗(I) ≤ I.

Using φ∗, the probability for a measurement outcome associated with an operation φ
can be expressed as tr [φ(ρ)] = tr [ρφ∗(I)] for all states ρ. Here the operator φ∗(I) is the
effect representing the measurement outcome under consideration. This effect is uniquely
determined by the operation φ.

Let Ω be a nonempty set and A a σ-algebra of subsets of Ω. An instrument (on the
measurable space (Ω,A)) is a mapping I from the σ-algebra A to L(T (H)) such that

(i) I(X) is an operation for all X ∈ A;
(ii) for each state ρ ∈ T (H) the map X 7→ tr [I(X)(ρ)] is a probability measure.

This means that an instrument is an operation valued measure.
An instrument I : A → L(T (H)) determines a unique observable E : A → L(H) by

the condition
tr [ρE(X)] = tr [I(X)(ρ)] , (60)

which is required to hold for all states ρ ∈ T (H) and for all sets X ∈ A.
Let I be an instrument. The dual operations I(X)∗, X ∈ A, constitute the dual in-

strument I∗ : A → L(H) so that I∗(X)(A) = I(X)∗(A) for any X ∈ A, A ∈ L(H), and
thus

tr [ρI∗(X)(A)] = tr [AI(X)(ρ)] , (61)

for any X ∈ A, A ∈ L(H), ρ ∈ T (H).
In the application of this paper (Ω,A) is the real Borel space (R,B(R)).
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