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Abstract: Data fusion is being increasingly used to combine the outputs of different types of 

sensor.  This paper reviews the application of the approach to ligand-based virtual screening, 

where the sensors to be combined are functions that score molecules in a database on their 

likelihood of exhibiting some required biological activity.  Much of the literature to date involves 

the combination of multiple similarity searches, although there is also increasing interest in the 

combination of multiple machine learning techniques.  Both approaches are reviewed here, 

focusing on the extent to which fusion can improve the effectiveness of searching when compared 

with a single screening mechanism, and on the reasons that have been suggested for the observed 

performance enhancement. 
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INTRODUCTION 
Discovery programmes in the agrochemical and pharmaceutical industries make extensive use of 

high-throughput screening (HTS) to identify potential lead compounds that could form the basis 

for subsequent optimisation.  The cost-effectiveness of HTS means that very many more 

compounds can now be tested for biological activity than was possible a decade ago; even so, the 

sheer number of compounds available from corporate databases and vendor catalogues (let alone 

those that might be synthesised using combinatorial techniques) means that it is not generally 

possible to screen all of the molecules potentially available to a discovery programme.  Instead, 

carefully selected subsets of the available compounds are identified using virtual screening 

approaches to prioritise the biological testing of the available molecules.  This ensures that those 

molecules that have the greatest probabilities of activity are synthesised (or acquired) and then 

tested at as early a stage of the project as possible [1-5].   
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There are many different types of virtual screening in current use but they can be sub-divided into 

structure-based and ligand-based approaches.  Structure-based virtual screening using protein-

ligand docking is the method of choice when the 3D structure of the biological target is available 

from X-ray or NMR studies [6-8].  Ligand-based virtual screening is appropriate when there is 

information relating to known (or predicted) ligands; examples of this approach are machine 

learning methods, in which a classification rule is developed from a training-set containing 

known active and known inactive molecules [9-11], and similarity methods, in which molecules 

are ranked in order of decreasing similarity to a known active (or actives) [12-14].  All of these 

types of method result in a ranking of a set of molecules: the molecules at the top of the ranking 

are those that have achieved the highest values for some type of scoring scheme and that are thus 

expected to have the greatest probability of activity once they undergo actual, rather than virtual, 

screening.   

 

Descriptions of novel virtual screening methods appear regularly in the literature, and this has 

spurred interest in comparative studies that seek to assess the relative merits of different methods 

when used under the same conditions (see, e.g., [15-22]).  Many of these comparative studies 

seek to try to identify a single, best measure, using some quantitative performance criterion [13, 

23].  Such comparisons help to focus attention on methods of proven robustness; however, it is 

most unlikely that any one method could be expected to perform equally well under all 

circumstances, a point made forcibly by Sheridan and Kearsley when they note that “we have 

come to regard looking for ‘the best’ way of searching chemical databases as a futile exercise.  In 

both retrospective and prospective studies, different methods select different subsets of actives for 

the same biological activity and the same method might work better on some activities than 

others” [13].  This view is by no means restricted to chemoinformatics, as is perhaps best 

exemplified by the famous “no free lunch” theorem, which shows that there is no single best 

approach for tackling combinatorial optimisation problems [24]. 

 

If many different virtual screening methods are available, and if none of them can be expected to 

be consistently superior to the others, then it seems appropriate to use not one but multiple 

methods to prioritise a database for biological testing.  This is an example of the application of 

data fusion, a technique first developed for military signal-processing purposes but now 

employed in a very wide range of application areas, as demonstrated by Soong’s extensive 

bibliography [25].  This article reviews the use of data fusion methods for ligand-based virtual 

screening; the use of these methods for structure-based virtual screening is normally referred to as 

consensus scoring, and is reviewed in detail by Feher [26].  Here, we introduce data fusion and its 

application to virtual screening, review some of the applications that have been reported, 
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including several studies carried out in our laboratory in Sheffield, and discuss the reasons why 

data fusion might be expected to enhance screening performance.  

 

THE BASIC IDEA 
The idea of using multiple sources of information to investigate a problem is a very old one: we 

use sight and sound to cross a road; we use sight, smell and taste to evaluate a restaurant meal; 

and we use juries, rather than individuals, to decide the outcomes of criminal trials.  However, its 

application to the combination of digital information sources is more recent, having first come to 

prominence in the Eighties for signal processing in defence applications (e.g., ocean surveillance, 

surface-to-air defence and battlefield target identification) and then being taken up for use in a 

rapidly increasing range of application domains (e.g., law enforcement, remote sensing, medical 

diagnosis and equipment monitoring) [27-30].  A common definition of data fusion is that 

recommended by the US Department of Defense Joint Directors of Laboratories Data Fusion 

Subpanel, as quoted by Klein: “data fusion is a multilevel, multifaceted process dealing with the 

automatic detection, association, correlation, estimation, and combination of data and information 

from multiple sources” [30].  This definition is very broad, including a whole range of data-

capture and data-manipulation activities that are normally a given when data fusion is used for 

virtual screening, where the principal focus is the final activity, i.e., the act of combination.  The 

definition is, however, useful when considering other aspects of chemoinformatics for which data 

fusion might be used, e.g., in analytical and structure-activity applications.   

 

Fusion for virtual screening is based on the idea of computing a score (approximating, directly or 

indirectly, to the probability of activity) for each molecule in a database by using multiple scoring 

functions.  The multiple sets of scores are then combined to obtain a better (in some sense) set of 

scores than could be obtained by use of just a single function.  The basic procedure is shown 

below, where the sets of scores that are input to the combination stage can be generated using any 

of the structure-based or ligand-based screening approaches that are currently available.   

For each of the scoring functions, I 

Compute the score Score(I,J) for each database-molecule, J 

Combine the set of scores {Score(I,J)} for each database-molecule to give a new fused 

score, FScore(J)  

Rank the database in decreasing order of the FScore(J) values, and apply a cut-off 

to retrieve some number of the top-ranked molecules. 

 

We have already noted that this review will restrict itself to ligand-based virtual screening.  Even 

so, the general model shown above encompasses a wide range of types of fusion that could be 
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invoked to support a screening programme; these could hence be used to categorise the many 

publications on data fusion that have appeared in the literature.  One mode of organisation is to 

consider the types of score that are input to the selection algorithm: specifically, one could input 

quantitative data (e.g., the similarity-coefficient values from a similarity-searching routine), 

ordinal data (e.g., the ranks resulting from ordering the dataset into decreasing similarity-

coefficient values) or categorical data (as would be the case with the outputs from a 3D 

pharmacophore search or from a k-nearest neighbour classification routine).  The last of these, a 

situation that is often referred to as classifier fusion [31, 32], is of particular importance in 

structure-based virtual screening, where several of the fusion rules listed by Feher [26] use voting 

schemes in which individual docking algorithms state that a particular molecule should, or should 

not, be retrieved.  Ligand-based approaches have more generally used either quantitative or 

ordinal data, with considerable discussion as to whether the former should be converted to the 

latter prior to the application of the fusion rule [33-35].   

 

Use of the ranks involves a loss of information.  However, in the virtual-screening context, 

medicinal chemists’ principal concern is to determine whether or not a molecule should be 

considered for further analysis, rather than the magnitudes of the scores associated with those 

molecules.  More importantly, even if different scoring functions yield the same range of scores 

(e.g., zero-to-unity for the binary version of many association coefficients [12]) or if range-

scaling is deliberately introduced [34]), the distribution of scores may not be the same, with the 

possibility of introducing bias when fusion takes place.  For example, an early study involved 

Tanimoto-based similarity measures based on three different representations to search a set of 

compounds with associated cellular-uptake data [33].  Ginn et al. showed that one of their 

descriptors (based on computed physical properties) yielded similarity distributions that were 

different from those yielded by the other two types (2D fingerprints and 3D torsional angle 

descriptors), and the authors hence fused ranks, rather than similarity values [33].  Analogous 

problems can occur if different similarity coefficients are used.  For example, the Tanimoto and 

cosine coefficients have both been used for similarity and diversity applications that involve 2D 

fingerprints.  These two coefficients are defined as follows: assume that the fingerprints 

describing two molecules have a and b bits set and that c of these are in common.  Then the 

Tanimoto coefficient is defined to be   

cba
c
−+

 

and the cosine coefficient is defined to be 

ab
c

. 
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When two molecules are compared, the latter coefficient will always gives a score that is equal to 

or greater than that resulting from the Tanimoto coefficient [36], meaning that a fusion rule based 

on the minimum or maximum of the scores (vide infra) would be biased towards one input or the 

other.  These examples have focused on similarity-based virtual screening but similar comments 

would apply to the use of data fusion in machine-learning environments; for example, one might 

score compounds using several different substructural analysis weighting schemes (such as the 

R1-R4 weights described by Ormerod et al. [15] and by Hert et al. [37]) or using the outputs from 

binary kernel discrimination and support vector machine approaches (as described recently by 

Jorissen and Gilson [38]).  Thus, despite the potential loss of discrimination, scores are frequently 

converted to ranks prior to fusion.  Similar comments apply to consensus scoring, where the 

identification of accurate scoring functions continues to be problematic [6-8]. 

 

The first chemical applications of what we would now call data fusion were probably in 

spectroscopy and QSAR [39-43]; there then appeared the first applications in ligand-based virtual 

screening [33, 44-46], and shortly afterwards the first applications in structure-based virtual 

screening [47-49] (as detailed in the excellent review by Feher [26]).  In what follows, the reader 

should assume that we are dealing with ligand-based virtual screening, unless stated otherwise; 

that said, many of the comments are applicable to both types of screening (and there has, indeed, 

been interest in combining the outputs of these very different approaches [26, 50, 51]): in what 

follows, data fusion should be considered as referring to ligand-based virtual screening, and 

consensus scoring to structure-based virtual screening. 

 

The initial studies of data fusion all focused on similarity searching; it is probably the case that 

this continues to be the principal focus of study for methodological developments, although 

straightforward applications increasingly involve other types of screening method.  The basic idea 

underlying the use of similarity searching for virtual screening is a very simple one that was first 

enunciated explicitly by Johnson and Maggiora, whose Similar Property Principle states that 

molecules that are structurally similar are likely to have similar properties [52].  Thus, if the 

Principle holds, then a database-molecule that has not been tested for biological activity but that 

is structurally similar to a molecule known to exhibit the activity of interest (the so-called 

reference or target structure) then the database-molecule is also likely to be active; moreover, this 

molecule is more likely to be active than another database-molecule that has a lesser degree of 

similarity to the reference structure.  A simple screening strategy hence involves using a 

similarity measure to compute the degree of resemblance between the known reference structure 

and each of the database molecules, and then ranking these molecules in decreasing order of the 

computed similarities.   
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Two papers by a group at Merck first demonstrated the potential of data fusion for enhancing the 

effectiveness of similarity-based virtual screening.  Previous work had established the general 

applicability of two small atom-bond substructural fragments, the atom pair and the topological 

torsion, for 2D similarity searching [13].  These fragments were further developed by using 

physicochemical properties to describe the atoms [44], thus providing a fuzzy matching 

capability, and by using inter-atomic distances, rather than through-bond distances, to encode 3D 

information [45].  The Merck in-house similarity searching system computes a number of these 

fragments for each of the molecules that are to be screened; a Dice-like coefficient is then 

computed for the similarity of each such molecule to the reference structure that forms the basis 

for a similarity search, where the Dice coefficient is  

ba
c
+
2

 

(using the notation given previously for the Tanimoto and cosine coefficients).  The user has the 

option to choose specific pairs of fragments as being of importance for the search and then to 

compute a score for these combination descriptors by taking the mean of the coefficient values 

for the two chosen fragment-types.  The database is sorted into decreasing order of the resulting 

mean scores, and the highest ranked compounds passed on for further investigation.  

Alternatively, the database is sorted into decreasing order for each of the individual scores, and 

the two resulting ranks for each compound compared to find the lower value (i.e., nearer the top 

of the ranking).  The database is then sorted into decreasing order of these minimum ranks.  

Searches for compounds belonging to specific pharmacological classes showed that the 

combination and the minimum rank approaches both performed on average as well as, or slightly 

better than, the better individual descriptor in each case. 

 

APPLICATIONS OF DATA FUSION 
Work in Sheffield 

The Merck studies described in the previous section were closely followed by two from Ginn et 

al. [33, 46].  These studies again focused on the potential benefits to be gained by using similarity 

measures based on multiple structure representations, and were occasioned by work on the use of 

data fusion in information retrieval (IR) systems, specifically on the combination of the rankings 

produced by different retrieval mechanisms when applied to databases of textual documents.  An 

early IR investigation by Belkin et al. [53] combined the results of multiple text-database 

searches that had been conducted in response to a single user query but that employed different 

indexing and searching strategies.  Each such strategy yielded a ranking of the text database that 

was being searched and the set of rankings was then combined using simple arithmetic fusion 

rules, such as taking the largest rank (MAX), the smallest rank (MIN, as in the Merck study 
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mentioned previously) or the sum of ranks (SUM); this work soon led to many other studies and 

data fusion is now a standard approach in IR (as reviewed by Croft [54] and by Hsu and Taksa 

[55]).   

 

The first study by Ginn et al. was conducted as part of an evaluation of the EVA descriptor for 

similarity applications.  The EVA (for EigenVAlue) descriptor is derived from IR- and Raman-

range molecular vibrations that are typically obtained through the application of a classical 

normal co-ordinate analysis to an appropriately energy-minimised 3D structure. Similarity 

searches were conducted using Unity 2D fingerprints and EVA, and the resulting rankings, 

individual and fused, were then used for simulated property prediction of logP values.  The 

detailed experiments that were carried out showed that fused searches could yield improved 

predictions in some cases [46].  The second study was more wide-ranging, using three very 

different datasets and several different types of structural descriptor, both 2D and 3D, for each 

dataset [33].  The experiments showed that the simple SUM fusion rule resulted in an average 

level of search performance that was at least as good as the best individual measure: since the 

latter often varied unpredictably from one search to another search, it was concluded that the use 

of a fusion rule would generally provide a more consistent level of search performance than 

would a single similarity measure. That said, some of the experiments involved varying both the 

similarity coefficient and the structure representation, so that it was not possible to identify the 

precise reason for the observed performance enhancements.  Since these initial studies by Ginn et 

al., there have been several subsequent projects in our laboratory that have sought to establish the 

general applicability of data fusion, as summarised below.   

 

The measurement of inter-molecular structural similarity based on 2D fingerprints has been 

studied for many years (see, e.g., [16, 17, 36, 44-46, 56]).  Much of this work has used the 

familiar Tanimoto coefficient to compare pairs of fingerprints, but two recent studies compared a 

total of 22 different coefficients that could be used for similarity-based virtual screening [57, 58].  

Whilst many of the coefficients were shown to yield comparable results, some differences were 

apparent.  Research was hence undertaken to determine whether data fusion could further 

improve search performance as compared to the use of just the Tanimoto coefficient; thus, 

whereas previous studies had combined multiple representations of the reference structure, the 

aim here was to use a fixed representation but with multiple similarity coefficients.  Salim et al. 

hence carried out extensive simulated virtual screening experiments on the MDL Drug Data 

Report database (MDDR, available from MDL Information Systems Inc. at 

http://www.mdli.com) [58].  The experiments used 13 different coefficients to search for 

molecules characterised by three different types of 2D fingerprint and belonging to seven 

bioactivity classes of current pharmaceutical interest.  The searches involved all the individual 
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coefficients, fused searches using all possible pairs of coefficients, fused searches containing all 

possible triples of coefficients etc. (analogous combinatorial studies of consensus scoring 

functions for ligand docking have been reported by Yang et al. [35] and Oda et al. [59]).  

Analysis of the extensive results showed that combinations of between two and four coefficients 

could improve screening performance over searches using just the industry-standard Tanimoto 

coefficient.  However, the results were extremely inconsistent, with no one combination of 

coefficients providing a consistently high level of performance, and with the best-performing 

combination for one biological target often performing poorly in searches for a different target.  

This lack of consistency has been observed in other screening studies [60-62].  

 

It was disappointing to find that it was not consistently possible to identify some single 

combination that could be expected to enhance the effectiveness of screening in all 

circumstances.  However, a subsequent detailed analysis by Holliday et al. revealed that this was 

due in large part to the marked biases (which could be either positive or negative) that many 

coefficients have for the retrieval of molecules of a particular size (as reflected in the numbers of 

bits set in their fingerprints) [63].  The effect of molecular size on the performance of the 

Tanimoto coefficient for similarity and diversity applications had been noted previously [64, 65]; 

the studies by Salim et al. and Holliday et al. demonstrated the generality of this behaviour and 

its effect on the performance of data fusion based on multiple coefficients.   

 

Thus far, we have assumed that similarity-based data fusion involves combining the rankings (or 

similarities) that result from searching a database with a single bioactive reference structure but 

with multiple similarity measures, an approach that Whittle et al. refer to as similarity fusion [34].  

The alternative, group fusion approach involves combining the rankings (or similarities) that 

result from searching a database with a single similarity measure (e.g., 2D fingerprints and the 

Tanimoto coefficient) but with multiple bioactive reference structures.  The idea of combining 

structural information from multiple molecules is by no means new [66-71]; drawing on earlier 

work by Xue et al. [69] and Schuffenhauer et al. [70], Whittle et al. [34] and Hert et al. [72] 

studied the search-effectiveness of group fusion, in comparison with both conventional similarity 

searching and similarity fusion.  They found that better results were obtained from using 

similarity scores, rather than rank positions (a not unexpected finding since ranks are commonly 

used in similarity to alleviate problems resulting from the different similarity distributions 

engendered by different similarity measures (vide supra)) and that the MAX fusion rule gave 

better results than the SUM rule.  Extensive searches of the MDDR database showed clearly the 

benefits obtainable from group fusion.  In particular, it was found that picking as few as ten active 

reference structures and combining them using group fusion enabled searches to be carried out 

that were comparable to even the very best from amongst many hundreds of conventional 
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similarity searches using individual reference structures.  Further searches were carried out using 

pharmacological activity classes that had been chosen to reflect a range of structural diversities 

[34, 37].  These experiments demonstrated that the benefits of group fusion are greatest when the 

sought actives are structurally diverse; conventional similarity searching or similarity fusion, 

conversely, are most effective when the actives are strongly clustered in structural space.  

Similarity fusion and group fusion would thus appear to be complementary in character.   

 

Hert et al. have also described a modification of conventional similarity searching that makes use 

of group fusion [37, 73].  Given a bioactive reference structure, the top-ranked structures 

resulting from a similarity search are expected to have a high probability of activity as a 

consequence of the Similar Property Principle (vide supra); Hert et al. made the assumption that 

such molecules are indeed active and that they can hence be used as the reference structures for 

further similarity searches that can then be combined using group fusion; similar ideas have been 

used previously in IR [74] and bioinformatics [75].  Extensive searches of the MDDR database 

demonstrated that this activity-assumption resulted in searches that were nearly always superior 

to conventional similarity searching (where just the initial reference structure is used) in its ability 

to identify active molecules, with some of the increases in performance being quite marked.   

 

Some recent studies  

A data fusion system has two principal components: the functions that are used to score each of 

the molecules in the database that is to be screened; and the fusion rule that is used to combine 

the sets of resulting scores.  Simple variations in these two components hence permit a very large 

number of different types of fusion to take place: for example, one could generate scores (or 

ranks) using different machine-learning tools, such as substructural analysis, a support vector 

machine and binary kernel discrimination inter alia; and one could combine scores (or ranks) by 

summing them, by taking the maximum or by taking the geometric mean inter alia.  Given this 

range of possibilities it is hardly surprising that many reports are now appearing on the use of 

data fusion for virtual screening: we discuss below several recent papers that demonstrate the 

current state of the art in data fusion, and show how it is starting to be used as a standard 

component of systems for virtual screening. 

 

The early comparison of fusion rules by Ginn et al. [33] found that the SUM rule, when applied 

to ranks, yielded a consistently high level of performance, and one that was generally superior to 

those obtained from use of the MIN or MAX rules (vide supra).  The latter two rules represent the 

assignment of extreme ranks to database structures and it is thus hardly surprising that both can 

be highly sensitive to the presence of a single outlier screening method amongst those that are 

being combined, whereas the SUM rule is expected to be more stable to the presence of an outlier 
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or of noisy input rankings.  This fusion rule, normally with ranks but sometimes with scores, has 

hence been the method of choice for several years: it is, however, by no means the only type of 

rule that might be employed.  Thus, Feher lists no less than nine types of fusion rule that have 

been used for consensus scoring, these including [26]: voting procedures (each scoring function 

returns a yes/no vote for a molecule and the overall decision is based on the number of votes); 

arithmetic procedures based on ranks or scores (such as the SUM, MAX and MIN rules); 

weighted arithmetic procedures (where ranks or scores are weighted on the basis of the presumed 

effectiveness of the associated scoring function); and statistical procedures (such as MLR or PLS, 

these requiring the availability of training data to compute the various parameters involved [76]).  

 

A detailed comparison of six fusion rules for similarity searching of GPCR assay data using 2D 

and 3D descriptors has been reported by Baber et al. [62].  The rules included voting, SUM, and 

regression procedures, and their extensive comparison suggested that the two best methods were 

summed ranks and logistic regression; the latter gave the best virtual screening performance but 

involved a training stage in which the parameters of the logistic model needed to be determined 

for each type of GPCR and each type of scoring function.  The performance of SUM was only 

marginally inferior and this, of course, can be used directly in the absence of training data; 

accordingly Baber et al. concluded that SUM was the fusion rule of choice for lead-discovery or 

scaffold-hopping searches, but that logistic regression should be used at a later stage in a project, 

e.g., during the optimization phase when considerable amounts of assay data will have become 

available.  A detailed comparison of rules for classifier fusion by Kittler et al. ascribed the 

superiority of SUM, when compared with a range of alternative arithmetic procedures (minimum, 

maximum, median, product and majority voting), to its robustness in the face of errors in 

estimating the probability of membership for each of the existing categories [31].   

 

Raymond et al. have recently introduced a new fusion rule, called conditional probability, that is 

based on estimating the probability that a database molecule, J, is active given a similarity score 

Score(I,J) with respect to an active reference structure, I [61].  The overall score for J is then 

obtained as the product of the probabilities computed for each of the individual scoring functions, 

and ranking of the database in terms of the decreasing product scores hence represents a ranking 

in decreasing probability of activity; a similar approach for ranking documents in IR has been 

reported by Manmatha et al. [77].  Conditional probability is rather more complex than sum-of-

scores for two reasons.  First it is necessary to establish the nature of the correlation between 

probability of activity and similarity score for each of the scoring methods that is to be combined, 

this involving a training stage (as with several other studies, e.g., [62, 76, 78]).  Second, 

combining the individual probabilities by means of a product function assumes that the scores and 

rankings produced by the different scoring methods are statistically independent, and this is most 
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unlikely to be the case in practice.  However, the assumption does not appear to lessen the 

effectiveness of the procedure since experiments with a range of descriptors (including 2D 

fingerprints, 2D and 3D maximum common substructure procedures, and two shape-matching 

procedures) suggested that conditional probability performed as well as or better than summing 

the ranks.    

 

Zhang and Muegge report a study of group fusion applied to scaffold-hopping searches of seven 

MDDR activity classes using 2D and 3D descriptors [21].  In each case, searches were carried out 

using multiple actives as the reference structure, and the resulting sets of scores combined using 

six different fusion rules: average of the ranks or of the Tanimoto scores; weighted voting based 

on the ranks or the scores; a consensus of the previous four rules; and maximum of the ranks or of 

the scores.  The results were very variable, with the best overall performance being the four-rule 

consensus followed by the maximum of the Tanimoto similarities (which had been shown 

previously to perform well in the study by Whittle et al. [34]), and with the best group-fusion 

searches sometimes out-performing flexible ligand docking.  Analogous detailed comparisons of 

different consensus rules for structure-based virtual screening have been reported by Yang et al. 

[35] and by Oda et al. [59].  

 

Finally in this section, it is worth noting three studies that have considered machine-learning, 

rather than similarity-searching, methods.  Jorissen and Gilson have discussed a virtual screening 

system that has been developed at the Centre for Advanced Research in Biotechnology and that is 

based on a support vector machine (SVM) [38].  Their experiments involved fusing the SVM 

rankings with those from a BKD routine using the SUM rule, and showed that the fused rankings 

were comparable with or superior to the better of the individual scoring functions.  However, it 

should be noted that the SVM used 50 calculated physicochemical descriptors obtained with a 

variable-selection routine whereas the BKD routine used a hashed 2D fingerprint, so that it is not 

clear whether the performance enhancement arose from the multiple scoring functions or from the 

multiple representations that were used.  Jorissen and Gilson’s study involved the fusion of 

rankings, but many machine-learning methods function as classifiers, categorising input 

molecules as being either predicted active or predicted inactive.  In such cases, simple voting 

schemes may be used to fuse the outputs of the individual classifiers, e.g., retrieve those 

molecules that are predicted to be active by at least two of the classifiers.  We note two such 

recent studies.  Plewczynski et al. report the use of support vector machines, random forests, 

neural networks, k-nearest neighbour classification, trend vectors, naive Bayesian classification 

and decision trees to categorise sets of ligands for five pharmaceutically important biological 

targets [79].  Their study focused on the performance of the individual methods but they also 

investigated how voting might affect performance. They found that consensus voting could 
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indeed bring about substantial increases in precision (i.e., a reduction in the number of false 

positives), but that (hardly surprisingly) this was often accompanied by comparably large 

decreases in recall.  Finally, Givehchi and Schneider have reported the combination of the outputs 

from three different types of artificial neural network based on seven different types of 2D 

descriptor to disambiguate G-protein coupled receptor (GPCR) molecules from non-GPCR 

molecules [80].  The outputs from the trained neural networks, either binary outputs or actual 

classification scores, were combined using a jury voting procedure, with a resulting noticeable 

improvement in predictive performance.  

 

REASONS FOR THE EFFECTIVENESS OF DATA FUSION 
There is considerable evidence for the belief that data fusion is an effective tool for virtual 

screening, with positive results having been achieved ever since the initial experiments by the 

Merck and Sheffield groups.  By effective, we mean here the ability to retrieve active molecules 

from the database that is being searched than would be the case in a conventional database search.  

That said, it is important to define what is meant by “conventional”.  In some of the early studies 

by Ginn et al. [33], SUM fusion of ranks gave better results than even the best of the individual 

similarity searches that were fused; more generally, however, experiments have shown that fusion 

results are comparable to the best individual scoring function or better than the average function.  

Importantly, the best individual function tends to vary from search to search whereas an effective 

fusion rule is robust to changes in reference structure, database and biological target, ensuring a 

consistent level of search performance.  Cases in structure-based screening where consensus 

scoring is deleterious have been reviewed by Feher [26]. 

 

If several search methods are available, each with their different characteristics, then it might 

seem reasonable to combine them all in a search.  Sheridan and Kearsley have argued strongly for 

such an approach on the basis of their experiences at Merck [13], and it is also the conclusion of 

Kogej et al. from an extended analysis of similarity searches of AstraZeneca assay data that used 

a voting fusion rule to combine the results of searches based on nine different types of 2D 

fingerprint [81].  Others, however, have argued for the combination of smaller numbers of 

searches.  In particular, the theoretical analysis by Wang and Wang (vide infra) suggests that little 

benefit is to be gained from using more than three or four scoring functions, a conclusion that is 

in line with several practical studies of both structure-based and ligand-based fusion [35, 58, 59].   

 

The variations in performance that have been noted in several of the studies cited here have led to 

interest in the factors that determine whether or when data fusion can be expected to work.  This 

has been the subject of debate in the IR and pattern recognition context for some years [31, 55, 
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82-85] but the first such report in the chemoinformatics area was a simulation study by Wang and 

Wang [86].  Each of a set of 5000 hypothetical compounds was assigned a random number 

representing its experimental binding affinity from a Normal distribution; the 100 molecules with 

the largest assigned affinities were deemed to be the active molecules for the simulation.  These 

numbers were then perturbed by another random number drawn from a Normal distribution of 

lower variance to represent the affinity predicted by a scoring function; this second stage was 

repeated ten times for each hypothetical molecule and the resulting set of scores fused using one 

of three consensus rules (mean of the scores, mean of the ranks and a voting procedure).  The 

simulation demonstrated that performance increased rapidly with an increase in the number of 

scoring functions (although the latter increase levelled off once three or four functions had been 

included in the consensus) and that the consensus performance was superior to any individual 

scoring function.  The latter result was explained by the simple statistical fact that the mean of 

repeated samplings will tend to be closer to the true value than any individual sampling: in other 

words, multiple rankings will better reproduce the ideal ranking (i.e., the ranking in decreasing 

order of experimental affinity) than will any individual ranking.  Their analysis also demonstrated 

that this effect would provide diminishing benefits once more than about four rankings were 

included in a consensus.  Wang and Wang thus provide an elegant explanation of the observed 

behaviour but their simulation has been criticised by both Baber et al. [62] and Verdonk et al. 

[87] as the simulation assumes that the scoring functions that are being combined are of 

comparable effectiveness and are independent; neither of these assumptions are likely to be the 

case in practice.  

 

There have been several studies of what is required for successful fusion, with three recent papers 

focussing on criteria for successful consensus scoring [35, 59, 62].  Yang et al. describe a 

combinatorial study of scoring functions for ligand docking [35].  They start by noting that the 

results of previous studies of consensus scoring seem to depend on the fusion rule and on the 

number and the nature of the scoring functions used; they then go on to describe two criteria by 

which the performance of a consensus can be evaluated.  These criteria are: the ratio of the 

effectiveness (however defined) of the best scoring function in a consensus to that of the worst; 

and the rank-score graph, where a normalised version of the score produced by a scoring function 

is plotted against the ranks of the compounds when ordered by those scores.  From a 

combinatorial study of all of the 31 combinations possible with five different scoring functions, 

Yang et al. concluded that the best results were obtained with just two of the functions that 

performed well on their own and that exhibited different rank-score graphs; they also noted that 

the fusion of ranks performed at least as well as the fusion of scores.  These findings are 

analogous to previous reports in the IR literature: for example, Ng and Kantor have suggested the 

use of the Kendall rank correlation coefficient to determine the degree of correlation between the 
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rankings from two scoring functions, and hence the extent to which it would be worth including 

them in a consensus [83] (see also Hsu and Tahesi [55] and Beitzel et al. [85]).  Yang et al. 

suggest that the rank-score graph could be used to select effective combinations of scoring 

functions in the absence of actual performance data.   

 

The requirement that the individual components of an effective consensus should be effective in 

their own right [35] seems an entirely reasonable one, but one that is not fully supported by the 

combinatorial study of Oda et al. [59].  This was on an impressive scale with 511 combinations, 

all those possible from nine scoring functions, being tested with up to nine different consensus 

rules and 220 ligand-protein systems.  The extensive results were far from consistent, but the 

authors were able to suggest that scoring functions that were ineffective on their own could be 

effective in a consensus when they compensated for shortcomings in other functions in the 

consensus; similar results are reported in Givehchi and Schneider’s work on the combination of 

neural network classifiers [80].  It should be noted that while this conclusion contradicts the first 

criterion of Yang et al., it is in agreement with their second, i.e., that the components of a 

successful consensus should be different in nature.   

 

Reference has already been made to the comparison of consensus rules by Baber et al. [62].  

Their study also investigated in some detail how and why consensus scoring works.  They start by 

describing the assumptions inherent in the simulation study by Wang and Wang (vide supra) and 

question the extent to which these assumptions might be appropriate in an experimental context.  

They then note that the Tanimoto similarities between pairs of active molecules in their 

experiments were consistently larger than between pairs of inactive molecules (as would be 

expected if the Similar Property Principle holds for the compounds in the four internal GPCR 

discovery programmes considered by Baber et al.)  The actives are hence more tightly clustered 

than are the inactives: when multiple scoring functions are used they are likely to repeatedly 

select many actives but not necessarily the same inactives.  This suggestion (which is in 

agreement with work in IR by Lee [82]) was confirmed by an analysis using the Kendall 

Coefficient of Concordance [88], which showed that rankings of the actives by six different 

scoring functions were much more closely correlated than the rankings of the inactives.    

 

The studies reported thus far, both in this section and earlier, hence suggest that the different 

rankings (whether in ligand-based or in structure-based virtual screening) should be statistically 

independent but that at the same time there should be at least some level of correlation between 

them if positive reinforcement of the positions of the actives is to take place.  That said, the 

studies have been far from unequivocal in their findings, and Whittle et al. have hence recently 

reported a rigorous theoretical approach to the modelling of data fusion in the context of virtual 
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screening [89].  The principal focus of their work is similarity fusion using pairs of fingerprint-

based similarity coefficients, but extensions are reported to encompass more than two similarity 

coefficients, to encompass multiple structure representations, and to encompass group fusion.  

The analysis also takes explicit account of a possible limitation in the analyses by Yang et al. and 

by Baber et al. discussed previously.  Both of these reports compared the behaviour of different 

scoring functions across entire ranked databases, whereas practical applications of consensus 

scoring normally involve just some small fraction of a database (e.g., the top-5% of the ranked 

molecules).  It is the difference in behaviour in this part of the ranking, rather than the entire 

ranking, that is likely to be of importance in the identification of scoring functions that are 

sufficiently disparate in character to enhance screening performance. 

 

The theoretical model of Whittle et al. shows that the origin of performance enhancement for 

simple fusion rules can be traced to a combination of differences between the retrieved active 

(i.e., true positives) and retrieved inactive (i.e., false positives) similarity distributions and the 

geometrical difference between the regions of these multivariate distributions that the chosen 

fusion rule is able to access.  For pair-wise similarity fusion, a simple analytical model 

demonstrates some conditions for which both the SUM and MAX rules have at least the potential 

to enhance screening performance when compared with conventional similarity searching.  

Indeed, an upperbound analysis shows that this enhancement should be obtainable on a routine 

basis given sufficiently large amounts of training data; however, as Baber et al. have noted 

previously, this is typically not available at an early stage of a discovery programme (which is 

where similarity searching is most commonly used).   

 

More generally, the analysis reveals that the operation of a data fusion system is far more 

complex than previously realised, involving subtle interactions between multiple factors that, 

taken together, severely complicate attempts to predict the effect of fusion on search 

performance.  Thus, the combination of just two lists of similarity values (e.g., fusing the results 

of searches using the Tanimoto coefficient and the cosine coefficient) depends on eight distinct 

distributions: the retrieved–active and retrieved-inactive distributions of both lists for both 

matched and unmatched compounds, where a matched (or unmatched) compound is that retrieved 

by both (or by just one) of the two similarity searches that are being fused.  Moreover, different 

fusion rules will be differentially affected by the interactions between these eight factors.  It is 

hence not surprising that the behaviour of data fusion is frequently found to be inconsistent for 

different datasets.  Whittle et al. demonstrate that positive fusion can be obtained for two 

similarity searches if the bivariate distribution of the retrieved active and retrieved inactive 

similarity scores are different (which supports the views of Baber et al. and Yang et al. regarding 

the need for different rankings).  However, this behaviour may occur only for some parts of a 
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database ranking, and performance enhancement will result only if this bivariate distribution 

matches the appropriate integration region for the chosen fusion rule more closely than do either 

of the individual search regions.   

 

Whittle et al. suggest that SUM is likely to yield better results than does MAX for similarity 

fusion, that group fusion is much more likely to offer performance benefits than does similarity 

fusion, and that MAX is more appropriate than SUM for group fusion; all of these predictions are 

in line with experimental results in previous studies of data fusion.  Given the evident success of 

the model it is unfortunate that the principal conclusion is that data fusion is too complex a 

procedure to enable a simple prediction of the behaviour that can be expected in any specific 

circumstances.  

 

CONCLUSIONS 
Over the last few years, data fusion has become accepted as a simple way of enhancing the 

performance of existing systems for ligand-based virtual screening, by combining the results of 

two or more screening methods.  In some cases, the fused search may be better than even the best 

individual screening method; more generally, when averaged over large numbers of searches, the 

fused search provides a high level of consistency that is better than that obtainable from any 

individual screening method.  Whilst the practical advantages of data fusion are now well 

understood, there is still much dispute as to the reasons for the observed behaviour, with a recent 

analysis suggesting that it may not be feasible to provide reliable predictions as to when fusion 

will be beneficial in a practical context.  This is not to say that alternative types of theoretical 

model may not be more successful in elucidating the key criteria for performance enhancement; 

in the interim, it is perhaps best merely to note that data fusion is a simple, computationally 

efficient technique that can often enhance the performance of existing systems for ligand-based 

virtual screening.  
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