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Abstract An R-group descriptor characterises the distribution of some atom-based 

property, such as elemental type or partial atomic charge, at increasing numbers of 

bonds distant from the point of substitution on a parent ring system.  Application of 

PLS to datasets for which bioactivity data and R-group descriptor information are 

available is shown to provide an effective way of generating QSAR models with a 

high level of predictive ability.  The resulting models are competitive with the models 

produced by established QSAR approaches, are readily interpretable in structural 

terms, and are shown to be of value in the optimisation of a lead series. 
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INTRODUCTION 

 

Methods for 3D QSAR are widely used for the discovery of novel bioactive 

molecules [1].  Although effective in operation, such methods suffer from the need to 

carry out a conformational analysis of the molecules in a dataset and then to align the 

resulting conformations.  There is hence much interest in new QSAR approaches that 

do not require such 3D processing but that can still provide robust QSAR models with 

a high level of predictive ability.  Examples of such approaches include EVA [2], 

GRIND [3], HQSAR [4], MaP [5], MoRSE [6] and WHIM [7].  In this paper we 

report the use of the R-group descriptor (RGD) in a new method for alignment-free 

QSAR studies.  The descriptor was introduced in a study demonstrating that RDGs 

provide an effective way of distinguishing between bioisosterically equivalent and 

non-bioisosterically equivalent substituents [8].  Here, we describe the use of this 

descriptor for QSAR studies.  The next section summarises the main features of the 

RGD and describes its application to QSAR.  We then report its use with six literature 

datasets, comparing the results obtained with those from the existing HQSAR and 

EVA methods for QSAR and demonstrating the explanatory power of the approach.  

Finally, we illustrate its use in a simulated lead-optimisation programme. 

 

 

THE DESCRIPTOR 

 

Our approach is designed specifically for the analysis of sets of analogues, consisting 

of an invariant central ring scaffold that is substituted at one or more positions by 

various different groups of atoms.  We define an R-group, i, in terms of a specific 

atomic property, p, and represent it by a descriptor D p
i  that is a vector of length n 

containing a series of values dp
i,d.  Each of the values in an RGD is the sum (or some 

other combination) of the chosen atomic property values at a distance of d bonds from 

the point of attachment of the substituent to the central ring scaffold, i.e., 
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The index d encodes the through-bond distance (i.e., the number of bonds) from the 

point-of-attachment of the R-group, so that small values of d describe positions on the 
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substituent close to the start, while larger values of d denote positions further away 

from the point of attachment to the common template.  The furthermost atoms are 

assumed to be at a distance of n bonds from the point-of-attachment.  This 

representation of molecular structure is similar in concept to the descriptor introduced 

by Martin et al. [9] for the design of structurally diverse combinatorial libraries, and is 

also related to the autocorrelation functions that have been reported by several 

workers [10-12].   

 

The generation of an RGD is illustrated in Figure 1.  The precise nature of the 

descriptor will depend on the particular properties that are used to characterise the 

atoms comprising a substituent.  For example, Figure 2 shows substituent vector 

values for four different descriptors: atomic weight; atomic contribution to 

hydrophobicity; atomic contribution to molar refractivity; and hydrogen-bond 

acceptor count.  In this case, the maximum through-bond distance is just three bonds; 

more generally, a vector will be as large as the largest substituent in the dataset that is 

being analysed, with the elements for smaller substituents being right zero-filled.   

 

If multiple properties are used to characterise a molecule, as shown in Figure 2, then a 

molecule, i,  is defined by a vector of the form  

rnd
pr

i,d
pr

i
max,1

,, }RGD{RGD
=

=  

where each vector is associated with a particular attachment point r and atomic 

property p, and where each element of the vector is associated with a particular 

distance d.  The individual descriptor vectors (corresponding to each of the chosen 

properties) for each molecule are then appended to each other to form a complete 

representation for each molecule of the form: 

pr npnr
pr

ii ,1;,1
, }RGD{RGD ===  

where np is the total number of atomic properties studied and nr is the total number of 

attachment points in the dataset.  A dataset is thus represented by a descriptor matrix, 

with each row representing a particular compound i and each column containing the 

descriptor values for a particular attachment point r, atomic property p and distance d.   

 

These matrices can then be scaled in order to give descriptors equal weight in the 

QSAR calculations.  Our experiments (as discussed in the next section) involved auto-
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scaling, in which each matrix column is recalculated to give a standard deviation of 

unity, and block-scaling, in which each block is recalculated to give a standard 

deviation of unity (with a block here being the vectors associated with a particular 

property).  A QSAR analysis is carried out by using PLS to correlate the structural 

information encoded in the RGDs for the molecules in a dataset with the 

corresponding biological activity data.  In our experiments, after scaling the matrix, 

each column is mean-centred and the resulting matrix then analysed using the PLS-1 

algorithm defined by Geladi and Kowalski [13].   

 

 

PREDICTIVE ABILITY OF THE DESCRIPTOR 

 

The effectiveness of the approach was evaluated using four datasets, the scaffolds of 

which are shown in Figure 3.  The benzodiazepine dataset [14] contained 57 

benzodiazepin-2-ones represented by a common core with five positions of structural 

variation, and with binding affinities (log IC50) for the benzodiazepine GABAA 

receptor.  The triazine dataset [15] contained 54 triazines represented  by a common 

core with three positions of structural variation, and with anticoccidial potencies 

(log(1/MEC)). The tropane dataset [16] contained 62 phenyltropanes represented by a 

common core with three positions of structural variation, and with data for three 

transporters: seronin (5-HT), dopamine (DA) and norepinephrine (NA).  The 

serotonin dataset contained 58 serotonin 5HT-3 ligands selected from a set of 75 

described by Bureau et al. [17], so that all of the chosen molecules had a common 

core with two positions of structural variation. 

 

The datasets encompass a range of possible core and substituent sizes, varying from 

the relatively large benzodiazepine core structure in the first dataset to the relatively 

small piperazine core structure of the serotonin dataset.  In terms of the average 

number of heavy atoms, the benzodiazepine core structure is 1.3 times larger than the 

dataset’s substituents, whereas the serotonin substituents are 3.4 times larger than the 

piperazine core structure.  These relative size values could affect the models due to 

the common core’s ability to fix the relative spatial orientation of the corresponding 

R-groups, i.e., relatively large substituents could be detrimental to the resultant QSAR 

model.   
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QSAR models were generated for a total of six biological targets across the four 

datasets.  The substituents were characterised using a total of eight atomic properties: 

atomic weight; atomic positive charge; atomic negative charge; hydrogen-bond donor 

count (HBD); hydrogen-bond acceptor count (HBA); atomic contribution to molar 

refractivity (MR); atomic contribution to hydrophobicity (logP); and atomic 

contribution to polar surface area (PSA).  These were calculated as described by 

Holliday et al. [8] 

 

Each dataset was divided into both a training-set and a test-set: the training-sets were 

used to derive the QSAR models, which were subsequently validated using the 

associated test-sets.  For the tropane dataset, the test-sets described in the original 

publication were also used here.  For the remaining datasets, the test-set compounds 

were selected using an activity-based method, with compounds selected using the 

following steps: 

1. Rank the dataset compounds in order of increasing activity; 

testn
n×5.02. Select the initial compound at the rank position closest to , where n 

is the number of compounds in the dataset and ntest is the final number of 

compounds in the test-set.   

testn
n intervals along activity-rank distribution. 3. Select additional compounds at 

The resultant test-sets contained between 10 and 15% of the original compounds.   

 

The resulting models were assessed using the statistical measures r2, s and F, with 

leave-one-out cross-validation being used to estimate the predictive ability of the 

models in terms of q2 and sCV.  Finally, the predictive ability was also estimated by 

calculating the predictive r2 2, pr , for the test set compounds.  In the experiments, 

autoscaling proved to be superior to blockscaling, and we have hence included only 

the results from the former approach; however, both autoscaling and blockscaling 

were noticeably superior to the use of raw data. 

 

The results obtained are detailed in Table 1, in the rows marked RGD.  These values 

have been obtained using both the internal and the external estimates of predictive-
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ability for the selection of an optimum number of latent variables for each QSAR 

model.  Specifically, an increasing number of latent variables was used until there was 

no significant improvements (>5%) in the q2 and pr2 values.  The maximum number 

of latent variables was limited to six in order to minimise the chance of over-fitting.  

Inspection of the table demonstrates that, excluding the serotonin dataset, all of the 

models show a very good fit to the training-set data, with r2 values greater than 0.81 

and a negligible probability of r2 equalling zero (F >> F0.01).  The predictive abilities 

of these models are also very good, with q2 2 values greater than 0.55 and pr  values 

greater than 0.63.  For the serotonin dataset, the poorer results support the previously 

expressed view that the descriptor may not be ideally suited to such datasets; even so, 

the small number of latent variables and the reasonable pr2 value suggest that even 

this model is far from useless. 

 

The results obtained using the RGDs have been compared with those obtained using 

two existing methods for alignment-free QSAR: EVA (for EigenValue Analysis) [2] 

and HQSAR (for Hologram QSAR) [4].  EVA characterises the 3D structure of a 

molecule in terms of the vibrational frequencies encoded in its infra-red spectrum.  

Specifically, a standardised spectral profile is generated, based on summed Gaussian 

kernels, that is then sampled to give the final descriptor.  The descriptors for the 

molecules in a dataset can then be correlated with biological activity using partial 

least squares (PLS).  HQSAR is a 2D technique, which uses structural fingerprints 

that take account not just of the presence of fragments in a molecule (as in a 

conventional fragment bit-string) but also of the frequency of occurrence of those 

fragments.  A hashing procedure is used to map fragments to positions in the 

hologram, and PLS is again used to correlate this structural information with the 

biological activity data.  The Tripos implementations of both EVA and HQSAR were 

used in our experiments [18]. 

 

For the HQSAR models, molecular holograms were derived from fragments 

containing between four and seven adjacent atoms.  These were defined in terms of: 

their constituent atoms; their constituent atoms and bonds; their constituent atoms, 

bonds and the connectivity of the atoms; and their constituent atoms, bonds, the 

connectivity, and also hydrogen-bonding features.  The resultant descriptors were 

encoded using the default hologram lengths of 97, 151, 199, 257, 307 and 353.  In 
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each case, the optimum settings (fragment type and hologram length) were selected 

automatically via the QSAR model that produced the minimum value of sCV, overall.  

The vibrational frequencies in the EVA tests were calculated by normal coordinate 

analysis using the semi-empirical AM1 method. The best results were obtained by 

sampling the vibrational spectrum from 200 to 4000 cm-1 and at 5cm-1 intervals, with 

the individual frequencies represented by Gaussians of width 10cm-1.   

 

The optimum models obtained with these two QSAR methods are also included in 

Table 1.  Inspection of this table demonstrates that the RGD method is fully 

competitive with the established EVA and HQAR methods across the full range of 

statistical parameters.  Thus, the average value of q2 for the RGD models of Table 1 is 

0.58, the average r 22 is 0.81 and the average pr  is 0.78.  The corresponding three 

figures for the EVA models are 0.63, 0.95 and 0.70, respectively, while those for the 

HQSAR models are 0.60, 0.82 and 0.65, respectively. 

 

 

EXPLANATORY ABILITY OF THE DESCRIPTOR 

 

The results presented in Table 1 are very satisfying, given the simplicity of the RGDs 

that we have used.  However, if a QSAR method is to be of general applicability, then 

the models resulting from its use must not only offer a high level of predictive ability 

but they must also be interpretable, so as to describe qualitatively the important 

structural relationships and so as to facilitate the design of new analogues that can 

further increase potency.  To be able to do this, we need to look at the nature of the 

RGD in more detail.   

 

All of the results thus far have been based on the use of all eight atomic properties 

described above.  However, our previous similarity study [8] has shown the very 

different contributions that the various properties can make to the similarities between 

substituents and we would expect such effects to be much greater here, where specific 

types of activity are dependent on specific types of molecular property.  We have 

hence developed a procedure based on the generating optimal linear PLS estimates 

(GOLPE) methodology of Baroni et al. [19].  GOLPE essentially removes variables 

that have a detrimental effect on the predictive ability of a model.  The effect of each 

 7



variable being either included or excluded from a model is assessed in terms of the 

average change inflicted upon the standard error of prediction s : DEP

 −+ −= SDEPSDEPE

where, for a given variable, SDEP+ is the average value of sDEP for the models that 

include the variable and SDEP- is the average value of sDEP for the models that 

exclude the variable.  Our approach simply extends this idea by removing blocks from 

the descriptor matrix that are associated with an atomic property, rather than 

individual values.  The assessment of properties is made by deriving multiple models 

based on different, reduced sets of the properties.  The result of deriving these 

multiple models, 255 in all, is an average effect E, which can be used to rank the 

properties in terms of predictive ability.  The results are shown in Table 2 and Figure 

4, where properties that are beneficial have negative E values and those that are 

detrimental have positive E values.  With the exception of the serotonin dataset 

(discussed previously), logP appears to have the most beneficial effect overall, closely 

followed by atomic weight and molar refractivity; polar surface area seems to be 

slightly detrimental, although it is not obvious why this is so..  

 

Optimised QSAR models, using only the beneficial atomic properties, were generated 

for each dataset.  The results were not significantly different in terms of predictive 

ability to those in Table 1 and have thus not been included here; however, their 

greater simplicity should imply that they are both more robust and easier to interpret 

than the conventional RGD models discussed thus far.  Specifically, the regression 

coefficients associated with these simplified QSAR models have been standardised by 

multiplying the coefficient by the standard deviation of the associated descriptor 

matrix column; this is similar to the methodology employed for generating CoMFA 

plots and results in a diagram such as that shown in Figure 5 [20].  The standardised 

plots here are organised so that coefficients implying that an increase in a particular 

variable leads to an increase in activity, are shown on the upper side of the plot (i.e. 

irrespective of the unit-of-measurement employed for the activity).  The bars 

representing the individual coefficients are also coloured by atomic property and 

sorted in terms of their associated distance and attachment point.  A typical example 

of such a plot, for the benzodiazepines, is shown in Figure 5.   
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An inspection of Figure 5 suggests that substituents in the R1 position have little 

influence on activity.  However, the logP, MR, and weight coefficients suggest that 

unsubstituted compounds in this position are slightly preferred: with the coefficient 

values next to the attachment point (d=1) favouring an increase in these steric 

properties (i.e., due to a hydrogen being attached to the dummy atom at the point of 

attachment), while the coefficient values further along these groups (d>1) favour a 

decrease in the steric properties.  For the R  and R3 5 positions, the substituent 

properties also appear to have little influence on activity.  However, substitution of 

these positions is not explored particularly well by the dataset, with the majority of 

compounds being unsubstituted.  

 

At the R2 position, the compounds in the dataset consist of meta-substituted phenyl 

groups.  The high –Charge coefficient (marked on the figure at 1.) indicates that a 

positive or neutral atom is favoured.  However, any difference in charge at this 

position (d=1) is due entirely to the inductive effects caused by the meta substituents 

of the phenyl groups.  Implicitly, this suggests that the mono- or di-substituted phenyl 

groups with either the chlorine or fluorine halogens will be favoured. 

 

Overall, the R4 position appears to affect the activity to the greatest extent, and it is 

also the position that is most thoroughly explored by the dataset.  For the first atom 

(d=2) of the substituents (marked at 2.) a high logP and atomic weight and a low HBD 

are favoured; in other words, any heteroatom in this position is preferred with the 

exception of the amine group (a hydrogen-bond donor).  Heavy atoms adjacent to this 

position (marked at 3.) are also favoured, with the nitro group being the optimum 

choice overall. 

 

 

RETROSPECTIVE SERIES DESIGN 

 

We have shown that the RGD is able to produce models that have both predictive and 

descriptive abilities: we now demonstrate the extent of these abilities by means of a 

simulated lead optimisation study.  This study used three datasets that had been 

assayed in GCPR (G-coupled protein receptor), kinase and PDE (phosphodiesterase) 

programmes at Novartis: the precise natures of the compounds are proprietary, but 
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some summary details of these three datasets are included in Table 3.  Each dataset 

contained between 500 and 600 compounds, and was based upon a common core 

structure.  The activity of each compound was measured in pIC50 units, the values 

ranging from around 4.0 (for inactive compounds) to around 9.0 (for active 

compounds).  Since the values for the extremely inactive compounds (over 13% and 

over 40% of the kinase and PDE datasets, respectively) were subject to a high degree 

of experimental error, they were assigned an arbitrary cut-off value of 4.0.  The 

structures were characterised by RGDs based on the eight atomic properties that have 

been discussed previously, with autoscaling being applied prior to the derivation of 

the QSAR models.  For comparison, molecular holograms of length 53 and 151 were 

generated with fragment definitions based upon the constituent elements, bond types 

and the connectivity of the atoms within each of the structures.   

 

The simulated lead optimisation procedure began with the selection of compounds for 

the initialisation step followed by a series of optimisation steps, in each of which 

further compounds were retrieved from the particular dataset under investigation.  In 

all cases, 50 compounds were retrieved in both the initialisation and optimisation 

steps, with the exception of the final optimisation step (in which only the remaining 

compounds could be retrieved).  This resulted in around ten optimisation steps being 

performed for each experiment.   

 

The initialisation steps were performed using two different compound initialisation 

methods, referred to as chronological and diverse selection.  Chronological 

initialisation was based upon the historical order of the compounds within the 

corporate archive and, in each case, involved retrieving the earliest recorded 

compounds.  This initialisation is likely to be relatively focussed, containing only a 

few lead compounds and limited amounts of information, so that the subsequent 

QSAR models are expected to be relatively poor.  Diverse initialisation, conversely, 

was based upon the identification of 50 structurally diverse compounds from the 

entire dataset, using a Pipeline Pilot version 3.0 utility based on structural fingerprints 

and the Tanimoto coefficient [21].  This approach hence takes account of the full 

range of structures that were considered in the programme and should thus increase 

the predictive ability of the QSAR models resulting from their use [22]. 
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The optimisation steps were performed using three different approaches to compound 

selection.  The principal approach, and the focus of the study here, is to base the 

selection of new compounds on QSAR models derived from the compounds that have 

been analysed thus far in the programme, with the models being used to prioritise the 

hereto untested compounds.  The optimum number of latent variables used in the 

QSAR models used to select further compounds was determined automatically.  This 

was achieved by generating all possible models with between one and five latent 

variables and then selecting the model with the lowest value of sCV.  It should be 

noted that this procedure resulted in models containing relatively few latent variables, 

thus minimising the chances of over-fitting the previously retrieved compounds.  For 

comparison, chronological and random selection methods were also employed.  As 

with the initialisation step, chronological selection involved retrieving the earliest 

recorded compounds present in the remainder of the dataset.  Random selection 

simply involved retrieving further compounds at random, and was repeated three 

times for each of the initialisation methods and datasets under investigation.   

 

The effectiveness of the selections was assessed in terms of the median activities of 

all of the previously selected compounds up to and including each step of an 

experiment.  In each of the plots here, the Y axis denotes the median activity of the 

selected compounds, and the X axis denotes the current step of the simulation.  The 

various selection methods that were tested are represented as follows: chronological is 

a grey solid line; random is a grey dotted line (in fact, three grey dotted lines as the 

random simulations were performed three times); RGD is a red solid line; hologram-

51 is a blue solid line; and hologram-151 is a green solid line.   

 

Given an initialisation method, all of the selection methods will have the same initial 

median value, i.e., the median of the activities for the set of compounds selected using 

the chosen initialisation method.  The median of the final optimisation step will be 

identical for all simulations, this being the median activity for all of the compounds 

comprising a dataset.  The median values for the intervening steps should be greater 

than both the initial median (first step) and the overall median (last step): this 

indicates that a particular selection method is performing well, i.e., it is able to enrich 

the currently selected compounds.  Furthermore, it is the hope that the median values 

for the QSAR-based selection methods (i.e., those that use the RGDs and the 
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holograms) should be greater than the values for random and chronological selection.  

The median plots that were obtained for the three datasets are shown in Figure 6. 

 

The GCPR simulations are shown in Figure 6(a).  When chronological initialisation is 

used, all of the three QSAR-based selection methods out-perform the random and 

chronological selections after just a few steps; this is the case after the third step for 

the RGDs, the fourth step for Hologram-151 and the sixth step for Hologram-53.  It is 

clear, however, that the increase in the median values is delayed by the poor 

selections made by the QSAR models during the first two or three steps.  Thereafter, 

the selected compounds appear to be representative enough to allow reasonable 

QSAR models to be derived.  The results are still more encouraging when diverse 

initialisation is used, as all the QSAR-based methods markedly out-perform random 

selection throughout the entire optimisation.  

 

The kinase simulations are shown in Figure 6(b).  With chronological initialisation, a 

clear degree of optimisation is apparent for all the methods from the second step (the 

first optimisation step); however, many more steps are required until the majority of 

the active compounds have been retrieved.  Indeed, two peaks are observed for all of 

the QSAR-based selection methods, rather than the ideal of a single near to the start of 

the simulation: this suggest that the QSAR models are not adequately describing all of 

the structural classes in the dataset until much later in the optimisation.  Overall, 

however, the three QSAR-based methods out-perform both chronological and random 

selection, and this distinction is still more evident when diverse initialisation is used, 

with the QSAR-based plots rapidly pulling away from the three random selection 

plots.   

 

The PDE simulations are shown in Figure 6(c).  The results here are much worse than 

for the other two datasets when chronological initialisation is employed; we believe 

that this is due to this dataset having far more inactive compounds, both within the 

initial selection and within the dataset as a whole.  The QSAR-based selections here 

are not obviously superior to the random selections, although far better than 

chronological selection.  This is because the dataset contained a number of very 

potent compounds that were structurally very different to the compounds studied at 

the start and which were only found at a late stage of the program.  With diverse 
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selection, however, the QSAR-based selections markedly out-perform random 

selection even by the second step (i.e., the first optimisation step), demonstrating the 

greater power of diversity-based screening. 

 

Inspection of the median plots suggests that there is little obvious difference in 

performance between the three QSAR-based selection methods for the kinase and 

PDE datasets, and that the RGD selections out-perform the two hologram selections 

for the GCPR dataset.  These observations are broadly supported by the figures in 

Table 4, which summarises the QSAR models generated in the final step of the 

simulations.  The table shows that all three methods produce predictive QSAR models 

even with these relatively large datasets containing many inactive compounds.  

 

 

CONCLUSIONS 

 

In this paper, we have described the use of the R-group descriptor for QSAR studies.  

Application of PLS to datasets for which bioactivity data and R-group descriptor 

information are available is shown to provide an effective way of generating QSAR 

models with a high level of predictive ability.  The resulting models are competitive 

with the models produced by established QSAR approaches, are readily interpretable 

in structural terms and are shown to be of value in the optimisation of a lead series.  It 

should be noted that the R-group descriptor approach is an entirely general one, in the 

sense that it can be extended to more complex molecular representations.  The 

descriptors used here are based on the underlying molecular topology, with distances 

calculated on the basis of numbers-of-bonds separations between pairs of atoms.  An 

entirely comparable descriptor can be generated using Euclidean (i.e., through-space 

rather than through-bond) inter-atomic separations, or the Euclidean separations 

between points on a molecular surface [23].  However, even the simple topological 

representations used here demonstrate that the RGD concept provides a conceptually 

simple, and computationally effective, way of investigating structure-activity 

relationships. 
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R1 RGD = {a, b, c+d, e+f, g} 
 
 
 

Figure 1.  Generation of the RGD for the substituent R1, where a-g are the atomic 
property values for the atoms A-G.   

 
 
 
 
 
 

 Distance  
Property 1 2 3  

Atomic Weight 12.01 29.02 26.04 
Hydrophobicity 0.08 0.44 0.56 
Molar Refractivity 3.24 5.49 8.81 

2
3

3O
2

1*

 Hydrogen Bond Acceptor 0.00 1.00 0.00 
 

Figure 2.  R-group descriptors based on four different atomic properties. 
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Figure 3.  Ring scaffolds for the four datasets. 
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Figure 4. Average effect E of individual atomic properties (negative values are 
beneficial, positive values are detrimental). Properties are ordered by average of E.  
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Figure 5.  Visualisation and interpretation of the QSAR model for the benzodiazepine 
dataset.  See text for explanation.  
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Figure 6.  Median activity plots for the (a) GCPR, (b) kinase and (c) PDE datasets.  In 
these plots, chronological is a grey solid line; the three random experiments in each 
case are the three grey dotted lines, RGD is a red solid line, hologram-51 is a blue 
solid line, and hologram-151 is a green solid line. 
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22Dataset Method N r s F q2 s prCV

Benzodiazepines RGD 5 0.86 0.28 51 0.56 0.49 0.64 
 HQSAR 6 0.86 0.29 42 0.61 0.47 -0.16 
 EVA 4 0.92 0.22 118 0.53 0.50 0.60 
         
Serotonin RGD 2 0.55 1.44 29 0.26 1.84 0.61 
 HQSAR 5 0.80 1.00 35 0.52 1.53 0.72 
 EVA 6 0.91 0.67 75 0.50 1.58 0.55 
         
Triazines RGD 4 0.86 0.40 63 0.61 0.66 0.91 
 HQSAR 2 0.72 0.55 55 0.51 0.72 0.85 
 EVA 7 0.98 0.16 240 0.62 0.67 0.69 
         
Tropanes 5-HT RGD 4 0.93 0.41 163 0.85 0.60 0.84 
 HQSAR 6 0.95 0.36 143 0.88 0.54 0.96 
 EVA 5 0.98 0.24 388 0.89 0.51 0.90 
         
Tropanes NA RGD 4 0.83 0.36 60 0.63 0.53 0.80 
 HQSAR 6 0.81 0.40 32 0.51 0.63 0.88 
 EVA 5 0.89 0.30 75 0.56 0.59 0.79 
         
Tropanes DA RGD 6 0.82 0.35 37 0.56 0.56 0.85 
 HQSAR 6 0.79 0.39 30 0.55 0.57 0.60 
 EVA 6 0.92 0.25 85 0.57 0.56 0.57 
 
Table 1.  Summary of QSAR models obtained using RGD, HQSAR and EVA 
methods. 
 
 

Dataset 

Atomic 
Property 

Benzo-
diazepines 

Triazines Tropanes 
5HT 

Tropanes 
NA 

Tropanes 
DA 

Serotonins

LogP –5.93 –10.06 –6.36 –11.77 –2.94 –2.24 

Weight –4.47 –7.66 –16.28 –4.35 –3.38 –2.22 

MR –1.73 –2.11 –8.24 –4.51 –2.45 +0.40 

+Charge +1.68 –5.33 –4.68 –0.73 –1.55 –2.62 

-Charge –4.91 –3.56 –2.68 –0.40 +0.35 –0.69 

HBA +0.39 –0.97 –0.49 –0.84 –0.17 –1.67 

HBD –2.28 +1.84 –1.37 –1.02 –0.15 0.00 

PSA +0.90 +1.90 –0.16 +0.34 +0.40 -3.39 

 
Table 2.  Average effect E values for individual atomic properties (negative values are 

beneficial, positive values are detrimental). Properties are ordered by average of E. 
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Dataset Core Size Substituent Position Number Mean Size 
GCPR 5 R1 278 10.9 
  R2 86 14.8 
  R3 48 1.3 
     
Kinase 5 R1 224 11.4 
  R2 228 7.4 
  R3 3 1.0 
     
PDE 11 R1 60 4.6 
  R2 116 4.4 
  R3 155 9.2 
  R4 32 1.3 
  R5 12 0.8 

 
 

Table 3.  Summary statistics for the three datasets used in the simulations.  Each row 
details the number and the mean size (in terms of numbers of atoms) at a particular 
point of substitution on the central core, e.g., at position R1 in the GCPR dataset, 
there was a total of 278 substituents with a mean size of 10.9 atoms.  In all three 
datasets, only some of the substituent positions show a significant level of structural 
variation, with some positions (most obviously R3 in the kinase dataset and R5 in the 
PDE dataset) having only a very limited range of substituent types present.   
 
 
 

2Dataset Descriptors N r s F q2 sCV
GCPR Hologram-53 3 0.41 0.81 121 0.38 0.83 
 Hologram-151 5 0.60 0.67 155 0.49 0.75 
 RGD 5 0.70 0.58 239 0.57 0.70 
        
Kinase Hologram-53 5 0.46 0.83 101 0.39 0.88 
 Hologram-151 5 0.61 0.71 182 0.53 0.77 
 RGD 5 0.61 0.71 186 0.51 0.80 
        
PDE Hologram-53 5 0.56 1.01 124 0.51 1.07 
 Hologram-151 5 0.59 0.98 139 0.52 1.06 
 RGD 5 0.70 0.84 225 0.57 1.01 

 
Table 4.  Leave-n-out QSAR models generated in the final step of the simulations. 
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