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Introduction 

 

The science of bioinformatics is based largely on computational methods for the 

comparison of biological sequences (Baxevanis & Ouellette, 2001; Lengauer, 2001; 

Lesk, 2002).  Sequence comparison algorithms match one sequence with another to 

identify regions of commonality or near-commonality, and many tools are available for 

this purpose, drawing on work not only in molecular biology but also in aspects of 

computer science, such as speech recognition and information retrieval.  The ready 

availability of algorithms such as BLAST (Altschul, Gish, Miller, Myers & Lipman, 

1990) and their application to databases such as Swiss-Prot (at URL 

http://www.expasy.ch/sprot/sprot-top.html) and GenBank (at URL 

http://www.nci.nlm..nih.gov/GenBank/GenBankOverview.htm) means that sequence 

comparison can be carried out both efficiently and effectively on very large numbers of 

sequences.   

 

There are several important databases that store biological structures rather than, or in 

addition to, biological sequences.  Sequence comparison algorithms assume a linear 

representation of a macromolecule that is not appropriate for the identification of 

structural relationships.  Alternative computational approaches are hence required to 

search and to analyse the rapidly increasing volumes of structural data that are resulting 

from developments in technologies such as X-ray crystallography and nuclear magnetic 

resonance.  In a long-established collaboration between the Department of Molecular 

Biology and Biotechnology and the Department of Information Studies at the University 

of Sheffield, we have adopted an approach that is based on the use of algorithms from the 

branch of mathematics known as graph theory (Diestel, 2000; Wilson, 1996).  A graph 

describes a set of objects, called nodes or vertices, and the relationships, called edges or 

arcs, that exist between pairs of these objects.  A simple example of a graph is a map of 

the world showing the routes flown by an international airline: in such a graph, the nodes 

are cities and there is an edge between two nodes if there is a direct inter-city flight 

between them.  
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Graph theory covers many different characteristics of graphs: here, we focus on the 

isomorphism techniques that have been developed for establishing the structural 

relationships that exist between pairs of graphs (Gati, 1979; McGregor, 1982; Messmer & 

Bunke, 1999; Read & Corneil, 1977).  Specifically, we discuss the application of 

isomorphism techniques to the analysis of graphs that describe the structures of biological 

macromolecules.  The starting point for our work was the long-established use of graph-

based methods for representing and searching databases of small molecules, which is an 

important component of chemoinformatics.  The successful use of such methods for 

handling chemical small molecules suggested to us that they might also be applicable to 

the representation and searching of the structures of biological macromolecules: in this 

paper we summarise some of the major conclusions we have been able to draw as to the 

appropriateness of this suggestion.  The discussion focuses on the application of graph-

theoretic methods to the three-dimensional (3D) protein structures in the Protein Data 

Bank (at URL http://www.rcsb.org/pdb), but we mention also the use of such methods for 

searching carbohydrate and RNA structures. 

 

Graph Theory And Its Applications In Chemoinformatics 

 

A graph, G, consists of a set of nodes together with a set of edges connecting pairs of 

nodes, and two nodes are adjacent if they are connected by an edge.  A graph is labelled 

if identifier labels are associated with the nodes and/or edges, and it is directed if each of 

the edges specifies not only that a relationship exists between a pair of nodes but also the 

direction of that relationship.  Two graphs, G1 and G2, are isomorphic if there is an exact 

correspondence between the nodes of G1 and of G2 such that adjacent pairs of nodes in 

G1 are mapped to adjacent pairs of nodes in G2 and conversely, i.e., if the two graphs are 

identical.  A subgraph of G is a subset, P, of the nodes of G together with a subset of the 

edges connecting pairs of nodes in P.  A subgraph isomorphism exists if G1  is 

isomorphic to a subgraph of G2 (or vice versa).  Finally, a common subgraph of two 

graphs G1 and G2 is defined as consisting of a subgraph g1 of G1 and a subgraph g2 of 
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G2 such that g1 is isomorphic to g2; the maximum common subgraph (MCS) is the 

largest such common subgraph.     

 

A graph provides a simple and direct way of encoding the topology of a two-dimensional 

(2D) chemical structure diagram, by using the nodes and edges of a graph to represent the 

atoms and bonds of a molecule (Figueras, 1986; Gray, 1986; Trinajstic, 1983).  We can 

then determine whether a user-defined query substructure, such as a penicillin ring 

system, is contained within some molecule in a chemical database by applying a 

subgraph isomorphism algorithm to the corresponding graph representations.  This 

process is referred to as substructure searching (Barnard, 1993) and was first reported by 

Ray and Kirsch (1957), with the Sussenguth set-reduction algorithm (Sussenguth, 1965) 

being the first subgraph isomorphism algorithm that was sufficiently fast in operation to 

allow the searching of large chemical databases.  It is perhaps of interest to readers of this 

journal that the Sussenguth algorithm was developed in Salton’s laboratory as part of a 

project to investigate the applicability of tree-based methods for language processing  

(Salton & Sussenguth, 1963); the close relationship that exists between methods for 

processing chemical and textual databases is discussed by Willett (2001).  More recently, 

it has proved possible to extend such ideas to the representation and searching of three–

dimensional (3D) chemical graphs in which the nodes and edges of a graph represent the 

atoms and the inter-atomic distances of a 3D molecule (Good & Mason, 1996; Gund, 

1977; Willett, 1991); searching methods based on such graph representations have 

become an important tool in the discovery of novel pharmaceuticals and agrochemicals 

(Martin & Willett, 1998). 

 

The MCS between two graphs provides a natural measure of the similarity of two graphs, 

and this has found application in chemoinformatics in three main ways.  Historically the 

first of these was for indexing the structural changes that take place as a result of a 

chemical reaction, so as to provide a way of indexing reaction databases (Willett, 1986).  

This can be effected by representing the reactant and product molecules as chemical 

graphs and then using an MCS algorithm to find those parts of the molecules that are 

common to the two sides of the equation: those parts of the molecules that are not part of 
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the MCS correspond to those parts of the molecules where the reaction has taken place 

(McGregor, 1982).  Another application, normally in the context of 3D chemical graphs, 

is the use of MCS algorithms for pharmacophore mapping.  A pharmacophore is the set 

of structural features in a molecule that are thought to be involved in binding to a 

biological receptor site, such as the binding site of an enzyme.  Crandell and Smith 

(1983) noted that if one had two, structurally-disparate molecules that both exhibited a 

biological activity of interest then, in the absence of any further information, an initial 

specification of the pharmacophore involved could be obtained from the MCS of the 

graphs representing these two molecules.  This approach is now well-established (Brint & 

Willett, 1987a; Crandell & Smith, 1983; Martin et al., 1993), with the resulting patterns 

then being used as the queries for 3D substructure searches to identify further molecules 

that might be expected to bind to the receptor.  Finally, the similar property principle 

(Johnson & Maggiora, 1990) states that structurally similar molecules are likely to have 

similar biological activities - an assumption that is clearly analogous to the assumption 

that similar documents are likely to be relevant to the same requests which forms the 

basis for the Cluster Hypothesis (van Rijsbergen, 1979).  Hence, if a bioactive target 

structure is used in a similarity search (Dean, 1994; Willett, Barnard & Downs, 1998), 

then the most similar molecules are also likely to be active, with the result that similarity 

searching is extensively used in drug- and pesticide-discovery programs.  There are 

various types of structure-based similarity measure that can be used for this purpose, 

including measures based on the MCS between two chemical graphs (Hagadone, 1992; 

Raymond, Gardiner & Willett, 2002). 

 

The subgraph and maximum common subgraph isomorphism problems have been studied 

for many years, and many isomorphism algorithms have been described in the literature.  

Following extensive tests, we focused on the use of the Ullmann (1976) and Bron-

Kerbosch (1973) algorithms for subgraph and maximum common subgraph isomorphism 

applications in chemoinformatics (Brint & Willett, 1987a, 1987b; Gardiner, Artymiuk & 

Willett, 1998) and have used these as the basis for our subsequent work in 

bioinformatics; the reader is referred to the original papers for full algorithmic details.  

The principal focus of our studies to date has been the protein structures in the Protein 
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Data Bank (Berman et al., 2002; Bernstein et al., 1977), for which we have developed 

two types of graph: one describing 3D patterns of secondary structure elements (hereafter 

SSEs) and the other describing 3D patterns of amino acid side-chains.  This work is 

described in the next two sections. 

 

Searching For Patterns Of Secondary Structure Elements In Proteins   

 

The graph representation of a protein that we have adopted for the program PROTEP 

makes use of the fact that the two most common types of SSE, the α-helix and the β-

strand, are both approximately linear structures, which can hence be represented by 

vectors drawn along their major axes.  The set of vectors corresponding to the SSEs in a 

protein can then be used to describe that protein’s 3D structure, this structure being 

represented by a graph in which the SSEs correspond to the nodes of the graph and the 

geometric relationships between pairs of the SSEs correspond to the edges of the graph 

(Mitchell, Artymiuk, Rice & Willett, 1990).  More precisely, each node in such a graph is 

denoted by the SSE type (α-helix or β-strand; no account is taken of the actual length of 

each SSE vector, although such information could be included in the node labels if 

desired); and each edge in such a graph is a three-part data element that contains the 

angle between a pair of vectors describing SSEs, the distance of closest approach of the 

two vectors and the distance between their mid-points.  A protein can hence be 

represented by a labelled graph that can be searched using a subgraph isomorphism 

algorithm or an MCS algorithm.  The precise nature of the output from a PROTEP search 

is determined by the tolerances that are used.  The angular tolerance is specified in terms 

of numbers of degrees, while the distance tolerances (for the closest-approach and/or 

mid-point distances) are specified either in Å or as a percentage of the distance in the 

query structure.  It is also possible to specify that the SSEs in a database protein that 

match the query protein are in the same sequence order as in the query; alternatively, the 

sequence order does not need to be the same.  The user thus has a very large degree of 

control over the number and the quality of the matches that are identified by the program.  

The representation we have used is illustrated in Figure 1, where we show a simple motif 
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consisting of three SSEs (helix-A, strand-1 and strand-2), together with the corresponding 

torsion angles and midpoint distances. 

 

Early work with PROTEP involved subgraph isomorphism searches using a suitably 

modified version of the Ullmann algorithm.  For example, we demonstrated the striking 

structural homology that exists between the CheY bacterial signal transduction protein 

and EF TU, an elongation factor related to G proteins (Artymiuk, Rice, Mitchell & 

Willett, 1990) and were later able to identify many previously-unrecognised occurrences 

of the three-stranded ϕ-loop (Hutchinson & Thornton, 1990) as part of an extended 

analysis of the occurrences of β-sheet motifs in the PDB (Artymiuk, Grindley, Poirrette, 

Rice, Ujah & Willett, 1994).  However, most of our work has focused on the use of an 

MCS algorithm for searching SSE graphs; specifically we have developed a suitably 

modified version of the Bron-Kerbosch algorithm to retrieve all of the proteins in the 

PDB that contain at least some minimum number of the SSEs in the query pattern (which 

is thus normally an entire structure, rather than a partial structure as is normally the case 

when the Ullmann option in PROTEP is used).  This has been the most productive 

applications of graph theory that we have studied thus far, as demonstrated by the 

structural resemblances that we have discovered and that are listed in Table 1.  Here, we 

discuss three of these resemblances. 

 

Adenylyl cyclase and DNA polymerase 1. 

The first example involves adenylyl cyclase (AC), a biologically and medically important 

enzyme in the hormone response that converts ATP to cyclic AMP. The crystal structure 

of the core catalytic domain of AC was solved by Zhang, Lui & Hurley (1997), who 

concluded that the structure of the AC catalytic domain had a completely novel fold, not 

resembling any other enzyme.  A PROTEP search, however, immediately revealed that 

although the fold is uncommon, there is a strong resemblance between the fold of AC and 

that of the catalytic “palm” domain of DNA polymerase I (Ollis et al., 1985).  As can be 

seen from Figure 2, the entire palm domain of the polymerase, consisting of four beta 

strands and three helices is contained with identical sequence order and topology within 

the adenylyl cyclase catalytic core domain (Artymiuk, Poirrette, Rice & Willett, 1997).  
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The three-dimensional resemblance is strong with 62 α-carbon atoms superposing with 

an RMS deviation of 1.63 Å, but there is no significant overall sequence similarity 

between the two domains. 

 

The 3-D resemblance highlighted a previously unrecognized analogy between the 

reactions catalysed by AC and the DNA polymerases: both involve attack by the 3' OH 

group of a ribose unit on the alpha phosphate of a nucleotide 5'-triphosphate with 

elimination of pyrophosphate (Artymiuk, Poirrette, Rice & Willett, 1997).  However, in 

the polymerase reaction a deoxyribonucleotide is ligated to a DNA primer, whilst in 

adenylyl cyclase the reaction involves an intramolecular cyclization within one ATP 

molecule. The key catalytic residues in the polymerase I active site are three acidic 

groups which bind Mg2+  and are positioned at the top end of the palm domain.  

Although there is no detectable sequence resemblance between the polymerase and AC, 

the 3-D superposition shows that the catalytically active C1 domain of AC possesses 

completely conserved acidic groups in the identical positions on its fold.  We proposed 

that these acidic groups would be the catalytic groups of AC.  Although both the 

similarity and its significance were initially disputed (Bryant et al., 1997), our proposal 

has now been confirmed by mutagenic and crystallographic studies (Tesmer et al., 1999) 

that confirm the value of the structural resemblance detected by PROTEP in achieving 

understanding of the AC mechanism.  

 

Biotin carboxylase and ADP-forming peptide synthetases 

The second example (Artymiuk, Poirrette, Rice & Willett, 1996) involves biotin 

carboxylase (BC) and the family of ADP-forming peptide synthetases, as represented by 

D-alanine:D-alanine ligase (DD-ligase) and glutathione reductase (GSHase).  Fan et al. 

(Fan, Moews, Shi, Walsh & Knox, 1995) have reported the existence of a strong 

similarity between the structures of DD-ligase, a bacterial cell-wall synthesising enzyme, 

and GSHase.  Both proteins consist of three domains with similar folds, and both convert 

ATP to ADP as part of a ligation reaction which leads to the creation of a peptide bond. 

Although there is very little sequence homology between the two proteins, the 3D 

similarities are so strong that Fan et al. argued for an evolutionary relationship between 
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the two enzymes, and postulated that their common structure may represent a general fold 

for that class of peptide synthetases that cleave ATP to ADP, rather than to AMP.   

 

PROTEP was able to demonstrate a further striking similarity between the folds of 

GSHase and DD-ligase and that of BC, as shown in Figure 3.  The similarities are so 

extensive as to be strongly suggestive of an evolutionary relationship between BC and the 

peptide ligases, showing that this family of protein structures is much wider than 

previously suspected and extends beyond the peptide synthetases to the large family of 

biotin-dependent carboxylases.  The similarity between BC and GSHase and DD-ligase is 

wide-ranging and involves a total of nine α-helices and 13 β-strands, all with identical 

sequence and topology.  The resemblance involves virtually all of the GSHase and DD-

ligase folds with the first 318 residues of the BC fold.  Overall, the folds are exceedingly 

similar, although there are minor differences in the arrangement of the β-strands at the 

periphery of the N-terminal β-sheet in all three enzymes.  Between BC and GSHase it is 

possible to superpose 101 Cα atoms with an RMSD of 1.91Å; the similarity between BC 

and DD-ligase is even greater with 127 Cα atoms superposing with an RMSD of 1.64Å.   

 

The similarities extend to the positions of the active sites of the three enzymes, although 

the assignment is rather tentative for BC because of difficulties in carrying out binding 

studies in the crystalline state.  Moreover, there are also significant resemblances when 

the functional and mechanistic characteristics of the three enzymes are examined.  The 

reactions they catalyse are similar, coupling the conversion of ATP to ADP to form a 

carbon-nitrogen bond between a carboxyl group and an amino group: BC ligates ATP-

activated bicarbonate to the N1’ amino group of biotin to produce carboxy-biotin; 

GSHase ligates the ATP-activated carboxyl of γ-Glu-Cys to the amino group of glycine 

to produce glutathione; and DD-ligase ligates the ATP-activated carboxyl group of D-

alanine to the amino group of another D-alanine.  The differences in chemistry relate to 

the fact that in BC the reaction catalysed involves a secondary amine, whilst in GSHase 

and DD-ligase, the reaction involves a primary amine.  However, despite this difference, 

the mechanisms of both classes of enzyme appear to be similar: the GSHase and DD-

ligase reactions proceed through acylphosphate intermediaries, and it is believed that the 
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reaction catalysed by BC proceeds through the analogous carboxyphosphate intermediate.  

Given these structural and mechanistic resemblances, it is not unreasonable to postulate 

the existence of a common evolutionary ancestor between BC and GSHase and DD-

ligase, and this is supported by detailed homology studies that reveal several areas of 

significant sequence similarity within the three enzymes (Artymiuk, Poirrette, Rice & 

Willett, 1996).   

 

BC is a member of a large family of homologous ADP-forming biotin-dependent 

carboxylases which includes carbamoyl-phosphate synthetase, proprionyl-CoA 

carboxylase, pyruvate carboxylase and L-glutamine-amido-ligase.  The graph-theoretic 

study summarised here has thus identified a structural link between this family of 

enzymes and the family of ADP-forming peptide synthetases (as represented by DD-

ligase and GSHase).   

 

A HEAT-like domain in E.coli aconitase 

Our final example shows how the detection of structural resemblances can aid on-going 

structural and biochemical investigations.  Aconitases catalyse the reversible 

isomerization of citrate and isocitrate via cis-aconitate in the citric acid cycle, and in 

addition members of the aconitase family are also able to bind 30-nucleotide mRNA 

'stem-loop' iron regulatory elements and thereby regulate the synthesis of a variety of 

iron-containing proteins (Klausner & Rouault, 1993).  E. coli, and other gram negative 

bacteria, possess two very distinct aconitases known as Aconitases A and B (AcnA and 

AcnB; Gruer, Artymiuk & Guest, 1997).  AcnB is of great interest because analysis of 

its sequence shows a major domain rearrangement in comparison with other known 

aconitases, and the 2.4 Å crystal structure of E. coli AcnB (Williams et al., 2002) 

revealed a very high degree of conservation at the active-site despite this 

reorganisation.   

 

But the structure of AcnB also revealed the structure of an additional novel domain, 

that is not present in other members of the aconitase family.  A PROTEP search 

revealed that  this novel domain, which consists of a repeating pattern of pairs of alpha 
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helices, bears a strong resemblance to eukaryotic HEAT (Huntingtin-Elongation-A 

subunit-TOR) -like domains, notably that in protein phosphatase 2A PR65/A (Groves 

et al., 1999).  A superposition of the four N-terminal HEAT repeat units of PR65/A on 

repeat units I-IV of the AcnB N-terminal domain shows a striking alignment of seven 

of the eight helices (as shown in Figure 4) with an RMS deviation of 1.92 Å over 74 

core α-carbon atoms.  HEAT proteins appear to have a common function in 

protein:protein recognition in many cellular processes (Groves et al., 1999), raising the 

possibility that the HEAT-like domains of AcnBs are likewise involved in 

protein:protein recognition.  What is more, the HEAT-like domain packs against the 

remainder of the protein to form a tunnel leading to the AcnB active site.  This 

combination of a structural motif associated with protein:protein recognition and an 

active-site channel, led to speculation that the AcnB tunnel might be involved in 

substrate channelling to or from metabolically related enzymes (Williams et al., 2002). 

This controversial idea, which relates to the 'metabolon' hypothesis of Srere (1985) -

who postulated that highly organized supra-molecular enzyme complexes 

(‘metabolons’) may be responsible for catalyzing sequential reactions in some 

metabolic pathways including the citric acid cycle - is now being investigated in further 

functional studies. 

 

Searching For Patterns Of Amino Acid Side-chains In Proteins 

 

The second program to be discussed here, ASSAM, has been developed for the 

representation and searching of patterns of amino acid side-chains in 3D space (Artymiuk 

et al., 1994).  The nodes in the graph representation here denote individual amino-acid 

side-chains and the edges denote the inter-node geometric relationships.  Specifically, 

each node contains two pseudo-atoms, whose positions are chosen to emphasise the 

functional part of the sidechain corresponding to that node.  The locations of the two 

pseudo-atoms are used to generate a vector, and each such vector corresponds to one of 

the nodes in a graph.  The geometric relationships between pairs of residues are defined 

in terms of distances calculated between the corresponding vectors, and these 

relationships correspond to the edges of a graph.  Specifically, if we let S, M and E 
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denote the start, middle and end, respectively, of a vector, then the graph edges contain 

five parts, these being the SS, SE, ES, EE and MM distances (although only a subset of 

these five distances is normally used to specify a query pattern).  A typical ASSAM 

query pattern, for the serine protease catalytic triad pattern discussed in the next section, 

is shown in Figure 5. 

 

The vectorial representation is clearly an extremely simple description of the relative 

orientations of the side-chains in a 3D protein structure.  It does, however, have the 

advantage that it does not over-define the orientations of ends of side-chains, as could 

occur if a more precise representation was to be used that was based directly on the 

individual atomic co-ordinates in the PDB.  This is a useful feature for at least three 

reasons: in medium-resolution protein-crystallographic studies, it is often difficult to get 

the final torsion-angle value correct and so the fine details of the sidechain orientations 

may be in doubt; the identifications of the individual atoms in a residue can often be 

ambiguous; and side-chains can often move or twist, for example on binding substrates. 

 

We have recently extended the program in two ways.  First, the node labels now encode 

not just the residue type but also the secondary structural state of the residue, the redox 

state of cysteine residues, the solvent accessibility of the residue in the biologically 

relevant multimer, and the distance of the residue from a bound ligand or known site.  

This extra detail enables the user to narrow down the scope of a query, to reduce the 

number of hits, and also to obtain more information from the results of a search.  Second, 

queries can now also be specified in terms of the main-chain of a residue, using vectors 

drawn along the carbon-to-oxygen double bond, the nitrogen-to-hydrogen bond, or the α-

carbon-to-β-carbon bond. 

 

Searches for the serine protease catalytic triad 

The serine protease catalytic triad is a common active-site motif that is seen in several 

families of enzyme and that is involved in cleaving peptide and ester bonds.  Families 

include: the trypsin-like enzymes, such as chymotrypsin, trypsin, thrombin, and elastase;  

the fungal lipases; and bacterial subtilisin.  The different families have emerged through 

 12



divergent and convergent evolution, with the active triad of residues that these proteins 

have in common being composed of aspartic acid, histidine, and serine.  Here, we have 

used the serine protease catalytic triad from an α-chymotrypsin structure (PDB code 

4CHA (Tsukada & Blow, 1985)), specifically chain A residues HIS57, ASP102, and 

SER195 with S1S2, S1E2, E1S2, and E1E2 inter-vector distances at various tolerance levels 

(0.5Å, 1.0Å, 1.5Å, and 2.0Å).  The searches for this pattern (which is shown in Figure 5) 

were run against a total of 9932 PDB structures, with the results shown in Table 2. 

 

The 9932 PDB files were analysed to predict which structures should contain a triad of 

residues similar to the active site of chymotrypsin, the predictions being obtained from 

scanning of the header information and literature citations for each of the structures.  413 

structures were predicted to contain an ASP-HIS-SER catalytic triad, and hits were 

retrieved in 360 of these.  Of the 53 files that did not produce hits, the lack of a hit in 48 

can be explained by looking at mutation, covalent modification, etc. at the active site, 

leaving just five predicted proteins that were not retrieved.   However, three of the 

missing five were retrieved when the search tolerance was increased to 3.0Å, and the 

remaining two were retrieved when the tolerance was increased to 5.0Å.  Recall for this 

search was therefore 98.6%, at 2Å tolerance.  The precision was 100%, as all hits match 

the query pattern within the distance tolerance; however, not all of the retrieved matching 

motifs occurred in serine protease-like enzymes. 

 

In addition to these 360 predicted hits, unpredicted hits were retrieved in 189 files, spread 

across various protein types, including non-fungal lipases, oligo-peptide binding proteins, 

ribonucleoside reductases, and serine esterases.  In some of these proteins the matching 

motif is found to be at the active site of that protein, for example, in esterases, lipases, 

and serine hydrolases.  It is thus clear that this well known motif occurs much more 

widely than might be expected. 

 

A final search was performed that made use of the extended node descriptions.  

Specifically, only matching motifs with secondary structure and solvent accessibility 

matching that in the 4CHA structure were retrieved as hits.  As expected, this resulted in 
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a substantial decrease in the numbers of matching structures, but without any additional 

bias towards the predicted hits: the original search at 2Å tolerance retrieved 549 files, of 

which 66% (360) were predicted, while the more detailed search retrieved 73 files, of 

which only 58% (42) were predicted. 

 

Searches for a zinc binding site 

The second search discussed here was for the zinc-binding side-chains from a 

thermolysin structure (PDB code 4TMN (Holden et al., 1987), chain E residues: 

GLU166, HIS142, and HIS146, where the Zn++ ion is coordinated by OE1 of GLU166, 

NE2 of HIS142, and NE2 of HIS146).  The search used a 0.5Å distance tolerance, with 

just the M1M2 inter-vector distances being specified, and identified 284 matching motifs 

in 121 PDB files.    

 

41 of the 121 hits were structures that contained zinc within the determined structure or 

had named zinc coordination sites.   The residues in these zinc binding sites were the 

same as the residues in the matching motif in 35 of the 41 files: the residues of the 

matching motif were found in named zinc coordination sites in 17 structures; and 

inspection using RasMol (Sayle & Milner-White, 1995) showed that the matching motifs 

were at the same position as the residues that ligand the zinc in the remaining 18 files.  

One metallo-enzyme structure had the residues of the matching motif at a named iron 

coordination site.  Many of the matches were at zinc binding sites in thermolysin 

structures, which is hardly surprising given that the query is generated from one such site. 

 

Matching motifs were predicted in the 22 thermolysin structures of the dataset.  All 22 of 

these were retrieved by the search, giving 100% recall, but only 18% of the total number 

of retrieved hits were predicted.  When the native secondary structure and solvent 

accessibility detail from 4TMN was added to the query, the search identified 71 matching 

motifs in 38 files; here, 55% of the retrieved hits were predicted, as compared to 18% of 

the 121 files in the initial search.  Thus, unlike the catalytic triad search above, the 

additional information here served to focus the output more closely on the structures that 

were expected to contain the query motif.  
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Searches for a pattern of three tryptophan residues 

The final searches discussed here involved an hypothetical pattern of three neighbouring 

tryptophan side-chains, where the distance between the midpoints of residues one and 

two was 3.4Å, and the distance between the midpoints of residues two and three was also 

3.4Å: this distance was chosen as 3.4Å is the optimal stacking distance between aromatic 

rings, but the motif was not taken from any specific known structure.  The distance 

between residues one and three was not specified.   

 

The three-node motif was searched for using M1M2 inter-vector distances alone, at six 

different distance tolerances (0.5Å, 1.0Å, 1.5Å, 2.0Å, 2.5Å, and 3.0Å) and the results are 

included in Table 2.  The hits were found in various types of protein.  The 217 files 

containing hits at 3.0Å tolerance can be grouped into 56 protein types, some containing 

just one or two examples, but others (such as HIV-1 reverse transcriptase with 30 

members) containing many more.  One PDB file from each group was inspected and only 

one had residues in the matching motif that are used in a named site: this is a zinc-α-2-

glycoprotein, with a ligand binding site that binds an unidentified ligand. 

 

Pairs of tryptophan residues interact in different ways: face-to-face interactions occur 

when the faces of the residues are stacked on top of each other; and edge-to-edge 

interactions occur when the edges of the residues interact, without the faces interacting.   

It was expected that the lower tolerance searches would retrieve motifs that were closer to 

face-to-face interactions, and that as the tolerance increased there would be more scope 

for retrieving edge-to-edge interactions.   This expectation was based on the fact that 

midpoint to midpoint distances were used, with an optimum face-to-face distance in the 

query: therefore, a longer distance would be required to move the midpoints far enough 

apart to allow only edge-to-edge interactions. 

 

The retrieved hits generally followed this trend.  At 1.0Å tolerance, the one retrieved hit 

file was 1IIE (class II histocompatibility antigen (Jasanoff, Wagner & Wiley, 1998), 

residues TRP168A, TRP168B, and TRP168C); inspection of the matching motif using 
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RasMol (Sayle & Milner-White (1995) revealed that the three residues are not entirely 

stacked, but are slightly skewed so that all three residues are attempting face-to-face 

interactions.  This was also seen in 1NZY (4-chlorobenzoyl coenzyme A dehalogenase, 

(Benning et al., 1996), residues TRP221A, TRP221B, and TRP221C) at 1.5Å tolerance.  

At the other end of the tolerance scale, 3.0Å, the matching residues in 1A6U 

(immunoglobulin (Simon, Henrick, Hirshberg & Winter, 2002), residues TRP93L, 

TRP98L, and TRP347H) are positioned such that two of the residues are approximately 

stacked and the other residue is placed to make edge-to-edge interactions with them both. 

 

Examples such as these demonstrate the ability of the programme to carry out exhaustive 

residue-based searches of the PDB, not just for existing motifs but also for ad hoc 

searches that do not require the availability of such a motif for the formulation of a query.  

As well as being effective, the program is also efficient in operation, e.g., the tryptophan 

searches each required ca. 385 CPU seconds on a Silicon Graphics R10000 workstation 

for scanning the file of 9932 PDB structures used here.  

 

Conclusions 

 

This paper has described the graph-theoretic methods that we have developed for 

analysing protein structural information.  Graph-theoretic methods provide a natural 

complement to sequence-based approaches to bioinformatics, and are becoming 

increasingly widely used for a range of purposes (Kanna & Vishveshwara, 1999; 

Kleywegt, 1999; Koch, Kaden & Selbig, 1992; Pickering et al., 2001; Samudrala & 

Moult, 1998).  This trend is likely to grow substantially in the future as developments in 

structural proteomics result in the appearance of very large numbers of new protein 

structures.  However, graph methods are completely general in character, and can be 

applied to the structures of any type of macromolecule: thus, we have described graph-

based substructure searching in databases of carbohydrate (Bruno, Kemp, Artymiuk & 

Willett, 1997) and RNA structures (Harrison, Artymiuk, South & Willett, 2002), in both 

cases using an appropriately modified version of the Ullmann subgraph isomorphism 

algorithm. 
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Our work on carbohydrates focused on the molecules in the Complex Carbohydrate 

Structure Database (CCSD) (Doubet et al., 1989; Feizi and Bundle, 1996).  Here, a 

carbohydrate structure can be regarded as a labelled, directed graph, in which the nodes 

of the graph denote the individual monosaccharides and the edges denote the glycosidic 

linkages.  More specifically, the root (or type) of each monosaccharide is given a three-

letter abbreviation, e.g., glucose and fructose are represented by Glc and Fru, 

respectively.  These node labels are augmented by the inclusion of information 

concerning the ring size and the anomeric and absolute configurations.  Glycosidic 

linkages are represented as being from one particular point on a monosaccharide to 

another, and each edge in a carbohydrate graph thus has an associated direction.  The 

node and edge labels in the resulting graphs are clearly far more detailed than in the 

protein graphs considered thus far, but this merely provides additional information for a 

subgraph isomorphism search.  Experiments with a file of 33,174 CCSD structures 

showed that the resulting search procedure was notably more effective than sequence-

based search software provided with the CCSD that took no account of the branched 

nature of carbohydrate structures and that often resulted in false-drops. 

 

Most recently, we have reported the first results of an ongoing study to develop graph-

theoretic methods for the representation and searching of RNA structures using 

techniques that are similar to those in the ASSAM program described previously.  Each 

nucleic acid base is described by four pseudoatoms: by connecting these pseudoatoms to 

give two specific pairs of atoms we can also consider the base to be represented by two 

vectors and the relative positions of bases are described in terms of distances between the 

defined start and end points of the vectors on each base.  These points comprise the nodes 

of a graph and the distances the edges of a graph, and we can hence represent a file of 

RNA structures (we use those available in the PDB) by a file of graphs: this resulting file 

can then be searched for user-defined patterns of bases by means of a subgraph 

isomorphism procedure. 
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Our initial tests have involved searching for each of the possible 29 two hydrogen-

bonded base pairs described by Tinoco (1993).  A training dataset was constructed in 

which there were examples of 26 different types of these 29 pairs, and this was used to 

specify the distance tolerances required to search for such query patterns.  Given these 

tolerance values, our search program, called NASSAM, was able to identify the locations 

of non-canonical base pairs in this dataset with precision and recall values both well in 

excess of 95%.  The searches were then repeated on a test set that contained the large 

complex 23S RNA from the 50S ribosomal subunit, and these searches gave entirely 

comparable recall and precision values, demonstrating the basic effectiveness of our 

graph representation in this simple situation.  We have gone on to demonstrate 

NASSAM’s ability to carry out effective searches for more complex patterns, including 

all possible base triples comprising two, two hydrogen bonded base pairs, the adenosine 

platform and larger motifs such as GNRA-tetraloop receptor type interactions and the A-

minor interaction.  We have already been able to identify occurrences of complex 

patterns that had not, to our knowledge, been previously identified. 

 

We hence conclude that graph-based methods provide a powerful tool for unlocking 

structural relationships between biological macromolecules that may not be evident using 

existing, sequence-based approaches to database searching.  
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Related Proteins Common Features Comments 

Adenylyl cyclase & DNA polymerase I   Four β-strands and three α-helices Structural and mechanistic similarities led to identification of 

active site residues and evidence for evolutionary relationship. 

Biotin carboxylase, D-alanine:D-alanine ligase, 

and glutathione reductase 

13 β-strands and nine α-helices Structural and mechanistic similarities provide strong evidence for 

an evolutionary relationship. 

Aconitase B and HEAT-like domains   Seven α-helices   Structural resemblance led to suggestion of involvement of 

aconitase B in substrate tunnelling in multi-enzyme complex. 

Leucine aminopeptidase and carboxypeptidase Eight β-strands in a sheet plus five α-

helices 

Minimal sequence homology even in the area of structural overlap.  

Ribonuclease H domain of HIV-1 reverse 

transcriptase (RT) and the ATPase folds of 

hexokinase, heat-shock cognate protein and actin 

Five β-strands in a sheet plus one α-helix. No other proteins in the PDB contained this β-sheet.  The common 

motif also occurs in an intramolecular resemblance between the 

same ribonuclease H domain of RT and two other domains of RT 

Biotin synthetase/repressor protein and serine 

tRNA synthetase 

Seven β-strands, with two α-helices on 

either side of the sheet 

No other proteins in the PDB contained this β-motif when the 

similarity was first identified.  Similar reactions catalysed. 

Prealbumin, protocatechuate 3,4-dioxygenase and 

thaumatin 

One three-stranded and one four-stranded 

β-sheet. 

Resemblance probably due to a particularly stable folding motif 

β-Glucosyltransferase and glycogen 

phosphorylase 

13 β-strands and eight α-helices, plus a 

further two strands and three helices 

additional to the large core feature 

Structural and chemical similarities suggest a remote evolutionary 

relationship. 

Enoyl ACP reductase and 3α,20β-hydroxysteroid 

dehydrogenase 

Seven β-strands and four α-helices Definite evolutionary relationship; low-level sequence 

resemblances underlies structural resemblance.  Suggestion of 

likely enzyme mechanism for ENR by analogy with HSD. 

Table 1.  Previously unrecognised structural resemblances identified by use of the PROTEP program.   



 

Query Inter-vector distance 

tolerance (in Å) for a 

match 

Inter-vector 

distances used in 

the search 

Number of structures in the 

dataset containing one or more 

matching motifs 

0.5 SS, SE, ES, EE 149 

1.0  348 

1.5  458 

4CHA: residues HIS57, ASP102 

and SER195 

2.0  549 

4TMN: residues HIS142, HIS146 

and GLU166 

0.5 MM 121 

0.5 0 

1.0 1 

1.5 4 

2.0 39 

2.5 

TRP1 TRP2 TRP3: 3.4Å midpoint 

to midpoint distance between 

TRP1 and TRP2 and between 

TRP2 and TRP3

3.0 

MM 

 

114 

217 

 

Table 2.  Searches of the Protein Data Bank using the ASSAM program.   
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Captions for figures 

 

Figure 1.  Calculation of the distance and angle matrix for PROTEP.  (a) A simple 

schematic protein structure is shown comprising three secondary structure elements 

(SSEs): an α-helix, labelled A and represented by a cylinder; and two β-antiparallel 

strands labelled 1 and 2, and represented by arrows.  The closest approach distance and 

torsion angle between each pair of SSEs can be calculated, for example θ is the torsion 

angle between strand-2 and helix-A, d is the distance between strand 1 and helix A.  (b) 

The complete matrix for the structure in (a) is shown with angles in degrees and distances 

in Ångstroms. 

 

Figure 2.  Diagrams (Kraulis, 1991) of  (a) an AC catalytic domain, and (b) the palm 

domain of DNA polymerase I.  The equivalent helices and strands are represented as 

coiled ribbons and sequentially numbered arrows respectively.  All helices and strands 

occur in the same order in both structures.  The additional strand and helix at the C-

terminal of AC are shown in black, other non-equivalent parts of the structures are shown 

as smoothed α-carbon traces.  Side chains implicated in the activity of  the polymerase 

are shown as black ball-and-stick atoms in (b); the binding site of a forskolin inhibitor of 

AC is shown as white ball-and-stick atoms in (a). 

 

Figure 3.  Topological diagrams (Flores, Moss & Thornton, 1994) of (a) BC, (b) GSHase 

and (c) DD-ligase.  Circles represent α-helices and triangles represent β-strands (apex 

down indicates the strand is running down into the plane of the paper, i.e., viewed from 

the N-terminus).  Open circles and triangles indicate those SSEs that were found by the 

PROTEP search to superpose in 3D, and the shaded ones are those that do not.  The 

equivalenced strands in the beta sheets are numbered, and the equivalenced helices 

lettered, according to their order in the sequence.  Black shapes indicate the ATP and 

substrate binding sites in (b) and (c) and the tentative position of the active site of BC in 

(a). 
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Figure 4.  Superposed α-carbon chain traces (Kraulis, 1991) of the first HEAT domain of 

the PR65/A protein (black) on helices α2-α9 of the novel AcnB domain (white).   

 

Figure 5.  The ASSAM representation of side chains.  Diagram of an aspartate-histidine-

serine catalytic triad pattern showing the locations of pseudoatoms (white circles) used to 

represent side chains in ASSAM.  Arrows represent the vectors between pseudoatoms 

within a side chain, and dotted lines represent the distances between pseudoatoms used in 

pattern matching, with heteroatoms shaded dark.  Diagram produced with Rasmol  (Sayle 

& Milner-White, 1995). 
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	Peter J. Artymiuk1, Ruth V. Spriggs2 and Peter Willett2* 
	Introduction 
	Graph Theory And Its Applications In Chemoinformatics 
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