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Abstract  Many different measures of structural similarity have been 
suggested for matching chemical structures, each such measure focusing upon 
some particular type of molecular characteristic.  The multi-faceted nature of 
biological activity suggests that an appropriate similarity measure should 
encompass many different types of characteristic, and this paper discusses the 
use of data fusion methods to combine the results of searches based on 
multiple similarity measures.  Experiments with several different types of 
dataset and activity suggest that data fusion provides a simple, but effective, 
approach to the combination of individual similarity measures.  The best 
results were generally obtained with a fusion rule that sums the rank positions 
achieved by each molecule in searches using individual measures.  
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INTRODUCTION 

 

Measures of inter-molecular similarity play an important role in drug- and pesticide-discovery 

programmes, being used for both database searching [1] and structure-activity studies [2].  Many 

different types of similarity measure have been described in the literature (see, e.g., [3-5]) but the 

great majority of published studies have considered the use of only a single type of similarity 

measure: in many cases, indeed, a description of a new type of similarity measure forms the 

principal focus of the publication.  Even where this is not the case, multiple measures have 

typically been employed only as the input to a comparative study that seeks to identify the “best” 

measure, using some quantitative performance criterion.  As an example, an early study in our 

laboratory [6] compared 36 different similarity measures by means of simulated leave-one-out 

property prediction, and concluded that the Tanimoto coefficient was the most appropriate 

 



similarity coefficient of those tested for measuring the resemblances between pairs of fragment 

bit-strings.  Such comparisons, of which there are many in the literature, are limited in that they 

assume, normally implicitly, that there is some specific type of structural feature, weighting 

scheme or whatever that is uniquely well suited to describing the type(s) of biological activity that 

are being sought for in a similarity search.  The assumption cannot be expected to be generally 

valid, given the multi-faceted nature of biological activities, and this paper investigates the use of 

data fusion [7] for combining multiple similarity measures.   

 

DATA FUSION 

 

Background  Data fusion is “a process of combining inputs from sensors with information from 

other sensors, information processing blocks, databases, or knowledge bases, into one 

representational format” [8].  Defence applications have provided much of the driving force for 

the development of data fusion techniques, with published examples including establishing the 

friend-or-foe nature of an incoming missile or aeroplane, predicting the range and direction of a 

battlefield target, and navigating an un-manned armoured vehicle.  Other applications include 

surveillance operations by law enforcement agencies, real-time control of continuous 

manufacturing processes, the provision of all-weather visibility for aircraft pilots, and multi-

imaging systems for the analysis of medical images (see, e.g., [9]).  However, data fusion can be, 

and is, used in much more commonplace situations: for example, establishing that it is safe to 

cross a road involves taking input from one’s ocular sensors (eyes) and aural sensors (ears), and 

then combining this information with the knowledge that an empty road is a safe road to give an 

output denoting the safety of the proposed action.  Again, a committee in which all members can 

contribute will often arrive at a superior decision to the one that would have been reached by just 

the committee chair - although there are, of course, many exceptions to such a rule! 

 

The basic rationale for data fusion is that using the information presented by a number of sensors 

enables further information to be inferred that would be outside the capabilities of a single sensor.  

For example, if one sensor detects a tank, then all that can be deduced is the existence and the 

position of that tank.  However, if two sensors detect the same tank then inferences can be made 

regarding the direction of its movement, while the addition of a temporal dimension permits the 

tank’s velocity to be calculated.  Add to that the ability to compare the observed behaviour with 

records of past behaviour of tanks and the system becomes capable of threat analysis.  As well as 

being able to infer more information, the use of a fusion system also leads to both qualitative and 

 



quantitative improvements in several ways.  Thus, improved operational performance can occur if 

one of the sensors were to become damaged, as there would still be information coming in from 

the others (an obvious advantage in military applications where sensors will be exposed to combat 

conditions and are thus liable to become damaged).  Data fusion leads to extended coverage since 

multiple sensors can cover disparate areas, times and qualities, and it leads to an increased level of 

confidence in the results since multiple sensors can act together to confirm an event and to reduce 

any ambiguity surrounding, e.g., the classification of an event.   

 

Combination of rankings  Our interest in data fusion methods arose from recent work on their 

application to information retrieval (IR), specifically to the combination of the rankings produced 

by different retrieval mechanisms when applied to databases of textual documents.  An early study 

is that by Belkin et al. [10], in which data fusion was used to combine the results of a series of 

searches of bibliographic databases, conducted in response to a single query, but employing 

different indexing and searching strategies.  A query was processed using different strategies, each 

of which was used to produce a ranking of a set of documents in order of decreasing similarity 

with the query.  The ranks for each of the documents were then combined using one of several 

different fusion rules (including the MIN, MAX and SUM rules discussed below); the output of 

the fusion rule was taken as the document’s new similarity score and the fused lists were then re-

ranked in descending order of similarity.  This work soon led to many other studies (see, e.g., [11-

13]) and the combination of document rankings is now a well-established technique, as is 

exemplified by its use in a meta-search engine that provides access to the World Wide Web using 

a combination of different search engines [14].  

 

The work on chemical data fusion reported here is based directly on these previous IR studies, and 

involves the simple procedure shown in Schema 1, where a user-defined target structure is 

searched against a database using several different similarity measures.  The fusion rules that we 

use here are based on those identified by Belkin et al. [10], and are summarised in Table 1.  It will 

be seen that the MIN and MAX rules represent the assignment of extreme ranks to database 

structures and it is thus hardly surprising that both can be highly sensitive to the presence of a 

single “poor” retrieval system amongst those that are being combined.  The SUM rule is expected 

to be more stable against the presence of a single poor or noisy input ranking; here, each database 

structure is assigned the sum of all the rank positions at which it occurs in the input lists.  This 

report considers just these three rules but there are clearly many others that could be considered, 

e.g., the median, the product, the harmonic mean, etc. of the individual rankings. 

 



 

The combined scores output by the fusion rule are then used to re-order the database structures to 

give the final ranked output.  In many cases, especially with the SUM rule, the application of the 

fusion rule may result in the assignment of the same score to two or more items.  When this 

happens, it is necessary to specify a further sort key to allow the resolution of the tied structures, 

e.g., alphabetical ordering of the canonicalised connection tables describing the tied database 

structures or the allocation of weights to individual rankings (perhaps based on past performance 

in similarity searches) so that a high position in one ranking would differ in importance from that 

same position in another ranking. 

 

Chemical applications  Chemical applications of data fusion are not completely novel.  As long 

ago as 1973, Clerc and Erni noted that “when data from several different spectroscopic methods 

are used for comparison purposes, greatly enhanced performance may be expected because the 

methods complement each other” [15] and went on to discuss the use of a scoring scheme based 

on weighted contributions from each of several molecular properties and spectra.  More recently, 

Masui and Yoshida [16] have reported the use of the SPECTRA system for combining the 

similarity scores obtained in searches of a database containing mass, IR, and 1H and 13C NMR 

spectral data when one or more of the spectra are missing for a particular sample molecule.  In 

work more analogous to that reported here, Kearsley et al. have used both similarity-based and 

rank-based procedures to combine pairs of similarity searches of the Standard Drug File database, 

and found that significant improvements in performance could be achieved in simulated property 

prediction experiments [17, 18].  Finally, So and Karplus have recently advocated combining 

different QSAR methods to obtain models with heightened predictivity [19]. 

 

Our initial studies of data fusion were undertaken as part of a project to evaluate the EVA 

descriptor, which characterises a molecule by its fundamental vibrational fingerprint [20].  

Although originally developed for QSAR applications, the EVA descriptor can also be used for 

similarity searching and a range of EVA-based similarity measures were hence evaluated using a 

dataset containing 8178 molecules from the Starlist file [21].  Comparable searches were also 

carried out using the 2D similarity searching routines in the UNITY chemical information 

management system [22], and using data fusion to combine the two individual types of ranking.  

Simulated leave-one-out property prediction experiments using the logP data in the Starlist file 

showed that, on average, the fused rankings appeared to be better than the original 2D and EVA 

rankings.  Although the differences were not always statistically significant, the study provided at 

 



least some evidence that data fusion could be used to improve the performance of similarity 

searching in chemical databases: the remainder of this paper reports further experiments that have 

been undertaken to ascertain the accuracy of this conclusion.  Full details of the work are 

provided by Ginn [23]. 

 

CELLULAR-UPTAKE DATASET 

 

The dataset  These experiments involved a set of 136 biological dyes that are used to stain cells 

so as to visualise various organelles, specifically the lysosomes (L), the mitochondria (M), and the 

nucleus (N).  These three broad activity classes were subdivided into eight mechanism-specific 

subclasses [24] and each molecule in the dataset was allocated an 8-bit activity bit-string in which 

the i-th bit was switched on if the molecule exhibited the i-th activity.  Three different types of 

descriptor were used to characterise the molecules in this dataset: 2D fragments, 3D fragments and 

physical properties.  The 2D fragment descriptors used here were the fingerprints produced by 

Barnard Chemical Information Limited (BCI) [25], while the 3D fingerprints were based on the 

NBN non-bonded torsion angle descriptor developed by Bath et al. [26].  The physical property 

descriptor comprised three standardised properties for each molecule: the logarithm of the 

octanol/water partition coefficient, the net electric charge, and the number of bonds included in 

the delocalised electron system of the molecule [24].  Each molecule in the dataset was considered 

as a target for similarity searching using each of the three similarity measures, with the similarity 

between a pair of molecules being calculated using the Tanimoto coefficient (the simple binary 

form of this coefficient for the 2D and 3D fingerprint measures and the generalised, non-binary 

form for the physical property measure) [5].  The three rankings for each target structure were 

fused using the SUM, MIN and MAX fusion algorithms defined previously.   

 

Comparison of ranks and similarities  An inspection of Scema 1 shows that Step 2 of the basic 

fusion procedure involves the rank positions for each database structure, rather than the similarity 

scores that are output by the similarity measure.  On first sight, the former might seem to be the 

less intuitively reasonable approach as it involves a loss of information when compared with the 

use of scores.  However, there are two factors associated with the use of similarity scores that 

lessen their attractiveness.  Firstly, as researchers are more likely to be concerned with some 

number of nearest-neighbours to the target structure, rather than with those items that are above 

some threshold of similarity, it seems logical to consider the rank positions of the items 

irrespective of their similarity scores.  Secondly, and more importantly, despite having the same 

 



range of scores (such as zero to unity for the binary version of the Tanimoto coefficient [5]), the 

distributions within these ranges given by different similarity measures may not be directly 

comparable, with the possibility of biasing the fusion rule in much the same way as 

unstandardised numeric data can affect the results of a multivariate analysis.  

 

We have compared the distributions of scores for each similarity method at each rank n, using the 

Kolmogorov-Smirnov test, which provides a simple and direct way of testing whether two 

distributions differ in any way, e.g., in location, dispersion or skewness [27].  If the distributions 

of the similarity scores for two original similarity measures are significantly different then it 

would be unwise to fuse them without applying some form of standardisation procedure (i.e., the 

use of rank positions in the present context).  Figure 1 shows plots of the mean similarity scores 

(averaged over all 136 target structures) at each rank position, n (1 ≤ n ≤ 100).  The figure shows 

that while the 2D and 3D scores are distributed similarly, the physical property scores exhibit a 

markedly different distribution.  Focusing upon the important top parts of the rankings, pairs of 

the distributions were compared for n=1-10 using the Kolmogorov-Smirnov test: these tests 

showed that the distribution of scores for the physical properties measure was significantly 

different (p ≤ 0.01) to those from both 2D and 3D for n=1-10 and that the distribution of scores for 

2D was significantly different to those for 3D for n=1-4.  We hence conclude that the distributions 

of similarity scores can be very different, even if they have the same ranges, thus supporting our 

use of ranks as the input to the various fusion rules studied here.  Similar results were obtained 

[23] in a comparable study of the EVA and 2D rankings of the Starlist dataset mentioned 

previously. 

 

Fusion results  Having established the appropriateness of rank-based fusion, the main 

experiments were evaluated in two ways.  In the first, a count was made of the molecules ranked 

in the top ten positions that belonged to the same activity subclass as the target structure.  These 

counts were then averaged over each of the eight subclasses, with the results shown in Table 2, 

where L1-4 (lysosomes), M1-2 (mitochondria) and N1-2 (nucleus) denote the eight activity subclasses 

identified in the dataset.  The shaded elements denote fusion results that perform at least as well as 

the best individual similarity measure.  It will be seen that the best similarity measure, in terms of 

actives being highly ranked, varies across activity subclasses; however, the results demonstrate 

that both SUM and MAX are, overall, to be preferred to the individiual results.  SUM also does 

well if one ranks the measures for each search, rather than using the actual numbers of actives 

retrieved (which vary considerably from one search to another).  For example, in the first row of 

 



Table 2, SUM identifies most actives and is given the rank 1, Phys identifies the next highest 

number of actives and is given the rank 2 and so on down to 3D, which identifies the smallest 

number of actives and is thus given the rank 6.  The mean ranks obtained in this way, when 

averaged across the eight activity sub-classes, are listed in the bottom row of the table and 

demonstrate clearly the effectiveness of the SUM fusion rule with this dataset. 

 

The second set of analyses employed the Hamming distance [5] between the activity bit-strings of 

the target structure and a database structure, i.e., the number of times that the two bit-strings 

differ.  For example, if the target is active for subclasses L1, M1 and N1 then a Hamming distance 

of 0 between a database structure and the target indicates that the former is also active in 

subclasses L1, M1 and N1 and only in those classes, and would thus be a most appropriate hit for 

that target molecule.  Figure 2 shows the mean Hamming distance for each similarity measure 

across all 136 target structures at rank n (1 ≤ n ≤ 10), and it can be seen that the SUM and MAX 

fusion algorithms give results that are consistently better (i.e., a smaller mean Hamming Distance) 

than those from any of the individual similarity methods.  A pairwise comparison of similarity 

methods was carried out using the Wilcoxon Matched-Pairs Signed-Ranks test [27].  Specifically, 

the test was used to compare the Hamming distances for each fusion rule with each of the original 

similarity methods, target by target, and thus to indicate whether the two methods that are being 

compared are significantly different.  Table 3 shows the p values for n = 1-10.  It can be seen that 

SUM is significantly better than each of three original similarity methods for all values of n, with 

28 out of the 30 sets of comparisons being highly significant (p ≤ 0.01).  MAX also performs well, 

but MIN is noticeably inferior to the other two fusion rules for this dataset. 

 

Taken together, these results show that the fused similarity measures can, in some cases at least, 

enable better predictions to be made of the cell-staining activities of the molecules than can the 

original measures, with SUM appearing to perform best of the three fusion rules tested here.  

When we take account of the rather variable performance of the individual similarity measures 

from one activity to another, it can be concluded that SUM-based fusion provides an effective way 

of generating a reliable single ranking with respect to both a single activity and the activity classes 

as a whole.   

 

 

 

 

 



WORLD DRUG INDEX DATASET 

 

Having demonstrated the potential of data fusion on a small dataset, the next set of experiments 

used a file of structures and associated broad-class bioactivity data from the World Drug Index 

(WDI) database [28].  Three different types of similarity measure were used here, these being 

based on 2D fragment occurrence data, 3D geometric information and on molecular fields.  The 

2D rankings were obtained using the UNITY fingerprints mentioned previously, while the 3D 

rankings were obtained using the atom-mapping measure described by Pepperrell et al. [29].  This 

measure uses inter-atomic distance information to identify pairs of atoms, one in the target 

structure and one in the current database structure, that are surrounded by similar patterns of 

atoms; these initial atomic equivalences are then used to construct an approximate mapping of the 

target structure onto the database structure.  The field-based rankings were obtained using the 

FBSS (for field-based similarity searching) program described by Drayton et al. [30], in which a 

target structure is aligned with a database structure by means of their steric, hydrophobic and 

electrostatic fields.  The particular version of the program used here considered all three types of 

field in the generation of an alignment, and hence in the resulting similarity score (this 

corresponding to the ‘All’ search of Drayton et al. [30]).   

 

Ten target structures were chosen that had been used previously by Kearsley et al. in their studies 

of WDI-based similarity searching [17].  The similarity searches were performed on datasets of 

approximately 3600 structures, each containing the activity class for the target structure with an 

additional 3500 randomly-selected WDI molecules.  The data available for fusing comprised of 

three sets of rankings (one for each of the original similarity measures) for each of the ten targets, 

with the effectiveness of each search being measured by the number of molecules in the top-50 

rank positions that had the same activity as the target; other performance measures for this dataset 

are discussed by Ginn [23].  Table 4 lists the numbers of actives identified in the original and fused 

searches for each of the 10 target structures.  The results obtained are similar to those obtained 

with the cellular-uptake dataset: while the fused results are not always as good as the best 

individual result, they provide a generally high, and thus robust, level of effectiveness whereas the 

best original measure varies from target to target.  This is particularly clear if one inspects the 

mean activities and ranks at the bottom of the table, where it will be seen that SUM would again 

seem to be the fusion rule of choice. 

 

 

 



KAHN DATASET 

 

The dataset  The final section evaluates data fusion when a larger number of original similarity 

measures is available.  The dataset used here is described by Kahn in a discussion of descriptors 

for the analysis of combinatorial libraries [31]: it contains 75 compounds each belonging to one of 

14 well-defined activity classes (angiotensin-converting enzyme inhibitors, acetylcholine receptor 

inhibitors, antagonists of 2-aminoproprionic acid, aldose reductase inhibitors, angiotensin-II 

receptor antagonists, beta adrenergic blockers of the type-3 receptor, cyclo oxygenase 2 receptor 

antagonists, dopamine 3 receptor (ant)agonists, endothelin receptor (ant)agonists, histamine 2 

antagonists, neurokinase-1 receptor antagonists, HIV-1 protease inhibitors, non-nucleoside HIV 

reverse transcriptase inhibitors, and steroid aromatase inhibitors).    

 

Six similarity measures were used to generate rankings: the Molecular Simulations Inc. (MSI) [32] 

Jurs descriptors; FBSS (as discussed in the previous section); two types of ChemX 3D flexible 

fingerprints [33]; and two types of Daylight 2D fingerprints [34].  The Jurs descriptors are part of 

the MSI Cerius2 package, and describe shape and electronic charge by mapping the atomic partial 

charges onto the solvent accessible areas of the individual atoms within a molecule.  All of the 30 

possible Jurs descriptors [35] were calculated for each member of the dataset.  The values were 

then normalised, and the similarity between pairs of sets of values calculated using the non-binary 

Tanimoto coefficient.  In what follows, the inclusion of the Jurs rankings in a fusion combination 

is indicated by “J”.  The FBSS similarity measure has been described previously: its inclusion in a 

fusion combination is denoted by “F”.  The ChemX 3D flexible fingerprint keys record the 

presence or absence of potential pharmacophoric patterns (consisting of three pharmacophore 

centres and the associated inter-atomic distances) in any of the low-energy conformations 

identified by a rule-based conformational analysis of a molecule.  Two sets of similarity scores 

were generated from these fingerprints: the Tanimoto coefficient scores and the Tversky similarity 

scores [5, 36], the inclusion of these in a fusion combination being denoted by “3” or by “T”, 

respectively.  The Daylight fingerprints were based on unfolded fingerprints considering 

pathlengths of up to 7, the inclusion of these in a fusion combination being denoted by “2” (for a 

standard fingerprint where a bit is either set or not set) or by “N” (for a fingerprint where a count is 

kept of how many times each bit is set), respectively.  Thus 23F, for example, represents the fusion 

of the standard Daylight, Tanimoto ChemX and FBSS rankings.  The similarity scores for these 

experiments were calculated using either the binary or non-binary versions of the Tanimoto 

coefficient, as appropriate.   

 



 

Fusion results In view of its performance in the studies discussed above, we used just the SUM 

rule for the fusion experiments, with all possible combinations of rankings from the similarity 

methods being studied (in much the same way as So and Karplus have very recently evaluated the 

effectiveness of all possible combinations of seven different QSAR methods [19]).  Table 5 details 

the mean numbers of actives (i.e., molecules with the same activity as the target structure) found in 

the top-10 nearest neighbours when averaged over all 75 target structures.  The values of c at the 

top of the table denote the number of similarity measures that were fused (so that, e.g., c=1 

represents the original measures and c=2 represents the fusion of a pair of the original measures) 

and a shaded element indicates a fused combination that is better than the best original individual 

measures (which was the ChemX keys with the Tanimoto coefficient).   

 

It will be seen that very many of the fused combinations in Table 5 are shaded, thus providing 

further support for the use of SUM to fuse similarity rankings, and Ginn reports similar results 

from other analyses of this dataset [23].  The table also shows that the fraction of the combinations 

that are shaded increases in line with c, so that all combinations with c≥ 4 perform at least as well 

as the best of the individual similarity measures.  However, it is not the case that, e.g., the c=5 

combinations are invariably superior to the c=4 combinations, and the best result overall was 

obtained with 23FJT (rather than with 23FJNT, the combination involving all of the individual 

measures).  Thus, while simply fusing as many individual measures as are available in a similarity 

investigation would appear to perform well, superior results may be obtained from fusing a subset 

of the individual measures; this has also been noted in searches of text databases [10] but there is 

no obvious predictive mechanism for identifying an optimal combination a priori [23, 37].   

 

CONCLUSIONS 

 

In this paper we have discussed the use of data fusion methods to combine the rankings resulting 

from similarity searches of chemical datasets.  Our experiments, which have employed a range of 

types of molecule and performance criterion, demonstrate that use of a fusion rule such as SUM 

will generally result in a level of performance (however this is quantified) that is at least as good 

(when averaged over a number of searches) as the best individual measure: since the latter often 

varies from one target structure to another in an unpredictable manner, the use of a fusion rule will 

generally provide a more consistent level of searching performance than if just a single similarity 

measure is available. 
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1. Execute a similarity search of a chemical database for some particular target structure using 

two, or more, different measures of inter-molecular structural similarity.   

2. Note the rank position, ri, of each database structure in the ranking resulting from use of the i-

th similarity measure. 

3. Combine the various rankings using one of the fusion rules (MIN, MAX or SUM), giving a 

new combined score for each database structure 

4. Rank the resulting combined scores, and then use this ranking to calculate a quantitative 

measure of the effectiveness of the search for the chosen target structure. 

 

Schema 1.  Combination of similarity rankings using data fusion 

 

 

Name Fusion Rule 

MIN minimum (r1, r2 ,…ri …rn) 

MAX maximum (r1, r2,…ri …rn) 

SUM 
ii

n r=∑ 1  

 

Table 1.  Fusion rules for combining n ranked lists, where ri denotes the rank position of a specific 

database structure in the i-th (1 ≤ i ≤ n) ranked list. 

 



 

 

Activity 2D Phys 3D MAX MIN SUM 

L1 1.40 3.05 1.12 2.96 2.02 3.25 

L2 2.14 3.50 5.93 4.36 3.57 5.00 

L3 5.53 6.35 3.69 6.00 5.81 6.16 

L4 5.33 4.44 4.06 5.17 4.67 5.5 

M1 2.29 6.17 2.50 4.96 4.08 5.04 

M2 6.48 5.00 5.52 6.52 5.86 6.17 

N1 2.71 4.43 2.71 3.19 3.29 3.81 

N2 3.67 4.19 3.67 4.00 4.24 4.00 

Mean Actives 3.99 4.64 3.65 4.65 4.19 4.93 

Mean Rank 4.63 2.88 5.00 2.94 3.50 2.01 

 

Table 2.  The mean number of actives in the top-10 rank positions for each activity class in the 
cellular-uptake dataset for the original similarity methods (columns 2D, Phys and 3D) and after 
data fusion (columns MAX, MIN and SUM).  The shading indicates a fused result at least as good 
as the best original similarity measure for that target structure. 

 
 

Target 3D 2D FBSS MAX MIN SUM 
Apomorphine 15 23 14 24 16 26 
Captopril 23 34 12 26 27 31 
Cycliramine 43 31 36 43 42 45 
Diazepam 27 27 15 23 23 22 
Diethylstilb’ol 44 33 34 42 38 42 
Fenoterol 19 33 17 28 29 31 
Gaboxadol 6 2 6 5 6 5 
Morphine 20 28 16 19 24 16 
RS86 0 8 5 10 6 14 
Serotonin 13 19 13 13 20 15 
Mean Actives 21.0 23.8 16.8 23.3 23.1 24.7 
Mean Rank 3.60 3.05 5.15 3.40 3.05 2.75 

 
Table 4.  The number of actives found in the top-50 rank positions for searches in the WDI 
database for the original similarity methods (columns 3D, 2D and FBSS) and after data fusion 
(columns MAX, MIN and SUM).  The shading indicates a fused result at least as good as the best 
original similarity measure for that target structure. 



 

 

 n=1 n=2 n=3 n=4 n=5 

Method MAX MIN SUM MAX MIN SUM MAX MIN SUM MAX MIN SUM MAX MIN SUM 

2D <0.01 0.18 <0.05 <0.01 0.24 <0.01 <0.01 0.79 <0.01 <0.01 0.43 <0.01 <0.01 0.58 <0.01 

3D <0.01 0.84 <0.01 <0.01 0.53 <0.01 <0.01 0.43 <0.01 <0.01 0.43 <0.01 <0.01 0.42 <0.01 

Phys <0.01 0.34 <0.01 <0.01 0.58 <0.01 <0.01 0.54 <0.01 <0.01 0.33 <0.01 <0.01 0.38 <0.01 

 

 

 n=6 n=7 n=8 n=9 n=10 

Method MAX MIN SUM MAX MIN SUM MAX MIN SUM MAX MIN SUM MAX MIN SUM 

2D <0.01 0.42 <0.01 <0.01 0.32 <0.01 <0.01 0.38 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 

3D <0.01 0.20 <0.01 <0.01 <0.05 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Phys 0.43 0.60 <0.01 0.07 0.53 <0.01 0.11 0.43 <0.05 0.21 0.43 <0.05 0.36 0.28 <0.05 

 

Table 3.  The  p values from the Wilcoxon test for rank positions n=1-10.  Values ≤ 0.05 denote a fusion rule 
that is significantly better than an original similarity measure for the cellular-uptake dataset.  



 
 
 

c=1 c=2 c=3 c=4 c=5 c=6 
2 0.80 23 1.10 23F 1.28 23FJ 1.52 23FJN 1.45 23FJNT 1.43 
3 1.12 2F 1.04 23J 1.39 23FN 1.23 23FJT 1.69   
F 0.89 2J 1.01 23N 1.04 23FT 1.43 23FNT 1.36   
J 1.08 2N 0.68 23T 1.24 23JN 1.31 23JNT 1.43   
N 0.63 2T 0.95 2FJ 1.35 23JT 1.45 2FJNT 1.43   
T 0.69 3F 1.09 2FN 1.08 23NT 1.25 3FJNT 1.51   
  3J 1.25 2FT 1.28 2FJN 1.28     
  3N 1.00 2JN 1.03 2FJT 1.53     
  3T 1.32 2JT 1.10 2FNT 1.28     
  FJ 1.20 2NT 0.95 2JNT 1.17     
  FN 0.91 3FJ 1.40 3FJN 1.35     
  FT 1.11 3FN 1.19 3FJT 1.55     
  JN 0.89 3FT 1.33 3FNT 1.41     
  JT 0.93 3JN 1.25 3JNT 1.36     
  NT 0.85 3JT 1.45 FJNT 1.32     
    3NT 1.20       
    FJN 1.11       
    FJT 1.21       
    FNT 1.11       
    JNT 1.12       
 
Table 5.  Mean number of actives found in the ten nearest neighbours when combining various 
numbers, c,  of different similarity measures for searches of the Kahn dataset.  The shading 
indicates a fused result at least as good as the best original similarity measure. 
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Figure 1.  Plots of mean score against rank for the three types of original (i.e., unfused) 

similarity measure for the cellular-uptake dataset. 
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Figure 2.  The mean Hamming Distance at each rank n, 1 ≤ n ≤ 10. 
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