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Abstract − The EVA descriptor is derived from fundamental IR- and Raman range molecular 

vibrational frequencies.  EVA is sensitive to 3D structure but has an advantage over field-based 

3D-QSAR methods inasmuch as it is invariant to both translation and rotation of the structures 

concerned and thus structural superposition is not required.  The latter property and the 

demonstration of the effectiveness of the descriptor for QSAR means that EVA has been the 

subject of a great deal of interest from the modelling community.  This review describes the 

derivation of the descriptor, details its main parameters and how to apply them, and provides an 

overview of the validation that has been done with the descriptor.  A recent enhancement to the 

technique is described which involves the localised adjustment of variance in such a way that 

enhanced internal and external predictivity may be obtained.  Despite the statistical quality of 

EVA QSAR models the main draw-back to the descriptor at present is the difficulty associated 

with back-tracking from a PLS model to an EVA pharmacophore.  Brief comment is made on the 

use of the EVA descriptor for diversity studies and the similarity searching of chemical structure 

databases. 
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1.  Introduction 

The advent in the late 1980's of three-dimensional QSAR [1,2] based upon the comparison of 

steric, electrostatic and subsequently hydrophobic [3,4] molecular “fields” addressed one of the 

key deficiencies of the otherwise extremely successful classical QSAR techniques [5,6].  The 

CoMFA (Comparative Molecular Field Analysis) [1] and related methods [7,8] have since proved 

to be extremely popular and effective complements to classical QSAR [6].  However, one of the 

main difficulties associated with (and potential benefits of) field-based techniques is that of 

aligning the structures concerned [9,10] where the term alignment covers both conformation 
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selection and the superposition of the chosen conformers in such a way as to provide both 

internally descriptive and externally predictive regression models of high quality.  There has thus 

been much interest in either tackling the alignment issue head-on [9, 11-15] or in seeking 

alternative molecular descriptors that are both sensitive to 3D-structure but that do not require 

structural superposition [11,13,14].  EVA [18-23] is one example of such a descriptor, based as it 

is upon molecular vibrations the characteristics of which are, in the absence of an external 

modifying influence such as a receptor, invariant to rotation and translation of the structures 

concerned.  However, whilst EVA removes the need for superposition the method is sensitive to 

3D structure although not to such an extent as a “true” 3D method such as CoMFA.  This reduced 

sensitivity is a consequence of the use of a Gaussian smearing function to develop the descriptor 

(as described below) and as a result EVA might be described as a “2½D” descriptor.  

Nonetheless, it has been demonstrated that it is beneficial to “match” conformations across a 

dataset where possible rather than using randomly or arbitrarily selected 3D structures [21]. 

2.   Calculation of the EVA descriptor 

EVA, and its associated data standardisation technique described below, was originally 

developed by workers at Shell Research Limited [18, 19].  The rationale behind the use of such 

information as a molecular descriptor was “that a significant amount of information pertaining to 

molecular properties, in particular biological activity, might be contained within the molecular 

vibration wave-function, of which the vibrational spectrum is a fingerprint” [19].  It is also the 

case that there is a close, albeit complex, relationship between molecular 3D structure and the 

corresponding IR spectrum, a characteristic that has made IR spectroscopy an extremely powerful 

tool for determining and identifying chemical structures.  

The descriptor is derived from IR- and Raman-range molecular vibrations typically obtained 

through the application of a classical normal co-ordinate analysis (NCA) to an appropriately 

energy minimised structure.  For a compound with N atoms there are 3N−6 (or 3N−5 for a linear 

structure such as acetylene) normal modes of vibration, each of which has a characteristic 

frequency of vibration; the latter is more usually expressed (in cm-1) as a vibration wave number 

(vwn).  The EigenVAlues from the NCA correspond to the vwns.  Once determined, from 

whatever source, the set of vwns for a given structure is projected onto a linear bounded 

frequency scale (BFS) typically covering a range from 1 to 4,000 cm-1.  The use of this range 

                                                                                                                                                                             
      Abbreviations: CV, crossvalidation; IR, infra-red; LNO, leave-N-out (CV); LOO, leave-one-
out (CV); LV, PLS latent variable; ONL, optimal number of PLS LVs; PLS, partial least squares 
(regression); SEcv, crossvalidated standard error; vwn, vibration wave number;  

 2



means that all fundamental vibrational normal modes are included in the analysis – should a vwn 

exceed 4,000 cm-1 then either the BFS can be extended or all vwns from all molecules can be 

scaled according to scale factors such as those described by Scott and Radom [24].  Next a 

Gaussian kernel of fixed standard deviation (σ) is placed over each and every frequency value.  

The BFS is then sampled at fixed increments of L cm-1 and the value of the resulting EVA 

descriptor, EVAx, at each sample point, x, is the sum of the amplitudes of the overlaid kernels at 

that point: 

 
22/2)fx(e

6N3

1i 2
1

EVA i
x

σ
πσ

−−∑
−

=
=         (1) 

where fi is the ith normal mode frequency of the compound concerned.  This procedure is repeated 

for each dataset compound and then combined to provide a matrix with M rows (compounds) and 

4,000/L (columns) descriptor variables.  Typically a descriptor set has been derived using a σ of 

10 cm-1 and an L of 5 cm-1 giving 800 descriptor variables [19, 20].  Thus, for a QSAR dataset of 

typical size the number of variables is very much larger than M and a method such as Partial least 

squares to Latent Structures (PLS) in conjunction with crossvalidation [25] is required to provide 

a robust regression analysis.   

It is important to note that the purpose of the EVA smoothing procedure is not to simulate an 

experimental IR spectrum (transition dipole data is discarded and overtones etc. are not 

considered) but rather it is to apply a smearing function such that vibrations at slightly different 

frequencies in different compounds can be compared with one another.  As such the results 

obtained with EVA QSAR are usually dependent upon the chosen kernel width (σ) [20-22] since 

this parameter determines whether or not, and the extent to which, proximal kernels overlap.  A 

general approach for choosing an appropriate Gaussian σ is described below together with a 

detailed explanation of how the sampling resolution (determined by L) should be selected.  It 

should be noted that the use of a fixed Gaussian standard deviation (kernel height, width and 

shape) means that each frequency (i.e., each part of the spectrum) is equally weighted prior to 

regression analysis. 

Finally, the smearing procedure described can be applied using functions other than the 

Gaussian such as, for example, a Lorentzian, triangular or box function; in-house, and rather ad 

hoc, experience suggests that these shapes provide no advantage in terms of QSAR statistical 

scores.  Alternatively, the smearing technique has been applied to other non-standard spectral and 

non-spectral molecular properties with some success; details are provided below. 
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3.  Selection of parameter values 

As noted above the purpose of applying the Gaussian kernels to the vwns is to smear them out 

such that vibrations at slightly different frequencies in different compounds can be compared to 

one another.  The univariate variance of each EVA variable thus depends upon the chosen 

Gaussian σ and the relative disposition of the vwns both inter- and intra-structurally.  Given that 

the descriptor variance depends upon these factors it follows that any variance-based method such 

as PLS is sensitive to the chosen Gaussian σ.  It is indeed the case that optimal σ (as judged by 

the resulting PLS scores) can be identified for particular data sets [20, 21] although the sensitivity 

to σ is a data set-dependent feature.  The much discussed “benchmark” steroid data set [26], for 

example, is particularly sensitive to σ (as demonstrated in Figure 1) [21].  In this example, 

models were obtained for a range of σ from 1 to 25 cm-1 and LOO crossvalidation, fitted 

modelling and prediction performed for each descriptor set; PLS model dimensionality was 

chosen on the basis of the first SEcv-minimum.  It is clear that the best internally predictive 

models (judged by q2) are obtained where σ = 3-4 cm-1 and, gratifyingly, test set (i.e., external) 

predictivity is also clearly optimal for this σ.  For a set of melatonin receptor ligands [22, 27] 

there is no such clear optimal σ for q2 (Figure 2); any value of σ in the range 1 to 10 cm-1 gives a 

q2 of ~0.47 while the q2 drops off where σ > ~ 10 cm-1.  The corresponding test set predictivity on 

the other hand shows an optimum at around 4 cm-1 but this peak is not nearly so pronounced as it 

is for the steroid set.  The overall conclusion from a wide range of analyses [21] was that a default 

σ of 10cm-1 is a useful starting point but that it is definitely worth exploring models derived using 

alternative σ values. 

Care also needs to be taken when selecting an appropriate value of L, the sampling increment 

for the BFS.  For both EVA and CoMFA the descriptors used for regression are obtained by a 

sampling of the descriptor space for each molecule, respectively the Gaussian smeared vwns and 

the steric/electrostatic/hydrophobic distance potential functions (loosely referred to as “fields”).  

With CoMFA the properties of a particular molecular descriptor sample are determined by the 

grid resolution and, at coarse resolutions (see below), by the relationship of the grid-sample 

points to the molecules.  With EVA such properties are determined by the sampling interval (L) 

and, at coarse resolutions, by the "reading frame" (determined by S, the point at which sampling 

of the BFS is initiated – default 1 cm-1).  Thus, a key issue in extracting these descriptors is the 

resolution required to obtain a sample with properties that reflect as closely as possible those of 

the population as a whole.  Theoretically, this can be done by using an infinitely small sampling 

resolution.  Of course this is not possible and in practice the resolution chosen is a compromise 
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between computational resource/time available for analysis and the stability of the derived PLS 

models.  However, it is possible to identify a sufficient resolution for both EVA and CoMFA 

modelling.  In the latter case this amounts to choosing a grid-resolution for which the resultant 

PLS scores are invariant (at a given significance level) to the aggregate reorientation/translation 

of the aligned structures relative to the bounding 3D-grid.  Where the grid-resolution is 

insufficient, crossvalidation q2 scores can vary significantly [28] and, as recent studies have 

shown [21,22], the test set predictivity can exhibit even greater variance.  Only once a sufficiently 

descriptive grid resolution has been established (typically, ≤ 1 Å [22]) does it make sense to apply 

rational or systematic variable selection techniques to try and obtain simplified models with 

enhanced predictivity.   

With EVA an entirely analogous situation exists – the sampling interval (L) (the resolution) 

must be such that the sample of descriptor space obtained (prior to any systematic variable 

selection) is truly representative of the underlying population.  Thus, for a given choice of 

Gaussian σ, critical values of L (denoted σ
CritL ) can be estimated based upon examination of the 

PLS scores obtained over a range of L.  The results of applying this procedure at various Gaussian 

σ have been described previously [20, 29] and a general rule-of-thumb is to choose  L so that it is 

< 2σ.  Further examples of such evaluations are given in Figures 3 and 4 using a set of phenolic 

compounds with log10 (1/MIC) for the oral bacteria P. gingivalis [30,31].  There is an additional 

factor to be considered here in as much as the “reading frame”, determined by the point (S) 

chosen to initiate sampling of the BFS, provides an alternative source of descriptor variation.  

Thus, Figures 3-4 respectively illustrate the range of LOO CV q2 or test pr-r2 scores obtained 

where the Gaussian σ = 1 cm-1 and the sampling interval L is varied from 0.2 to 6 cm-1 in 0.2 cm-1 

increments; each line represents results obtained where S has a value taken from the range 1.0 

(the default) to 1.9 cm-1 in 0.1 cm-1 increments.  It is clear that where L < 2 cm-1 the PLS scores 

are stable but that once L > ~ 2cm-1 this stability is lost, indicating that the signal-to-noise ratio in 

the descriptors is varying.  Similar analyses can be done for alternative Gaussian kernel widths 

from which the rule-of-thumb noted above has been established. 

In general terms it is useful to keep L as large as possible so as to minimise computational and 

storage requirements which may be important where a small σ term (and hence L value) is 

utilised or where a very large dataset is to be modelled.  All models reported here are those for 

which the relevant L « σ
CritL  and where S is the default 1 cm-1. 
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4.  The effectiveness of the EVA descriptor 

EVA was originally developed as a descriptor for QSAR [18, 19] and it has been shown to 

perform well with a wide range of datasets [19-21]; Table 1 lists a summary of EVA QSAR 

modelling statistics with data from various sources taken both from the literature and unpublished 

in-house analyses.  Many of these analyses were done without a test set, and for these internal 

validation statistics only are available.  A number of the reported QSARs have been further 

validated both with test sets and using data scrambling techniques [21, 22].  This wide range of 

successful analyses attests to the general usefulness of EVA as a QSAR descriptor.   

In terms of similarity/dissimilarity-based diversity analyses the Tripos neighbourhood 

behaviour criterion [32] provides a useful base-line from which to proceed.  In essence a 

descriptor exhibits neighbourhood behaviour where small differences in a descriptor value tend to 

produce only a small difference in biological activity; i.e., high similarity in descriptor space 

implies similar biological activity.  The converse, that dissimilar molecules will have dissimilar 

biological activities, need not be and, fortunately for diversity-based lead discovery is not, a 

requirement.  Put another way, similarity in descriptor space is a sufficient, but not necessary, 

condition for similar biological activity.  The EVA descriptor has indeed been shown to exhibit 

neighbourhood behaviour [33] thus providing support for its use in diversity analysis/compound 

selection protocols. 

EVA has also been evaluated for use in similarity searching of structure databases, using 

simulated property-prediction methods.  Two evaluations have been performed.  The first made 

use of the Pomona Starlist database with high-quality experimentally determined log P values as 

the property to be predicted [23].  Performance here was as only as good as conventional 2D-bit-

string descriptors, specifically those in the UNITY chemical information management package 

[34].  However, detailed examination of the nearest-neighbour “hits” indicated that EVA tended 

to return quite different structures to those obtained with the 2D descriptor, suggesting that EVA-

based similarity searching may be useful as an “ideas generator” for the browsing chemist.  A 

second, unpublished study has been made using subsets of the World Drugs Index. In these 

analyses similarity searching performance was assessed according to how many compounds of 

the same activity class were found in nearest-neighbour lists for various selected targets. The 

results were compared to those obtained using UNITY 2D bit-strings, and it was again found that 

EVA provides similar performance to bit-string-based searching but tend to return different sets 

of nearest-neighbours. 
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The main obstacle to the utilisation of EVA descriptors in similarity and diversity-studies is 

the overhead required to calculate the vwns for which a geometry optimisation step is a pre-

requisite; even with a molecular mechanics approach such as MM3 [35] the time required is at 

least an order of magnitude higher than that needed for 2D fragment bit-string descriptors, for 

example.  The extent to which geometry optimisation can be relaxed, and the time required to 

determine vwns thus reduced, without significantly affecting descriptor performance has yet to be 

assessed.  

5.  A modification to the EVA methodology - EVA_GA 

In “classical” EVA described above the Gaussian kernels have a uniform fixed σ (i.e., equal 

width, height and shape) for all frequencies in all compounds being analysed.  This is important 

because it means that each frequency (i.e., each part of the spectrum) is equally weighted prior to 

regression.  In the EVA_GA method [22] the kernel standard deviation (σ) is permitted to have 

localised values at different regions on the BFS.  This approach permits the determination of an 

optimal or near-optimal overlap of kernels across the spectrum, where the quality of this overlap 

is judged by the scores from subsequent PLS regression with the derived descriptor matrix.  Equal 

weighting of frequencies prior to analysis is ensured by scaling the kernels such that they have 

unit maximum amplitude; the main difference between the kernels is thus their width and to a 

lesser extent shape. 

For EVA_GA the BFS is divided up into NBINS bins of equal size and a localised σ 

associated with each bin.  A frequency value falling within a bin range is thus expanded using the 

associated local σ.  A GA is used to drive the search for optimal combinations of localised σ, 

with the GA chromosome consisting of a vector of NBINS σ values.  A typical value of NBINS 

is 100 giving a bin width of 40 cm-1.  PLS LOO or LNO CV regression scores (i.e., q2) have been 

used as the fitness function to be optimised by the GA and the final solution(s) validated using 

previously unseen, test sets of compounds.  Results with EVA_GA have thus far been extremely 

promising with substantial improvements in both q2 and test set predictive-r2 (pr2) scores with a 

set of melatonin ligands (Table 2) and a set of phenolic compounds with oral bacteria inhibition 

data; when applied to the benchmark steroid dataset (not shown) an improvement in q2  but no 

change in pr2 was obtained. 

Whilst these results are very promising it has been found that a great deal of care is required to 

prevent training set overfit, even where LNO CV q2 is used as the GA fitness score.  The GA 

maybe also be applied as a variable selection/deletion tool wherein a variable can be deselected 
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when a localised σ of zero is permitted.  Such variable selection provides simplified models 

which in turn may provide greater opportunity to back-track effectively to structure from an EVA 

QSAR.  Model interpretation is one of the most appealing features of the CoMFA method while 

at present such ready back-transformation is not available within EVA.  We are hence also 

investigating the use of alternative techniques such as continuum regression [36] and various 

variable selection procedures [37-39] that in combination may provide better or more appropriate 

reduced-variable models. 

6.  Related descriptors 

As indicated previously [19,20,40] the Gaussian smearing methodology is not restricted to 

vwns but can in fact be applied to any suitable non-standard property.  The method has since been 

applied to other spectral properties [41] − the so-called Comparative Spectra Analysis (CoSA) − 

including experimentally determined 1H NMR, Mass and IR spectra as well as simulated IR and 
13C NMR data.  The various descriptors were tested using a single set of 45 progestagens, both 

with all compounds as a training set and where the compounds were divided into a training and 

test set.  With the exception of experimental IR descriptors, results with individual spectral 

descriptors were generally better than analogous CoMFA analyses; combining the descriptors, 

including the molecular fields, in various ways tended to improve the PLS scores obtained.   

The Gaussian smearing technique has also been applied to molecular orbital (MO) energies 

[42].  The MO energies were obtained semi-empirically and are thus the Electronic EigenVAlues 

(EEVA).  EEVA has been tested on seventeen data sets with LOO crossvalidated q2 > 0.4 in all 

cases except two and some very high q2 scores (up to 0.94) in many cases; external test set 

predictivity was not considered here.  In the authors’ opinion some of these results are over-

optimistic in as much as models are reported with large numbers of PLS LVs relative to the 

number of data-points (compounds).  Nonetheless, there are sufficient numbers of significant 

results presented to suggest that EEVA is a promising descriptor.  Furthermore, an in-house 

EEVA analysis using the aforementioned steroid dataset [1,26] has however provided models 

with both good internal and external predictivity (Gaussian σ = 9 eV, q2 = 0.75 (4); r2 = 0.97; pr-

r2 = 0.59).  

7.  Conclusion 

EVA has proved to be an effective and robust descriptor for use in QSAR studies as evidenced 

by the large number of successful analyses documented herein.  EVA has been found to perform 

as well as CoMFA overall but with the advantage that structural superposition is not required.  
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EVA’s main limitation is that PLS regression models are very difficult to interpret in terms of 

(contra)-indicated molecular features.  However, efforts are underway to simplify regression 

models through variable selection techniques such that back-tracking from a model may be 

facilitated.  The descriptor has also been validated for use in diversity/compound selection 

protocols through the demonstration of its neighbourhood properties and through nearest-

neighbour based simulated property-prediction studies. 
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Table 1:  Summary of published and in-house EVA QSAR analyses.  EVA descriptors were not scaled (NS) unless stated otherwise.  On the whole 
autoscaling (AS) the descriptors either did not improve or produced a deterioration in PLS model statistics.  Test set performance is indicated where available. 

 

Dataset1 n2
 

Biological End-point / Property 
        Best                σ = 10 cm-1

   q2 (ONL) σ       q2 (ONL) 
Test Set pr-r2

Best σ  / σ = 10 cm-1

β-Carboline [20] 41 benzodiazepine receptor inverse 
agonists and antagonists (log 

IC50) 

0.66 (7) 22 0.50 (6) -  - 

BCDEF [19] 135 + 68 Experimental log P -  -  0.68 -  0.65 

Biphenyls  (BIP) [20] NS 
         AS 

14 Ah (Dioxin) Receptor Binding 
Affinity (pEC50) 

0.14 (3) 7  ≤ 0 

0.45 (3) 16 0.28 (2) 

-  - 
-  - 

Cain/Cometto-Muniz  52 

44 

Odour thresholds (ODT)3

Log( 1 / ODT) 
0.57 (5) 25 0.54 (5) 

0.71 (7) 15 0.62 (5) 

-  - 
-  - 

Dibenzo-p-dioxins (DPD) [20] 25 Ah (Dioxin) Receptor Binding 
Affinity (pEC50) 

0.70 (2) 18-40 0.65 (2) -  - 

Dibenzofurans (DBF) [20] 39 Ah (Dioxin) Receptor Binding 
Affinity (pEC50) 

0.74 (4) 7-9 0.73 (4) -  - 

DPD + BIP + DBF combined 
[20] 

78 Ah (Dioxin) Receptor Binding 
Affinity (pEC50) 

0.64 (3) 14-21 0.62 (3) -  - 

Endothelins  Abbott [43] 55 ETA receptor (1/logIC50) 0.49 (2) 50 0.58 (3) -  - 
 BMS [44] 36 ETA receptor (1/logIC50) 0.54 (3) 1  0.71 (5) -  - 
Melatonin Receptor Ligands 
[22] 

44 + 9 pKi for chicken brain melatonin 
receptors 

0.46 (2) 10 as best 0.66/0.814 as best 

Muscarinics  [20] 39 muscarinic agonists (pD2) 0.53 (4) 10 as best -  - 
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Nitromethylene heterocycles 
[20] 

17 1/log LC50 values for the pea 
aphid 

0.66 (3) 4  0.49 (3) -  - 

Oxadiazoles  [20] NSg 
                    AS 

23 toxicity index (TI) for red spider 
mite eggs (1/log TI) 

≤ 0  -  ≤ 0 
≤ 0  -  ≤ 0 

-  - 
-  - 

Phenols [30,31] P. gingivalis5 62 + 62 Log( 1/MIC ) 0.81 (3) 10 as best 
0.69 (3) 10 as best 

0.75  as best 
0.83  as best 

  Str. Sobrinus5 56 + 55 Log( 1/MIC ) 0.85 (3) 10 as best 
0.83 (6) 10 as best 

0.78  as best 
0.89  as best 

  S. artemidis5 55 + 55 Log( 1/MIC ) 0.68 (3) 10 as best 
0.74 (6) 10 as best 

0.61  as best 
0.69  as best 

Piperidines [20] 137 1/log IC50 for U. Maydis 0.78 (3) 2-4 0.76 (4) -  - 
Steroids  (TBG) [20] 21 testosterone- and corticosterone-

binding globulin (TBG and 
CBG) binding affinity (log [K]).

0.70 (4) 8-11 0.70 (4) -  - 

Steroids  (CBG) [20] 21 + 10 As above 0.75 (1) 3  0.70 (2) -  - 
Steroids  (CBG) [21] 21 + 10 As above 0.80 (2)  3/4 0.73 (2) 0.69  0.59 
Steroids (CBG)  Design_1 [22] 11 + 20 As above 0.55 (1)6 4  0.55 (2)6 0.51  0.34 

    Design_2 
[22] 

10 + 18 As above 0.69 (2) 4  0.63 (2) 0.69  0.63 

Sulphonamides [20] 100 log 1/IC50 for acetolactate 
synthase inhibition 

0.55 (3) 2  0.56 (7) 

0.57 (7) 7- 8 

-  - 
-  - 

Tropanes [20] 13 cocaine binding site (1/log IC50) 0.68 (3) 65 (+) 0.49 (2) 

0.55 (3) 13  

-  - 
-  - 
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1 Citations refer either to papers where the relevant EVA QSAR analyses are described (within which further references are given) or, where such is not available, the original 
literature reference is given. 
2 n – number of training set compounds (+ number of test set compounds where available). 
3 Minimum vapour concentrations that human subjects can detect in ppm. 
4 Test set pr-r2 excluding two outliers. 
5 These datasets were split into two equal-sized groups and models developed for each group were used to predict the activities of the compounds in the other group. 
6 The model based on Gaussian σ of 4 cm-1 has identical q2 to that where σ = 10 cm-1 but the former is preferred since it uses one rather than 2 LVs; test set prediction is 
better with the simpler model. 
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Table 2:  Some EVA_GA results: melatonin receptor ligands [22] and bacteria inhibiting phenolic compounds: see Table I for equivalent “classical” EVA 
results and further details. 

  Training Set Test Set 

Dataset n LOO q2 ONL RAND_PERM1

p for q2
r2 Predictive-r2

Melatonin 44 0.65 3 3.0 × 10-5 0.90 0.72 / 0.89 

Phenols / P. 
gingivalis 

62 0.89 3 3.2 × 10-7 0.93 0.77 

Phenols / S. 
sobrinus 

56 0.90 3/4 6.7 × 10-6 0.97 0.79 

Phenols / Str. 
Artemidis 

55 0.77 2 1.3 × 10-8 0.95 0.64 

 
 
1 RAND_PERM: training set random permutation (Y scrambling) tests: p gives an estimate of the probability that the observed model may have occurred by 
chance. 
2 Test set pr-r2 excluding two outliers. 
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Figure 1: Steroid dataset: PLS q2 or test set pr-r2 vs. Gaussian σ (see main text for 
further details).  
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Figure 2: Melatonin receptor ligands: PLS q2 or test set pr-r2 vs. Gaussian σ (see main text for further details). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: P. ors derived where 
the BFS is sampled starting at S cm

 gingivalis phenolic inhibitors: Training set LOO CV q2 vs. sampling increment (L) where Gaussian σ = 1.0 cm-1. Each line represents descript
-1.  The q2 is stable only where L < ~2σ. 
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Figure 4: P. gingivalis phenolic inhibitors: Test set pr-r2 vs. sampling increment (L) where Gaussian σ = 1.0 cm-1. Each line represents descriptors derived where the BFS is 
sampled starting at S cm-1.  The pr-r2 is stable only where L < 2σ. 
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