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mining that can be used to develop structure-activity relationships from such chemical/biological 
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Introduction 

The search for lead compounds in the pharmaceutical industry (and also in the agrochemical and 

related industries) has historically followed an inherently sequential process, in which individual 

compounds are synthesised and then tested for biological activity, with the results of such experiments 

being fed back to inform the selection of further molecules. Developments in combinatorial chemistry 

[1-5] and in high-throughput screening (HTS) [6-8] mean that such operations have been largely 

replaced by a massively parallel mode of processing, in which many thousands of molecules can be 

synthesised and tested at the same time. This has resulted in an explosion in the volume of data that is 

available for the identification of structure-activity relationships (SAR). Quantitative SARs, typically 

using physicochemical parameters or 3D molecular fields with statistical techniques such as multiple 

regression or principal components analysis, have been an important tool for medicinal chemists for 

many years. However, such methods are normally used for the detailed analysis of small numbers of 

structurally-related molecules, and are not applicable to the large, structurally heterogeneous datasets 

that characterise modern HTS systems. There is hence much current interest in novel soft-computing 

approaches that might be applicable to the analysis of such datasets, and we here review recent work 

in this area, focusing upon the use of visualisation and data mining techniques.  

Visualisation Techniques 

Information and data visualisation plays an important role in practically all areas of scientific research. 

Consequently, many visualisation techniques like scatter plots or histograms have been developed 

[9,10]. That these established, simple visualisation techniques can help to identify patterns also in 

large datasets is demonstrated nicely in an article by Hand et al. [11*]. However, very interesting 

developments have been made in information and data visualisation over the last years that are 

especially aimed at large datasets [12**,13]. A thorough introduction to this important field was 

recently published by Card et al. [12**], who provide a collection of important classic and cutting 

edge articles in this field.  
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With the increasing importance of high-throughput chemistry and screening, the consequent increase 

in data volume [14] requires more effective methods to visualise and structure data produced in 

research. In addition, the emerging consolidation of research data in chemical data warehouses [15] 

makes it now more feasible to mine these sources. However, only few applications in chemistry have 

appeared over the past years. It can however be expected that visualisation will have a major impact 

on drug discovery over the next years [16]. 

Two general purpose data visualisation programs will act as examples of what is currently possible. 

Spotfire [17,18] (Spotfire® is a product of Spotfire Inc., Cambridge, MA, USA) is probably one of the 

best-known data visualisation and mining programs. Although it only provides basic graphs like 

scatter-plots, histograms and pie charts, its special features like database connectivity and interactive 

query devices make it a powerful tool for interactive visualisation and information analysis (see Figure 

1). Any change of the control elements is instantly executed and the user gets an immediate feedback. 

Another interesting visualisation program that has been applied to pharmaceutical research data is 

OmniViz Pro™ (OmniViz Pro is a trademark of OmniViz, Inc., Columbus, OH, USA). In contrast to 

Spotfire, this software is based on new methods for information visualisation developed by the 

Information Visualisation group of the Pacific Northwest National Laboratory (see 

http://multimedia.pnl.gov:2080/infoviz/). Figure 2 gives an example of the type of graphs that can be 

created with OmniViz Pro.  

In many cases, the available data are multidimensional. This is especially true for chemical 

compounds that can numerically be represented either by fingerprints or a set of descriptor values. In 

order to explore multidimensional data, it is necessary to map the data points into a 2- or 3-

dimensional space. This mapping is frequently called non-linear mapping. The aim of non-linear 

mapping is in most cases to preserve neighbouring properties, so that data points that are close 

together in the multidimensional space will be close together in the low-dimensional space. A variety 

of methods have been used over the last years in chemistry for the visualisation of databases [19], in 

diversity analysis [20,21] and for the analysis of structure-activity relationships [22,23]. 
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An established method for non-linear mapping is multidimensional scaling [24]. Principal component 

analysis or singular value decomposition can be used to get an initial estimate for the low dimensional 

representation of data points. In a second step, this projection is improved by optimising the data point 

separation in the low-dimensional space so that they resemble the distances of the data points in the 

high-dimensional space better. The quality of the mapping is measured by using the Sammon’s stress 

function or a variation thereof. Clark et al. [25*] proposed a particularly interesting modification of 

the original stress function. They observed that when mapping chemical structures based on 

fingerprints, the local similarity is not well preserved. This is due to the fact that the similarity 

measure used is an insufficient measure of dissimilarity. The suggested modification of the stress 

function ignores contributions of compounds with similarity smaller than a given value. The mapping 

obtained with the modified version clearly shows a more pronounced clustering of similar compounds.  

Unfortunately, multidimensional scaling is not well suited for large datasets, as the method scales 

quadratically with the number of data points. A significant improvement compared to conventional 

methods was achieved by Xie et al. [26], who applied the truncated-Newton optimisation method to 

improve the initial mapping obtained from singular value decomposition. They were able to 

demonstrate that the truncated-Newton optimisation can be up to 100 times faster than using the 

steepest descent method for optimisation. The approach is however not suitable for sets of several 

thousand data points.  

A variety of different approaches were used to apply neural nets for non-linear mapping. The 

advantage of neural nets is that they can be used to predict positions of new data points in the low-

dimensional space. A number of studies have used self-organising maps [27*] to visualise and analyse 

the diversity of databases [19,22,23]. It is also possible to use a multi-layer back-propagation neural 

net with n input and m output neurons (m=2,3). The output of the neural net for each output can be 

used as its m lower-dimensional co-ordinates [28]. Izrailev and Agrafiotis modified this method [29*]. 

Instead of using the full dataset, they suggest to train a feed-forward neural network to learn the 

projection obtained from conventional non-linear mapping of a subset of all data. The trained network 

can subsequently be used to project the whole compounds set. In an example of a combinatorial 
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library containing 57498 compounds, a subset of only 100 compounds (0.2 %) was already sufficient 

to generate a reasonable map of the whole dataset. Another approach uses a neural net with n neurons 

in the input and output layer and several middle layers. One of the hidden layers has m neurons. The 

net is trained to reproduce the input variables at the output neurons. The reduced dimensionality 

representation of a compound can then be read out from the m neurons of the middle layer [30]. 

While the described non-linear mapping techniques try to preserve the neighbouring relationship, the 

generated map might not necessarily be the best mapping if the aim is to visualise a classification. The 

classification mapping methods proposed by Su et al. [31*] aim to achieve this. The examples 

demonstrate that the techniques are able to give a qualitative or semi-quantitative picture.  

Probably the most important problem during lead optimisation in drug discovery is to determine SAR 

information. While it is quite feasible to develop this SAR knowledge for small numbers of 

compounds manually, it is necessary to automate this process for large datasets. The aim is to identify 

sets of similar compounds that have a common structure and show a systematic variation in one part 

(e.g. a substituent, a spacer or a ring system). Therefore, it may be interesting to compare one 

particular compound to a variety of other compounds in the dataset, to visualise the common features, 

and hence the potential pharmacophore patterns, that are present.  

Sheridan and Miller looked at recurrent topological substructures [32*]. They compare the structures 

of pairs of compounds and determine all common, possibly disconnected substructures. These 

substructures are scored and the highest scoring common substructure determined. This approach 

allows identifying 2D pharmacophores for a set of compounds. Another approach based on maximum 

common substructures is used by Distill (Distill is a trademark of Tripos Inc., St. Louis, MO, USA). 

This program develops a hierarchical organisation of compounds using maximum common 

substructures. The approach is however limited by the fact that there is only one classification tree for 

the structures created. This means that only one of all possible groupings of compounds can be 

explored, which will limit the SAR information that could be extracted from a set of compounds. 

Instead of using only a tree, the program LeadPharmer (LeadPharmer is a trademark of BioReason 
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Inc., Santa Fe, NM, USA) constructs ‘phylogenetic-like groupings’ of possible substructures [33-35]. 

The term ‘phylogenetic-like groupings’ was chosen to indicate that substructures are related. The 

determined substructures are used to assign compounds to different classes. It is possible that a 

compound can be assigned to more than one class. Using available activity information, interesting 

classes can be identified and the effect of structural variations on activity studied.  

One drawback of the approaches mentioned so far is that the construction of the tree classification can 

be a quite time-consuming process. The program LeadScope (LeadScope is a trademark of LeadScope 

Inc., Columbus, OH, USA) tries a different approach [36*]. The program does not construct possible 

substructures for a number of given compounds, but uses a set of predefined structure fragments (large 

taxonomy of familiar structural features such as functional groups, aromatics, and heterocycles) to 

classify the compounds. Therefore, compounds can be assigned to more than one group depending on 

the structural fragments they contain. The compound classification can be used to explore structure 

activity relationships in a dataset and search other databases for related structures (see Figure 3). 

Data Mining Techniques 

Visualisation enables a chemist to interact directly with sets of compounds, but can prove difficult 

when very many data points need to be considered. Data mining methods, which seek to identify 

meaningful inter-variable relationships in large, multidimensional datasets, are now being used in a 

wide range of subject domains, and it is hardly surprising that several of these methods have been used 

to investigate SARs. Three good general sources on data mining methods are the KDNUGGETS Web 

site (see URL http://www.kdnuggets.com), and the classic texts by Mitchell [37*] and by Duda and 

Hart [38*]. The basic problem addressed by all of these methods is that of classification: given a set of 

molecules for which the activity (or inactivity) is known (the training set), derive a rule that will 

enable new molecules (the test set) to be classified into the predicted-active or predicted-inactive 

classes. Training data can be generated internally from ongoing lead-discovery programmes or from 

publicly available files such as the MACCS Drug Data Report (MDDR), Available Chemicals 

Directory (ACD) and Standard Drug File databases; the resulting classifications can then be used to 
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guide the selection of new molecules for synthesis and testing. Thus far, chemical applications have 

involved the following principal approaches: statistical criteria, decision trees and neural networks.  

Medicinal chemists have known for many years that certain types of molecule are unlikely to possess 

the characteristics necessary for a successful drug: they may be too large to pass the blood-brain 

barrier, they may be insoluble, they may contain toxic or highly reactive functionality, etc. Attempts to 

quantify such characteristics started with Lipinski’s ‘Rule of Five’ and there have been several, more 

recent statistical analyses of sets of drug molecules (e.g., [39,40,41*]). A more sophisticated mode of 

analysis considers also sets of non-drug (or, more usually, presumed non-drug) molecules, this 

allowing the identification of rules that can be used to assess the ‘drug-likeness’ or ‘drugability’ of 

molecules. An obvious starting point is the distribution of global molecular properties in sets of drug 

and non-drug molecules. This approach was first studied by Gillet et al. [42**], using the distributions 

of molecular weight, numbers of rotatable bonds, numbers of aromatic rings and of hydrogen bond 

donors and acceptors, CLOGP and the 2Kα shape index. Here, the distributions for the value of some 

property in the drug and non-drug molecules is processed by a genetic algorithm (GA) [43] to produce 

a bioactivity profile, a set of weights that maximise the separation between the distributions for the 

two classes of molecule; the profiles, are then applied to the property values for test-set compounds so 

as to obtain a ranking of them in decreasing order of predicted drug-likeness. Gillet et al. subsequently 

described the use of the profiles in a GA for selecting combinatorial libraries of structurally diverse, 

drug-like molecules [44]; an analogous compound selection procedure has been reported by Sadowski 

[45] and there is now an extensive literature on the inclusion of drug-likeness in library design 

procedures [46-49]. A very similar set of global molecular properties has been studied by Oprea in a 

detailed analysis of several publicly-available datasets [50**], this analysis resulting in the 

specification of rules for compound-selection that are noticeably more precise than the original Rule of 

Five.  

Statistical analyses of the presence of fragment substructures in active and inactive molecules provides 

a simple, and convenient alternative to the use of property information. Such approaches were first 

described almost three decades ago but current requirements for effective compound-selection 
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procedures has resulted in a surge of interest (se, e.g., [36*,51-53]). Similar approaches can be used to 

highlight substructures that are undesirable for drug activity (e.g., on grounds of toxicity or unwanted 

reactivity) [41*,54*]. 

Neural networks have been applied to a wide range of chemical problems [55**] and they were one of 

the first such techniques to be applied to drugability studies, the two papers by Ajay et al. [56**] and 

by Sadowski and Kubinyi [57**] appearing contemporaneously with the GA-based approach of Gillet 

et al. [42**]. Here, the network is trained using sets of drugs and non-drugs, and a scoring threshold 

derived that can maximally discriminate between the two classes; test molecules can then be classified 

by calculating the score when they are presented to the network. Work in this area is exemplified by 

the recent study of Frimurer et al. [58*]. These authors used sets of molecules from the MDDR and 

ACD databases to exemplify drugs and non-drugs, with each molecule represented by normalised 

counts of the numbers of CONCORD atom-types present. These representations were input to a 

multilayered feed-forward neural network which, after appropriate training, was able to achieve a 

success rate of 88% in classifying MDDR and ACD compounds that had not been involved in the 

training; importantly, when used in a predictive manner, the network was able to identify drug-like 

molecules noticeably different from those obtained from conventional 2D similarity searches. 

Sadowski discusses the use of a similar neural-network system to discriminate between crop-

protecting and non crop-protecting compounds [45]. 

Decision trees provide an alternative classification tool. Here, the root of the tree represents an entire 

dataset, and this is subdivided into two (or more) subsets depending on the value of some splitting 

criterion. Various types of criteria can be used, such as the presence or absence of a particular 

substructural feature or a CLOGP value lying within a particular range. The potential splitting criteria 

are scored in some way, and the most advantageous chosen to split the dataset; the procedure is then 

repeated on the resulting sub-sets, and continued until some termination condition is satisfied. Several 

different splitting criteria and scoring schemes have been described [37*]. Decision trees were first 

used in drugability studies by Ajay et al. [56**]: these authors used the well-known C4.5 program 

(which employs an entropy-based scoring function) but who found that the resulting trees performed 
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less well than neural networks. More recently, however, Wagener and van Geerestein [59**] have 

used the successor program, C5.0, to distinguish between drug and non-drug compounds with a 

substantial measure of success on both public and corporate datasets. The most widely-used decision 

tree procedure for chemical applications has been the recursive partitioning approach, which uses a 

modified t-test for scoring potential splits. This approach has been popularised by Rusinko and co-

workers, who have used it not only to analyse 2D fragment substructural data [60**] but also to 

suggest 3D pharmacophores [61,62]. Other recent examples of the use of recursive partitioning are 

provided by Cho et al. [63] and by Miller [64*]. Decision trees have the advantage over neural 

networks that they provide explicit, readily comprehensible sets of rules for discussion with medicinal 

chemists [59**], although Walters and Murcko believe that they are susceptible to over-training, 

producing classification rules with little predictive power [65]. Mello and Brown [66] have criticised 

them for assigning test data to just a single class, and have thus developed a hybrid approach that uses 

the feature-selection capabilities of recursive partitioning as the input to a Bayesian inference network, 

while Miller has combined recursive partitioning with k-nearest neighbour searching [64*]. Finally, 

Jones-Hertzog et al. [67*] describe the use of recursive partitioning to support a sequential HTS 

analysis of 14 G-protein-coupled receptor targets; other examples of data mining in sequential 

screening programmes are described by Stanton et al. [68] and Engels et al. [69*], using nearest 

neighbour and cluster analysis. 

Drugability-based filtering is now common. That said, it must be emphasised that such schemes are 

still at a very early stage of development: they can often provide erroneous classifications if used 

without care [70], and they are arguably focused too much on known drugs rather than on the lead 

compounds that are the principal outputs of screening programmes [71*]. In addition, many of the 

reported studies thus far have focused on the difference between drugs and nondrugs; however, the 

same basic techniques can often be applied to the analysis of molecules from a particular therapeutic 

class if required [39,44,53,58*,72].   
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Conclusions 

This brief review has highlighted some of the soft computing methods that are now being applied to 

the analysis of the structure-activity relationships present in HTS datasets. However, there are many 

other methods that have already been, or could be, applied to such problems: examples include ant-

based computation [73,74], evolutionary Kohonen networks [27*], fuzzy clustering [23], support 

vector machines [75] and Bayesian learning [66]. We believe that methods such as these will prove 

invaluable in the analysis of the huge volumes of data that characterise modern pharmaceutical 

research, particularly when used in combination [76**.77**].  
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Figure 1: A trellis display created using Spotfire. The four scatter plots compare activity data of 

compounds measured for two subtypes of a protein. In addition, the compounds were classified into 

four different structural classes. Each scatter plot shows the data points for one structural class. A 

comparison of the different scatter plots reveals interesting details. The compounds in class 3 are more 

selective for protein 1, whereas the compounds in class 4 are equipotent on both proteins. Compound 

class 2 shows no preference but two groups of compounds are clearly visible. A comparison of the 

structures in the different classes can reveal further information about the SAR. 
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a)  b)  

 

Figure 2: OmniViz Pro™, from OmniViz, Inc. (Columbus, OH, USA) provides integrated analysis of 

text, numeric, categorical, and genomic sequence data within a visual Cognitive Analytical 

Environment™. Here, the software was used in an analysis of 1107 compounds with defined 

fingerprints that had been screened in 19 biological assays. 

In (a), the compounds are represented in a Galaxy™ view, a proximity map that shows how every 

record is related to every other record. In this map, the similarity is based on the fingerprints, 

providing a view of the chemical information space. Individual records (blue dots) represent each 

compound and the clusters of related compounds are evident (marked by circles). A separate Galaxy 

view in (b) shows the same compounds but with the similarity based on the biological activity profile 

(biological activity space). A cluster of compounds (lower right) was selected (highlighted yellow) in 

the biological activity space and the corresponding compounds were automatically highlighted in the 

structure-based Galaxy. The distribution of the compounds in the structure space indicates that most 

have similar fingerprint attributes (since they are located in close proximity), but a few are distant 

(e.g., two in the cluster at the bottom left). This suggests that an alternative set of structural attributes 

might create the same activity profile - suggesting a new class of structures to pursue. 

Courtesy of OmniViz Inc. 
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Figure 3: The screenshot of the LeadScope user interface shows a comparison of two projects in the 

histogram view. The left panel shows the structural feature hierarchy open to reveal a portion of the 

Heterocycles:quinoline branch with quinoline, 2-phenyl selected. The central graphic panel shows 

parallel histograms comparing the contents of two projects relative to the structural features; each 

histogram bar gives the frequency of the feature class plotted on a log scale. The right panel contains a 

series of the property filters, which can be adjusted to select compounds with properties in specific 

ranges.  

The database corresponding to the histogram on the left are compounds tested by the National Cancer 

Institute’s (NCI) Developmental Therapeutics Program for growth inhibition and cytotoxicity against 

a panel of 60 human cancer cell lines. The comparison database – corresponding to the histogram on 

the right – are compounds available from Maybridge Chemical Company Ltd [Trevillett, Tintagel, 

Cornwall PL34 OHW UK]. 

Histogram bars are colour-coded based on the difference, expressed in number of standard deviations, 

between the mean activity of the subset of compounds containing a structural feature from the mean 

activity of the full set. In this example, IC50 data for the SF-295 cell line from the CNS panel is used 

for the NCI dataset. This technique can be used to locate subsets with unusually high mean activity 

and then identify new members of the structural class available from a commercial source. 

Courtesy of LeadScope Inc. 
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