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ABSTRACT: The maximum common subgraph (MCS) problem has become increasingly 

important in those aspects of chemoinformatics that involve the matching of 2D or 3D chemical 

structures.  This paper provides a classification and a review of the many MCS algorithms, both 

exact and approximate, that have been described in the literature, and makes recommendations 

regarding their applicability to typical chemoinformatics tasks. 

 

INTRODUCTION 

It is necessary in many applications to compare objects represented as graphs and to determine 

the degree and composition of the similarity between the objects.  This is often accomplished 

using graph matching, or isomorphism techniques.  Graph matching can be formulated as a 

problem involving the maximum common subgraph (MCS) between the collection of graphs 

being considered.  In the chemical literature, this is often referred to as the maximum common 
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substructure problem and denotes the largest substructure common to the collection of graphs 

under consideration.  The graph-based similarity between the graphs representing molecules 

plays an important role in many aspects of chemistry and, increasingly, biology: examples 

include protein-ligand docking [1], database searching [2,3], the prediction of biological activity 

[4], reaction site modeling [5-8], and the interpretation of molecular spectra [9,10]. 

 

A recent review detailing many of the established chemical and biological applications of the 

MCS approach has been published [3].  This paper is intended to complement that work by 

focusing primarily on the algorithmic aspects of the MCS problem.  The MCS problem is of 

significant importance in many research fields outside of chemical information management 

such as computer vision and image recognition [11-17], and the associated literature is extensive.  

In the interest of brevity, we concentrate chiefly on those studies that have been directly applied 

to chemical information handling, but we also consider MCS-related work performed in other 

fields of study (such as mathematics, computer science, and pattern recognition) when it is 

believed to have direct implications for applications in chemoinformatics. 

 

DEFINITIONS AND TERMINOLOGY 

All graphs referred to in the following text are assumed to be simple, undirected graphs.  For an 

introduction to graph related concepts and notation, the reader is referred to an introductory text 

on graph theory (see, e.g., [18]).  In a 2D chemical structure, the vertices of a graph represent the 

atoms and the edges of a graph denote the bonds connecting each pair of covalently bonded 

atoms.  A 3D chemical graph differs from a 2D chemical graph in the manner in which edges are 

identified, as vertices are defined as the constituent atoms in both cases: specifically, in a 3D 

chemical graph, the edges indicate the geometric distance between a pair of atoms (vertices).  

Since 2D chemical graphs are very sparse (i.e., the constituent vertices are of low degree), the 

number of edges is approximately equal to the number of vertices (i.e., ( ) ( )E G O V G≈ ).  In a 

3D graph, an edge exists between each pair of vertices; therefore 2( ) ( ( ) )E G O V G≈ .  An edge 

in one graph is compatible with an edge in another graph if their two vertex endpoint labels and 

edge label are compatible.  In a 3D chemical structure graph, compatibility of edge labels may 

involve the specification of some allowable distance tolerance. 
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Two graphs are said to be isomorphic if there is a one-to-one correspondence between their 

vertices and an edge only exists between two vertices in one graph if an edge exists between the 

two corresponding vertices in the other graph.  An induced subgraph is a set S of vertices of a 

graph G and those edges of G with both endpoints in S.  A graph G12 is a common induced 

subgraph of graphs G  and G  if G1 2 12 is isomorphic to induced subgraphs of G  and G1 2.  A 

maximum common induced subgraph (MCIS) consists of a graph G12 with the largest number of 

vertices meeting the aforementioned property.  Related to the MCIS is the maximum common 

edge subgraph (MCES).  An MCES is a subgraph consisting of the largest number of edges 

common to both G1 and G2.  In this treatment, the term MCS will be used to denote both the 

MCIS and MCES problems. 

 

Figure 1(a) illustrates an MCIS between two graphs (highlighted in bold), and Figure 1(b) 

demonstrates an MCES between the same two graphs.  It is clear from Figure 1(b) that the 

MCES between the two graphs is simply the common subgraph with the largest number of 

edges.  The MCIS in Figure 1(a) is less intuitive.  The MCIS consists of the common subgraph 

with the largest number of vertices under the constraint that every edge present in graph G (G1 2) 

that is incident on a vertex contained in the MCIS must also have a corresponding edge in the 

other graph G (G ).  For instance, in the MCES, vertex 4 in graph G2 1 1 maps to vertex 3’ in graph 

G  because edges (3,4), (4,5), and (4,7) in G2 1 correspond to edges (2’,3’), (3’,4’), and (3’,7’) in 

G , respectively.  In the MCIS, however, vertex 4 in G  does not match to vertex 3’ in G2 1 2, 

because there is an edge, (2,4), incident on vertex 4 in G1 that does not have a corresponding 

edge incident on vertex 3’ in G2. 

 

The MCS between two graphs can be classified further by distinguishing between the connected 

and disconnected case.  A connected MCS is an MCS whereby each vertex is connected to every 

other vertex by at least one path in the graph (i.e., the MCS consists of a single subgraph).  A 

disconnected MCS is comprised of two or more subgraph components.  Figure 2(a) depicts the 

connected MCES between two molecular graphs, and Figure 2(b) illustrates the disconnected 

MCES between the same two molecular graphs.  In general, a MCS between a pair of graphs is 

not necessarily unique as there may be more than one MCS. 

 3



 

MAXIMUM COMMON INDUCED SUBGRAPGHS 

AND MAXIMUM COMMON EDGE SUBGRAPHS 

It can be argued that the MCES more adequately exemplifies the notion of chemical similarity 

between two chemical graphs than does the MCIS since it is the bonded interactions between 

atoms in a molecule that are most responsible for its perceived activity.  This distinction is 

discussed in detail by McGregor and Willett [5,19].  Since much of the published literature 

considers the MCIS, an algorithmic transform for translating between the two formulations is 

desirable.  One such technique is based upon the pioneering work of Whitney [20], who proved 

that an edge isomorphism between two graphs, G  and G1 2, induces a vertex isomorphism 

provided that a  exchange does not occur.  This can be described in an approachable fashion 

with the aid of the example depicted in Figure 3.  Figure 3(a) shows two graphs G

YΔ

=K1 3 and 

G =K2 1,3, respectively.  It is evident by visual inspection that the two graphs in Figure 3(a) are not 

isomorphic.   

 

A line graph L(G ) is a graph whose vertex set consists of the edge set of G ; therefore, if (v , vi j1 1 ) 

is an edge in G  it is also a vertex in L(G ) [21,22].  A pair of vertices in L(G1 1 1) are adjacent if the 

two corresponding edges in G1 are incident on each other.  Figure 3(b) presents the line graphs of 

G  and G1 2, respectively, and it is clear by inspection that the line graphs are isomorphic, despite 

their root graphs being non-isomorphic.  This is called a YΔ  exchange.  Whitney proved that 

provided that a  exchange does not occur, an isomorphism between two line graphs L(GYΔ 1) 

and L(G2) induces an edge isomorphism between the root graphs (G  and G1 2) of the two line 

graphs.  This indicates that the MCES between two graphs G  and G1 2 can be calculated using a 

MCIS algorithm on the two corresponding line graphs L(G ) and L(G YΔ), provided that a 1 2  

exchange does not occur.  This is not a significant concern for 2D chemical graphs, but the YΔ  

exchange is of importance when considering 3D chemical graphs where the probability of this 

occurring is higher; fortunately, it is not difficult to account for such an exchange in an MCES 

algorithm. 

 

Nicholson et al. [23] first suggested the use of Whitney’s theorem for transforming the MCIS to 

the MCES problem.  Kvasnicka and Pospichal [24] extended this idea and published an 
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implementation of the resulting theorem for application to the MCES problem.  This line-graph 

induced isomorphism concept has served as the basis for the development of the MCES program 

TopSim [25,26] as well as the work of Koch [27] and Raymond et. al. [28].  Independently of that 

work, Chen and Yun [29] have also developed an algorithm based on these principles, but they 

were apparently unaware of the work of Whitney [20], Nicholson et al. [23], and Kvasnicka and 

Pospichal [24], and proceeded to re-derive some of these well known concepts.  Raymond et. al. 

[28] describe how to perform the transformation efficiently in an algorithmic context. 

 

ALGORITHMS 

The problem of determining an MCS between two or more graphs is one of the combinatorially 

intractable NP-complete problems [30,31] for which no algorithm of polynomial-time complexity 

is known for the general case.  For a simple comparison between a pair of chemical graphs 

consisting of m and n atoms, respectively, the maximum number of possible atom-by-atom 

comparisons necessary to determine all common subgraphs consisting of k atoms is [32] 

! !
( )!( )!

m n
m k n k k− − !

, 

an astronomical number for non-trivial values of k, m and n. 

 

Due to this complexity problem and the inherent usefulness of the MCS problem, there have 

been many attempts to devise usable MCS algorithms.  A natural classification criterion for these 

algorithms is whether the algorithm is intended as an approximation of the MCS or whether it 

results in the exact determination of the MCS for a specialized set of graphs or graphs of 

moderate size.  As mentioned previously, these two classifications can be further divided into 

those algorithms which are restricted to the case of the connected MCS or are capable of 

calculating a potentially disconnected MCS (see Figure 4). 

 

While this idealized framework provides a convenient organization with which to evaluate the 

literature, much of the published work does not fit easily into these well-defined categories, often 

due to a vague or ambiguous algorithmic description, and thus the classification presented here is 

subject to some interpretation.  For instance, the term MCS is often used ubiquitously even when 

the author is actually referring specifically to the MCIS or the MCES between two graphs.  Also, 
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some algorithms have been proposed in a form that determines the set of maximal common 

subgraphs larger than some specified constant k.  Since these algorithms can also be used to find 

the MCS without modification and since many algorithms designed to find the MCS can easily 

be adapted to find maximal common subgraphs larger than some constant k, all the algorithms 

will be treated as MCS algorithms.  In addition, most of the algorithms can be tailored to detect 

an MCS in a collection of graphs, but for the sake of uniformity, we will treat each algorithm 

from a pair-wise comparison perspective. 

 

Since the vast majority of published algorithms that consider chemical applications have focused 

primarily on 2D chemical graphs, it will be assumed the graphs being compared are 2D graphs 

unless stated otherwise.  However, many of the algorithms are sufficiently general to be used 

directly in the case of 3D graphs, and we discuss this further in the Recommendations section of 

the paper. 

Exact Algorithms 

The algorithms discussed here are all designed to enumerate an exact solution to the MCS 

problem.  Since the MCS problem is NP-complete, all of these algorithms have a worse-case, 

exponential-time complexity or are restricted to a finite class of graphs.  Despite these 

limitations, some of these algorithms have proven to be very efficient when applied to many of 

the graphs of chemical interest. 

 

Maximum Clique-Based Algorithm  The detection of the MCIS between two graphs, G  and G1 2, 

can be reduced to one of determining the maximum clique in a compatibility graph.  A clique in 

a graph G is a subset of vertices in the graph such that each pair of vertices in the subset is 

connected by an edge in the graph G.  A maximum clique is the largest such subset present in the 

graph.  The MCIS problem is reduced to the maximum clique problem, another NP-complete 

problem, by constructing a compatibility graph using the adjacency properties of the graphs 

being compared (i.e., the MCIS factor graphs).  This compatibility graph has the property that an 

MCIS between the graphs being compared is equivalent to a maximum clique in the 

compatibility graph.  The compatibility graph is also known as an association graph in the image 

matching literature [12,17] and the modular product graph in the mathematical literature [33].  

Clique-based algorithms seem to provide the most widely used approach to the MCIS problem in 
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YΔthe publications to date and, using the previously described  exchange test, it is a 

straightforward matter to transform the clique-based MCIS approach to an MCES method. 

 

The modular product of two graphs G1 and G2 is defined on the vertex set   with 

two vertices (u

1( ) ( )V G V G× 2

r

,v ) and (u ,v ) being adjacent whenever i i j j

1 2

1 2

( , ) ( ) and ( , ) ( ), o
( , ) ( ) and ( , ) ( ).

i j i j

i j i j

u u E G v v E G
u u E G v v E G

∈ ∈
∉ ∉

 

 path graphs.  In Figure 5, vertex (uFigure 5 illustrates the modular product of two P3 1,v1) is 

adjacent to vertex (u ,v2 2) in the modular product graph since vertices u  and u1 2 are adjacent in 

graph G , and vertices v1 1 and v2 are adjacent in graph G2. Vertex (u ,v1 1) is also adjacent to vertex 

(u3,v ) since vertices u3 1 and u  are not adjacent in graph G , and vertices v  and v3 1 1 3 are not 

adjacent in graph G .  However, vertex (u ,v ) is not adjacent to vertex (u2 1 1 3,v ) since vertices u2 1 

and u3 are not adjacent in graph G1, whereas vertices v1 and v  are adjacent in graph G2 2.  It is also 

clear that vertex (u ,v ) is not adjacent to vertex (u1 1 1,v2) since a vertex cannot be incident on itself 

in a chemical graph. 

 

The two maximum cliques with three vertices ((u1,v ), (u ,v ), (u ,v ) and (u1 2 2 3 3 1,v ), (u ,v3 2 2), (u3,v1)) 

in Figure 5 correspond to the two MCISs between graphs G  and G1 2, which, in this case, also 

happen to be isomorphic mappings.  In the case of labeled graphs like chemical graphs, the 

definition of the modular product is further restricted by requiring that the vertex and edge labels 

correspond according to some compatibility criteria (i.e., atom and bond typing). 

 

It appears that Levi [32], later used by Cone [10] in a chemical context, was the first to suggest 

reducing the MCIS problem to the maximum clique problem in the published literature, but it has 

been independently discovered by numerous authors, including Barrow and Burstall [34] and 

Vizing [35].  In a related work, Kozen transformed the problem of isomorphism to clique 

detection in a compatibility graph that he labeled an M-graph [36].  In their respective papers, 

Levi suggested using a clique detection procedure due to Grasselli [37], and Barrow and Burstall 

proposed using an algorithm due to Bron and Kerbosch [38].  Until recently [28], the Bron-

Kerbosch algorithm was the clique detection procedure of choice for clique-based MCIS 

applications [1,24,39-44]. 

 7



 

Bessonov and Skorobogatov extended the notion of using clique detection for the MCIS problem 

[33,45,46], providing what appears to be the first attempt at using information obtained from the 

MCIS factor graphs (i.e., the graphs being compared) to simplify clique detection.  The 

previously published algorithms assume that the compatibility graph is an arbitrary graph and do 

not take advantage of the underlying nature of the problem construction.  Bessonov and 

Skorobogatov developed a set of algorithms capable of detecting the MCS in 2D graphical 

representations of molecules [33,45,47] based on the modular product concept.  Bessonov later 

extended their modular product MCIS method to 3D graphical representations of molecules 

accounting for translation, rotation, and reflection [48].  The concept of using information from 

the factor graphs to significantly simplify clique detection in the modular product graph has 

recently been studied in detail by Raymond et al. [28], who have also described several 

techniques that can be used in the specific context of 2D chemical graphs [49]. 

 

The previously cited works regarding the maximum clique approach to the MCIS problem 

assume that the MCIS can be disconnected.  It is also possible to employ techniques such that the 

maximum clique corresponds to a connected MCIS.  Thus, Tonnelier et al. [6] introduced a 

technique for determining the connected MCIS, and Koch [27] has more recently presented a 

method for determining connected MCISs using a variant of the Bron-Kerbosch algorithm.  Both 

these methods essentially just require that any vertex added to a common subgraph during clique 

detection must be connected to at least one other vertex in the currently detected common 

subgraph when projected onto each of the factor graphs being compared.   

 

Backtracking Algorithms  In addition to the clique-based methods, other exact algorithms have 

employed an iterative backtracking procedure.  While these methods have been surpassed in 

subsequent years by the significant developments in the efficiency of clique detection, they did 

represent the state-of-the-art at the time of their development.  The two notable methods in this 

category are the algorithms of McGregor [19] and of Wong [50], which are both capable of 

detecting disconnected MCESs.  The McGregor paper is noteworthy because it appears to be the 

first to draw a distinction between the MCIS and MCES in the published literature (and it is also 

very clearly written).  Interestingly, the Wong algorithm was subsequently developed into an 
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effective subgraph isomorphism algorithm [51] that can be described as an improved version of 

the Ullmann algorithm [52], one of the most popular algorithms used in the graph-match stage of 

systems for chemical substructure searching [3,53]. 

 

Both the McGregor algorithm and the Wong algorithm attempt to reduce the number of backtrack 

instances necessary by inspecting the set of possible solutions remaining at some point in the 

depth-first search and determining whether it is necessary to extend the current solution.  The set 

of possible solutions is evaluated by enforcing a connectivity relation with the currently detected 

solution.  These algorithms differ from more recent MCES algorithms [28,33] that perform a 

significantly more sophisticated inspection of the set of possible solutions, thus dramatically 

reducing the number of backtracking iterations that are required. 

 

Dynamic Programming  Another important, albeit more obscure, development for the MCES 

problem is the algorithm due to Akutsu [54], which is based on a mathematical programming 

technique called dynamic programming.  This is a method for sequential, or multi-stage, decision 

problems which caches subproblem solutions rather than recomputing them.  Akutsu’s algorithm 

is designed to calculate the connected MCES from a set of factor graphs.  In addition to being 

relatively easy to code, an interesting aspect of the algorithm is that it is of polynomial time 

complexity for the class of graphs Akutsu defines as “almost trees of bounded degree”.  Since 

almost all 2D chemical graphs can be classified as “almost trees of bounded degree”, this 

algorithm provides a potentially efficient method for determining the connected MCES from a set 

of 2D chemical graphs. 

 

( ) ( )E B V B K≤ +An “almost tree of bounded degree” is a graph G such that  holds for every 

biconnected component B of G, where K is a constant.  A biconnected component can be defined 

as a maximal edge induced subgraph in a connected graph such that the subgraph cannot be 

disconnected by eliminating a vertex.  In other words, a biconnected component is a maximal 

subgraph with the property that there exists a cycle (i.e., ring) through any two vertices in the 

subgraph.  The exception to this rule is a subgraph consisting of two vertices connected by an 

edge.  Figure 6 illustrates the concept of biconnected components.  The graph depicted is 

decomposed into four distinct biconnected components, B1, B2, B3, and B4.  It is evident that all 
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pairs of vertices in each of the biconnected components B2, B3, and B4, respectively, have a cycle 

in common, and B1 consists of a pair of vertices connected by an edge.  After decomposing a 

graph into its constituent biconnected components, which can be done in linear time [55] 

Akutsu’s algorithm then performs a series of efficient dynamic programming operations on the 

decomposed graph in order to detect the MCES. 

 

Approximate Algorithms 

This group of algorithms seeks to address the computational difficulties associated with the MCS 

problem by proposing approximate heuristics in order to estimate a solution within acceptable 

time complexity constraints.  One limitation with these algorithms is that there is no performance 

guarantee that the approximated MCS will be close in size and composition to a true MCS.  

However, since most graphs of chemical interest are relatively simple, many of these methods 

have shown promise in their suggested applications. 

 

Genetic Algorithm  A genetic algorithm (GA) is one class of algorithms often used for 

maximizing (minimizing) a specified objective function.  GAs are based on the notion of 

Darwinian survival of the fittest and operate by maintaining a population of candidate solutions 

while employing selection techniques (i.e., crossover and mutation) to generate a new population 

with a higher fitness value from the previous one.  Wagener and Gasteiger [56] published a GA-

based MCES algorithm for chemical graphs which used the following equation to establish the 

population fitness: 

1 2( 2F N V T T )= − − + − , 

where N is the total number of bonds in the two structures that participate in a bond matching, 

and V denotes how many bonds are involved in the situation where two adjacent bonds in one 

graph are assigned to two non-adjacent bonds in the other structure.  T  and T1 2 represent the 

number of unconnected subgraphs in the two graphs, respectively.  Thus, it is clear from the 

fitness function that the Wagener and Gasteiger algorithm calculates a disconnected, 

approximate MCES.  Figure 7 demonstrates the calculation of the fitness function for 

cyclobutane and methylbutane with the bonds in a particular bond matching being highlighted in 

bold and listed in the accompanying table.  The fitness for this situation is calculated as 

.  Since there are four bonds involved in the matching (two in each 4 4 (1 2 2) 1F = − − + − = −
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graph), N=4, as does V since all four bonds violate the neighborhood relationship;  T1=1 since the 

matching represents only one subgraph in graph G , and T21 =2 since there are two subgraphs in 

graph G2. 

 

Wagener and Gasteiger then employ the two standard genetic operators, cross-over and mutation, 

as well as two additional custom operators, creep and crunch, to select bond matching 

populations of increased fitness.  Since a GA does not necessarily lead to a global optimum, the 

authors repeat the algorithm for each molecular graph comparison fifty separate times using 

different problem initializations.  The simulations used approximately 400 generations with 

populations comprised of 100 individuals.  To test the effectiveness of their algorithm in 

detecting the MCES between two molecular graphs, Wagener and Gasteiger compared morphine 

to methadone, strychnine to geissoschizine, and strychnine to 2-veratrylindole.  The algorithm 

found the MCES in 48 out of 50 cases, 31 out of 50 cases, and 35 out of 50 cases, respectively. 

 

Brown et al. [57] also published a detailed approach to the MCES problem for chemical graphs 

using a GA, as part of a program for generating chemical hyperstructures.  The Brown et al. 

algorithm differed from the Wagener and Gasteiger approach in using a fitness function that 

considered only the number of edges preserved in the largest subgraph component in any given 

MCES matching, and did not consider the number of distinct connected subgraphs. 

 

Wang and Zhou [58] used a similar objective function that considered the total number of edges 

preserved in a given MCES matching.  This procedure used a GA for the global maximization of 

the fitness function and a simple depth-first search [59] for local searching of the fitness 

landscape.  The local search heuristic is intended to reduce the search space that must be 

traversed by the GA; however, there is one apparent limitation with this approach.  The local 

search procedure used in the overall algorithm, which is capable of finding a disconnected 

MCES, constructs each connected component in a disconnected MCES independently and 

maximally.  This means that each connected component in the MCES is an independently 

constructed, maximal common subgraph.  A true MCES, however, can consist of multiple 

components, each of which considered individually are not necessarily maximal. 
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Frohlich et al. [60] have published a more recent application of a GA to the MCES problem.  

They investigated the use of the MCES in the optimization of configurations of field 

programmable gate array (FPGA) circuits in run-time reconfigurable systems.  They used a 

parallel GA for determining the MCES in FPGA graphs and found time savings in certain 

instances using this technique. 

 

Combinatorial Optimization  In addition to the GA, other combinatorial optimization methods 

have been applied to the MCS-related problems.  Funabiki and Kitamichi [61] have published an 

optimization procedure for the MCES that they call 2DOM (2-stage discrete optimization 

method) and that can be coded so as to identify the connected or possibly disconnected MCES.  

In this algorithm, the determination of the MCES is implemented in two stages: the initial 

problem construction stage consists of a simple greedy matching between the graphs being 

compared; and the subsequent refinement stage uses a randomized, discrete descent method to 

minimize an objective function consisting of the number of unmatched edges in the factor graph 

with the fewest edges.  Funabiki compared the 2DOM algorithm head-to-head with simulated 

annealing [62] in 100-problem instances with the size of the factor graphs ranging from 100 to 

1000 vertices.  The 2DOM algorithm performed impressively, proving to be notably superior to 

simulated annealing in terms of both run-time and quality of solution. 

 

In another combinatorial optimization method, Barakat and Dean [63] use simulated annealing to 

match 3D chemical graphs.  The objective function here was  
1

2 1

AN i
AB

ij
i j

E d
−

= =

= Δ∑∑ , 

AB A B
ij ij ijd d dΔ = −where  and  and  are elements of the distance matrix for graphs A and B, 

respectively.  They tested their method on graphs of 25, 50, and 70 vertices, reporting the % 

correct assignments for various optimization parameter values for each graph size.  In yet 

another approach, Schadler et. al [64] report using a neural-network optimization procedure for 

2D chemical graphs. 

A
ijd B

ijd

 

Fragment Storage  Wipke and Rogers [65] have published an approximation scheme for the 

MCES that is feasible only with database searching applications.  They address the problem of 
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searching a database for compounds exhibiting similar MCES, given a specified query 

compound.  The database to be searched is stored in the form of a multi-level tree where each 

bifurcation point in the tree corresponds to particular chemical substructure.  Increasing a level in 

the tree to a lower bifurcation point, corresponds to adding a specific chemical substructure 

fragment to the substructure represented by the preceding bifurcation point. 

 

Using this multi-leveled database structure, it is then possible to perform rapid similarity 

searching of pre-processed databases.  Using the query compound as a template, the fragment 

tree is traversed until a bifurcation point is reached where it is not possible to continue.  The 

substructure represented by this bifurcation point corresponds to an approximation of the MCES 

between the query compound and all of the database compounds located lower in the search tree.  

Since the number of possible substructure fragments increases exponentially with increasing 

database size and database systems possess only a limited amount of storage capabilities, it is 

clear that the effectiveness of this approach is highly dependent upon the structural 

characteristics and the size of the database being searched. 

 

Ad Hoc Procedures  This group of algorithms represents a diverse set of methods that have 

typically been designed specifically to fulfill an immediate need for a particular application 

without much regard to general or wide-scale usage requirements. 

 

Varkony et al. [66] published an early graph walking procedure for determining connected 

MCESs.  The procedure involves “growing” a currently detected subgraph by adding a vertex 

and all edges incident between the current subgraph and the newly selected vertex; a modified 

version of this algorithm was proposed subsequently by Takahashi et. al [67].  Hagadone [68] 

describes a rapid MCES-based searching system used in conjunction with Upjohn’s COUSIN 

chemical structure database.  This method is another simple graph walking procedure that is very 

rapid as it does not use backtracking to enumerate potential solutions; it identifies potentially 

disconnected sets of MCESs in a manner similar to that of the Wang algorithm [58].   

 

A method suggested by Bayada et al. [69] can best be described as a heuristic graph walking 

procedure, and attempts to approximate the connected MCES problem.  In related work, Bayada 
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and Johnson [44] add a post-processing step to the algorithm to allow some measure of 

disconnectedness in the MCES solution.  This algorithm was experimentally studied by Brown 

[70], who found that it frequently resulted in MCES approximations differing from the actual 

MCES; this led Brown to the implementation of the GA approach described in [57].  Chen [71] 

proposes a novel set of polynomial-time approximation schemes for the MCIS problem in K3,3-

free and K5-free graphs.  These schemes are primarily of theoretical interest, but may have some 

potential for use in chemical structure applications as 2D chemical graphs can be considered 

K3,3-free and K5-free graphs.  Chen and Robien [72] introduced an algorithm for use in NMR 

spectral studies that uses a straightforward backtracking scheme, with the efficiency being 

improved by incorporating a topological distance constraint between pairs of atoms in each of 

the graphs being compared. 

 

As mentioned previously, the clique-based approach has been the most prevalent technique 

involving MCS-based chemical structure manipulation.  Some authors have attempted to avoid 

much of the computational complexity involved in exact clique detection by using approximate 

heuristics to simplify the modular product and reduce the complexity of clique detection.  

Sheridan and Miller [73] simplify their MCIS formulation of the modular product by using a 

more restrictive definition of the modular product.  In order for a pair of atoms in one query 

structure to be compatible with a pair of atoms in another query structure, the shortest path 

distance (i.e., fewest number of edges) between each pair of atoms must be the same.  The 

shortest paths can be determined using an efficient polynomial time algorithm [74,75].  Having 

established an approximate modular product, they further simplify clique detection by using a 

non-enumerative clique detection procedure.  While these heuristics greatly simplify the MCIS 

detection procedure, it is not difficult to envision chemical graphs for which this procedure 

results in arbitrarily poor estimates of the MCIS.  This work is particularly interesting, though, 

because it is one of only a few published works [2,56] that have addressed the significance of 

MCS fragmentation on the notion of chemical similarity.  Fragmentation is defined as the 

number of disconnected subgraph components present in an MCS.  It is intuitive that an MCS 

with fewer disconnected components should greater reflect chemical similarity than one of equal 

size with more disconnected components.  This is an important consideration when bridging the 

concept of graph-based similarity with a chemically sensible notion of similarity. 
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In related work, Jorgensen and Pedersen [76] use an MCES formulation of the modular product 

and, like the previous algorithm, use a shortest path definition for the connectivity requirement.  

They do, however, use an enumerative clique detection procedure [38], but it is still not difficult 

to find examples where this algorithm performs poorly with respect to the exact MCES due to 

the path length requirement. 

 

3D-Specific Algorithms  Most of the algorithms described in this paper have been presented from 

the perspective of arbitrary or 2D graphs, and much of the published literature on the 3D MCS 

problem simply adapts these algorithms to the 3D case [1,41-44,77].  The Barakat-Dean algorithm 

is an example of an algorithm that was originally proposed in a 3D formulation, and so is the 

algorithm described by Crandell and Smith [78], although even this owes much to the algorithm 

of Varkony et al. [66], in that it attempts to “grow” a 3D MCIS iteratively.  The Crandell-Smith 

algorithm was studied in detail by Brint and Willett [42], who found that a clique-based method 

using the Bron-Kerbosch algorithm was generally to be preferred for the identification of the 3D 

MCIS. 

 

An interesting algorithm is that of Masuda et. al. [79]  This algorithm can determine the 

connected MCES in a 3D graph in  where 2
1 1 2 2 2( loO l m l m ng ) 1 1( )m E G= 2 2( )n V G=, , 

2 ( )m E G= 2 , and l (l1 2) is the maximum degree of a vertex in G (G1 2), provided that no edge 

passes through any vertex other than its end points and no two edges intersect except at the 

shared endpoints.   Although no experimental results are presented, this algorithm appears to 

offer a potentially useful approach when comparing 3D graphs based on geometrical coordinates. 

 

PROBLEM REDUCTION 

In the previous section, various algorithmic approaches to the MCS problem were discussed.  

Since the MCS problem is a computationally expensive procedure, some researchers have tried 

to address the problem by trying to simplify the graphs being compared rather than focusing on 

algorithmic improvements.  A graph is an abstract concept and the vertices and edges do not 

necessarily have to correlate directly with atoms, bonds, and distance ranges in a chemical 

structure.  Thus, the nodes and edges of a graph can denote a higher level understanding of the 
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application being considered.  This has two potential advantages.  First, if the modified graph 

contains fewer nodes and edges, it may significantly increase the efficiency of an MCS 

comparison using an established algorithm.  The second potential benefit regards possible 

increases in the effectiveness of an MCS comparison.  By modifying the graph so that each 

vertex and edge contains higher level information rather than simple atom and bond associations, 

a practitioner can introduce an established knowledge-base to the application, so that the 

resulting MCS reflects a more desirable understanding of the similarity between the structures 

being compared. 

 

Takahashi et. al [80] present the example depicted in Figure 8 to illustrate this concept.  Both 

compounds are antihistamines possessing the same biological activity.  A straightforward 

implementation of the MCIS or MCES for the two compounds in Figure 8 will not adequately 

reflect the actual degree of chemical similarity between the two compounds.  This is an 

important consideration as it reflects the sometimes subtle difference between graphical 

similarity and chemical similarity.  It is clear from this example that a less rigid definition of 

vertex and edge weights may have important implications for the usefulness of a MCS algorithm 

in chemical applications. 

 

Yuan and Zheng [81] introduced the concept of “superatoms” for MCS determination.  In their 

definition a vertex in a graph corresponds to a superatom which can be one of a predefined 

number of ring systems, functional groups, or alkyl chains, and an edge exists in the graph if a 

pair of superatoms are adjacent in the molecular structure.  In their experiments, the Levi [32] 

MCIS algorithm as adapted by Cone et al. [10] was used.  Takahashi et. al [80] introduced a 

similar system designated as a reduced-graph.  The reduced graph concept differs from the 

superatom graph by a simple edge weighting procedure.  In addition to introducing a higher level 

description of the graph vertices, the reduced graph weights each edge with the topological 

distance (i.e., the number of bonds) between superatoms in chemical graph, and these were 

compared using a Bron-Kerbosch algorithm.  Similar ideas have been used to characterize the 

generically defined components of Markush structures occurring in chemical patents [82]. 
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Rarey and Dixon [83] have extended this idea and developed a more sophisticated concept that 

they call feature trees.  In their method, a chemical graph, which may contain rings, is reduced to 

a tree graph (i.e., a graph without any rings or cycles).  Having reduced a set of graphs to feature 

trees, similarity can then be established using a maximum common subtree algorithm.  They 

propose two such algorithms, split-search and match-search.  One of the most interesting aspects 

of the feature tree approach is their method for automatically determining superatoms (features) 

based on biconnected components.  This is a significant advance compared to earlier reduced 

graph methods that were based on an a priori knowledge of what constitutes an important 

feature. 

 

The superatom concept is just as applicable to the 3D case as in the 2D case, with superatoms 

being used as pharmacophore patterns that can then be used in lieu of atom-defined graph 

vertices.  This procedure not only simplifies MCS determination but also more intuitively 

describes the commonality associated with a collection of 3D chemical graphs, and has been 

studied in depth by several authors (see, e.g., [1,43,84]). 

 

SCREENING PROCEDURES 

It is obvious that the MCS problem is related to the problem of subgraph isomorphism (i.e., 

substructure searching) as subgraph isomorphism is a special case of the MCS and both belong 

to the class of NP-complete problems.  It is well known that the efficiency of chemical 

substructure searching is improved drastically by screening procedures which are 

computationally less expensive than the rigorous graph matching procedures [53].  Screening 

methods for substructure searching are typically dependent upon the presence of pre-defined 

structural features in the structures being compared.  However, these methods are not directly 

applicable to the MCS problem since it cannot be assumed a priori that a given substructural 

feature is present in the MCS even if it is present in all of the graphs being compared.  Instead of 

developing different approaches to screening for the MCS problem, almost all published 

attempts at addressing the complexity problems associated with the MCS problem have focused 

on approximating the matching process, as discussed previously. 
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There have, nevertheless, been a few attempts to resolve the screening issue for the MCS 

problem.  Since the standard substructural feature approach is not applicable, these techniques 

have instead taken a topological approach to screening.  These methods all rely on the concept of 

a lower-bound on the similarity of the compounds being compared.  If a user specifies a lower-

bound for a particular similarity comparison, then an effective upper-bound estimate based on 

the MCS concept can provide a means of screening comparisons that cannot potentially result in 

an MCS exceeding the specified lower-bound.   

 

Hagadone [68] uses the asymmetric similarity coefficient given as , where N/lb c qS N N= c is the 

number of bond pairs in common between a query and database graph, and Nq is the number of 

edges in the query structure.  If it is found prior to graph matching that  after 

specifying a minimum acceptable value of S

c lbN S N< ⋅ q

lb, then it is not necessary to proceed to a rigorous 

graph matching procedure.  This upperbound calculation was an important component in the 

MCES-based searching component of the COUSIN system.  A similar approach was described 

by Pepperrell et al. [85] in the context of comparing 3D graphs for a database searching 

application using their atom-mapping method (a heuristic 3D similarity measure).  They 

described an upperbound calculation based on the molecular formulae of the molecules that are 

being compared and on the numbers of atom-atom interatomic distances common to the two 

molecules, with this proving an effective way of minimizing the numbers of full graph-based 

comparisons that needed to be carried out.    

 

A more recent development for MCS-related screening has been proposed by Raymond et. al 

[28].  Their screening procedure consists of two levels of screening, both of which are based on a 

similarity coefficient attributed to Johnson [86] 

2

12
2

1
ub

G
S

G G
=

×
, 

1G 2G  are the number of vertices and edges in graphs G  and Gwhere  and , respectively, and 1 2

12G  is the upper-bound estimate given for the MCS between graphs G  and G1 2 provided by the 

screening calculation.  That said, it is a trivial matter to use this operation in conjunction with 

any number of established similarity coefficients [2].  The first screening stage involves a simple 
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calculation based on an ordering of each graph’s degree sequence and involves only vertex label 

information.  The second stage involves a more rigorous calculation based on a linear assignment 

of each augmented atom complex, thus accounting for bond pair typing as well as atom typing.  

Both screening stages have been described in detail [28], and test searches on a range of 

chemical datasets illustrate the very substantial increases in search efficiency that can be 

achieved in graph-based systems for chemical similarity searching [49].   

 

Brint and Willett [87] propose yet another method for estimating Sub.  This one differs from the 

other previously discussed in that it is not of polynomial-time complexity, although in practice it 

should be more efficient than a rigorous graph matching procedure.  This method can be best 

thought of as an approximate MCIS algorithm with the useful property that the result will always 

be greater than or equal to the size of the actual MCIS.  It consists of establishing a relaxed 

version of the modular product and then determining the size of the maximum clique present in 

it: this maximum clique corresponds to an upper-bound for the size of the actual MCIS. 

 

CONCLUSIONS 

In this paper, we have described many different MCS algorithms.  In this section, we describe 

some common applications arising in the handling of chemical structure information and make 

some recommendations regarding the most appropriate algorithm(s) for each application. 

 

Prior to the implementation of any rigorous graph matching procedure, it is beneficial to study 

the properties of the graphs being compared.  It is often the case that the graphs can be simplified 

in some way to more adequately reflect the desired level of similarity and increase the efficiency 

of any given MCS algorithm.  This can include topological considerations [49,72,73,76,80] or 

higher-level graphical representation such as reduced graphs [80,81,83] and pharmacophore maps 

[43,84,88].  Additionally, for any large-scale application requiring the comparison of many 

graphs where it is not known a priori whether all graphs are sufficiently similar, a screening 

procedure should be implemented prior to graph matching.  Of the published methods, the 

approach due to Raymond et. al [28] appears to be the most effective and is easily implemented.  

This approach also has the potential for facilitating similarity searching of product space given a 

set of reactants and reactions without having to enumerate the product molecular structure, since 
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the similarity determination is performed on the list of constituent augmented atoms (i.e., a 

center atom and all atoms bonded directly to it) rather than on the whole chemical graph. 

 

One common application encountered in chemical information handling is the disconnected 

MCS problem for a set of 2D chemical graphs.  Since exact algorithms have been developed 

which handle this problem easily, the need for an approximate algorithm has diminished 

considerably.  We believe that the most efficient published algorithm for this purpose is the 

RASCAL (for RApid Similarity CALculation) algorithm of Raymond et. al. [28], this claim 

being based on a detailed comparison of the efficiency of this clique-based algorithm with three 

other state-of-the-art clique detection algorithms [33,89,90].  RASCAL was found to be 

significantly faster in simulations involving ca. 20K inter-molecular comparisons, sometimes 

over six orders of magnitude faster; the algorithm was subsequently applied successfully to the 

calculation of ca. 128M inter-molecular comparisons [28,49] involving publicly available 

chemical structures.  This algorithm can be operated in an MCIS or MCES formulation and can 

be modified to determine all maximal common subgraphs larger than some constant k rather than 

only the MCIS/MCES. 

 

For the connected MCES problem, it appears that the Akutsu algorithm [54] may offer the best 

approach for 2D chemical graphs.  This polynomial complexity algorithm can be easily coded 

using an established algorithm for the determination of biconnected components [55].  It also 

suggests the appealing prospect of offering a polynomial-time algorithm for the subgraph 

isomorphism problem in 2D chemical graphs, a potential improvement on the Ullmann algorithm 

[52]. 

 

For the MCIS application regarding 3D graphs, the Akutsu algorithm is no longer applicable, and 

a suggested alternative is the Masuda algorithm [79].  Although the Masuda algorithm is of 

polynomial-time complexity, it is of relatively high order, and direct head-to-head experimental 

comparison with other procedures is necessary for a more definitive recommendation.  The 

Raymond et. al algorithm may be applicable to this application by simply omitting the line graph 

transformation step; however, its use, thus far, has been restricted to 2D chemical graphs and 

further work is required to establish its applicability to 3D structure matching applications.   
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Chemoinformatics often involve graph-based applications that do not directly concern the 

handling of chemical structures directly.  One example is the comparison of clustering output 

from various clustering algorithms.  In these cases, it is possible to have very large graphs, 

perhaps thousands of vertices, for which even the more efficient exact algorithms are infeasible.  

In these cases, it is necessary to implement an approximate method.  Of the methods discussed in 

this paper, the Funabiki-Kitamichi algorithm is recommended [61].  This algorithm performed 

well when compared with the simulated annealing approach on graphs of up to a thousand 

vertices and can be readily coded from the published account, as can the other algorithms 

recommended here. 

 

In conclusion, we hope that this review has succeeded in its aim of organizing much of the 

literature on the MCS problem in the context of chemoinformatics applications.  It is hoped that 

future published algorithms for these problems will include a clear description of the algorithm 

type as well as suggested applications.  It would also be highly beneficial to the reader if such 

published accounts include experimental comparisons with established methods, involving non-

trivial numbers of 2D and/or 3D chemical graphs.   
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Figure 1.  a) Maximum Common Induced Subgraph b) Maximum Common Edge Subgraph 
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Figure 2.  a) Connected MCES  b) Disconnected MCES  
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Figure 7.  Example Fitness Calculation for the Fitness Function in the Wagener-Gasteiger 

Algorithm [56]. 
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