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ABSTRACT 

 A new graph similarity calculation procedure is introduced for comparing labeled graphs.  

Given a minimum similarity threshold, the procedure consists of an initial screening process to 

determine whether it is possible for the measure of similarity between the two graphs to exceed 

the minimum threshold, followed by a rigorous maximum common edge subgraph (MCES) 

detection algorithm to compute the exact degree and composition of similarity.  The proposed 

MCES algorithm is based on a maximum clique formulation of the problem and is a significant 

improvement over other published algorithms.  It presents new approaches to both lower and 

upper bounding as well as vertex selection. 

1.0 INTRODUCTION 

It is often desired in many applications to compare objects represented as graphs and to 

determine the degree of similarity between the objects.  This is sometimes referred to as inexact 

graph matching.  Inexact graph matching is of importance in many applications such as protein 

ligand docking [1], video indexing [2],  and computer vision [3, 4].  One algorithmic approach to 

this problem is to use the maximum common subgraph (MCS) between the graphs being 

compared.  In this paper, a novel and efficient algorithm based on the edge induced formulation 

of the MCS problem is presented.  The algorithm has been developed for use in chemical 

similarity searching applications where molecular structures are represented as graphs such that 
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the atoms correspond to labeled vertices and the chemical bonds correspond to labeled edges, but 

it is directly applicable to a comparison of any collection of labeled graphs.  For a more detailed 

description of the graphical representation of a chemical structure, the reader is referred to a text 

on chemical graph theory [5]. 

The similarities between the graphs representing molecules play an important role in 

many aspects of chemistry and, increasingly, biology.  Examples include database searching [6], 

the prediction of biological activity [7], the design of combinatorial syntheses [8], and the 

interpretation of molecular spectra [9].  A wide range of types of similarity measures has been 

described [10].  However, many of these are too time-consuming when very large numbers of 

molecules need to be considered, as is the case for applications involving the searching and 

clustering of chemical databases which typically contain tens or even hundreds of thousands of 

molecules.  In such cases, molecules are represented by a simple bit-string, in which bits are set 

to denote the presence in a molecule of pre-defined molecular substructures, such as a particular 

ring system or functional group.  The similarity between two molecules is then calculated using 

an association coefficient based on the numbers of bits in common between the bit-strings 

describing those two molecules [10].  Although widely used for similarity purposes, such simple 

molecular representations have several limitations [11]; most importantly, a bit-string does not 

preserve the connectivity of the parent molecule.  MCS-based similarity measures do take full 

account of molecular connectivity but have been little used to date in chemical information 

systems because of their computational requirements.  The work reported here has been 

undertaken to address this situation. 

The proposed inexact graph matching procedure RASCAL (Rapid Similarity 

CALculation) consists of two components, screening and rigorous graph matching.  The 

screening procedure is intended to determine rapidly whether the graphs being compared exceed 

some specified minimum similarity threshold (without resulting in any false dismissals) in order 

to avoid unnecessary calls to the more computationally demanding, graph matching procedure.  

The screening procedure is described in section 2 along with an example calculation.  The latter 

graph matching process consists of an efficient determination of the MCS using the graph 

similarity concept.  Section 3 formulates the MCS graph matching procedure in terms of the 

maximum clique problem and presents improvements to existing clique detection algorithms for 

this purpose, including several new contributions.  In section 4, the RASCAL algorithm is 

 2 
 



 

compared with other published algorithms in several experimental trials where it is shown to be 

considerably more efficient. 

1.1 Definitions and Terminology 

All graphs referred to in the following text are assumed to be simple, undirected graphs.  

For an introduction to graph related concepts and notation, the reader is referred to an 

introductory text on graph theory [12].  N(vi) will denote the set of vertices adjacent to a vertex 

vi.  A maximum clique, ( )Gω , of a graph G is the largest set of mutually adjacent vertices in G.  

A line graph L(G) is a graph whose vertex set consists of the edge set of G; therefore, if (vi, vj) is 

an edge in G it is also a vertex in L(G).  A pair of vertices in L(G) are adjacent if the two 

corresponding edges in G are incident on each other. 

A pair of graphs are said to be isomorphic if there is a one-to-one correspondence 

between their vertices and an edge only exists between two vertices in one graph if an edge 

exists between the two corresponding vertices in the other graph.  An induced subgraph is a set S 

of vertices of a graph G and those edges of G with both endpoints in S.  A graph G12 is a common 

induced subgraph of graphs G1 and G2 if G12 is isomorphic to induced subgraphs of G1 and G2.  

A maximum common induced subgraph (MCIS) consists of a graph G12 with the largest number 

of vertices meeting the aforementioned property.  Related to the MCIS is the maximum common 

edge subgraph (MCES).  An MCES is a subgraph consisting of the largest number of edges 

common to both G1 and G2.  Note that the MCIS or MCES between two graphs is not necessarily 

connected or unique by definition.  Figure 1(a) illustrates an MCIS between two graphs 

(highlighted in bold), and Figure 1(b) demonstrates an MCES between the same two graphs. 

2.0 SCREENING PROCEDURE 

Using the classification of Sanfeliu and Fu [13], graph distance/similarity measures can 

be categorized into two classes: 

1) Feature-Based Distances:  A set of features or invariants is established from a structural 

description of a graph, and these features are then used in a vector representation to which 

various distance or similarity measures can be applied. 

2) Cost-Based Distance:  The distance or similarity between two graphs reflects the number 

of prescribed edit operations that are required in order to transform one graph into the other. 

The proposed two-tiered screening system is a cost-based method that has been 

developed to be used in conjunction with an MCES algorithm.  It will be referred to as the cost-
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vector approach in order to differentiate it from feature-based methods.  While the new screening 

system is almost as simple as the feature-based approach from a computational perspective, it 

has the desirable features that it cannot result in any false dismissals of graphs that are in fact 

similar, and it provides an upper bound on the size of the MCES between two molecular graphs.  

The procedure forms a screening hierarchy whereby the calculated upper-bound for the second 

tier is always less than or equal in magnitude to the value calculated in the first tier.  Following 

the formal treatment in sections 2.1 and 2.2, we present an example illustrating the proposed 

screening procedure. 

2.1 1st Tier Cost-Vector 

Degree sequences of a graph have been used by other authors to establish upper bounds 

on graph invariants [14, 15] and recently for indexing graph databases [16].  In our proposed 1st 

tier screening procedure, we have used degree sequences to develop a novel method to calculate 

an upper bound on the size of an MCES between a pair of graphs.  First, the set of vertices in 

each graph are partitioned into l partitions by label type, and then sorted in non-increasing order 

by degree.  Let 1
iL  and 2

iL  denote the sorted degree sequences in partition i in graphs G1 and G2, 

respectively.  An upper-bound on the similarity between a pair of graphs can be given as follows: 

1 2
1 2

1
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i i
i
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Note that the term to the right of E(G1,G2) is divided by two since each edge in this 

formulation is counted twice, and if 1
i

2
iL L≠ , then entries of value zero are appended to the 

shorter sequence to make the sequences of equal length.  It is clear that the similarity measure 

simcv(G1,G2) ranges from 0 to 1 and that it obeys the following inequality, 
2

12 12
1 2

1 1 2
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where G12 is the MCES between graphs G1 and G2.  This measure has been investigated in depth 

by Johnson [17].  The value simcv(G1,G2) can serve as an upper bound on the size of the MCES 
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between any two graphs.  For screening purposes, all that is necessary is to specify a minimum 

acceptable value for the MCES-based graph similarity measure.  If the value determined by 

simcv(G1,G2) is less than the minimum acceptable similarity, then a rigorous MCES comparison 

can be avoided.  Since chemical graphs are of bounded degree, this procedure can be performed 

using a bucket sort in O(n) time for chemical graphs or O(n log n) otherwise, where n = 
1 2max{ , }i iL L . 

2.2 2nd Tier Cost-Vector 

The 1st tier procedure provides a rapid screening mechanism which takes advantage of 

local connectivity and vertex labels to help eliminate unnecessary and costly MCES 

comparisons, but it doesn’t take account of edge labeling.  For this purpose, a 2nd tier-screening 

scheme has been developed.  Since it is more costly from a computational perspective, it is 

intended to be used on pairs of graphs that have passed the initial cost-vector screen. 

An unambiguous integer code is assigned to each edge incident on a given vertex which 

incorporates the edge label along with the labels of both vertex endpoints.  Instead of simply 

assigning the respective degree to each vertex in 1
iL  or 2

iL , each vertex is assigned its set of 

incident edge codes.  If 1 2( , )i if L L  is defined to be a linear assignment of compatible edge codes 

associated with each pair of vertices in the sequences 1
iL  and 2

iL  such that each vertex in 1
iL  is 

compared to each vertex in 2
iL , then the 2nd tier cost-vector upper bound can be given as 

1 2

1 2
1

( , )( , )
2

l
i i

i

f L LE G G
=

⎢ ⎥
= ⎢ ⎥
⎣ ⎦
∑  

with V(G1,G2) and simcv(G1,G2) again being calculated as previously discussed.  It has been 

found that the linear assignment algorithm described by Carpaneto et al. [18] performs well for 

this purpose.  This algorithm has a worst case time complexity of O(n3) where n = 
1 2max{ , }i iL L . 

2.3 Example of Cost-Vector Screening 

The following example illustrates the operation of the cost-vector screening approach.  

Figure 2 depicts two molecular graphs, methadone and meperidine, with their respective MCES 

highlighted in bold.  Since there are 16 bonds in the MCES, 12( )E G =16, and since the number 

of atoms in common between the two structures is 17 (including any isolated atoms), 

 5 
 



 

12( )V G =17.  In order to calculate an MCES based similarity measure, the following parameters 

are used: 

 

methadone: Na
meth = 23 (number of atoms in methadone) 

  Ne
meth = 24 (number of bonds in methadone) 

 

meperidine: Na
mep = 18 (number of atoms in meperidine) 

  Ne
mep = 19 (number of bonds in meperidine) 

 

The MCES based similarity is then calculated using the Johnson metric to be 0.63. 

Applications of similarity in chemical information systems focus on pairs of molecules 

having a high degree of structural resemblance.  For example, in drug discovery programs, given 

a molecule that has been shown to exhibit some useful biological activity (e.g., lowering blood 

pressure or restricting tumor growth), molecules in a chemical database having a high degree of 

similarity are also likely to exhibit some activity and can hence be selected for biological testing 

[19, 20].  It is hence common to consider just the nearest neighbors of a query molecule (i.e., 

those having a similarity greater than some minimum threshold value). 

In the present case, if we were to set this threshold to 0.70 then it is clear that this pair of 

molecular graphs does not fulfill the requirement, but since a rigorous MCES comparison is 

computationally expensive, it is desirable to see if it is possible to skip the unnecessary MCES 

comparison.  

1st Tier Screen 

In order to initiate the 1st tier cost-vector comparison, the vertices are first separated into 

partitions according to label type.  Any vertex whose corresponding label is not present in both 

graphs is removed from consideration.  Since in this case, both molecules have only carbon, 

oxygen, and nitrogen atoms, this pruning is not applicable.  This is shown in Figure 3.  The  

entry = 4  (7) in column  represents vertex number 7 in graph 1 (i.e., methadone) with 

degree 4 and of type carbon.  Note that since column  has one fewer element than , it is 

padded with a zero to make the columns the same size. 

1
1( )d v 1

1L
1
2L 2

2L
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1 2( , )V G G  is calculated by summing the size of the set Li  with the fewer non-null 

elements in graphs 1 and 2.  Since  has 15  non-null elements and  has 21, 2
1L 1

1L 1 2( , )V G G  is 

incremented by 15.  Considering the other two partitions L2 and L3 results in 1 2( , )V G G =17.  

1 2( , )E G G  is determined using .  This procedure is also illustrated in Figure 3.  1 2min{ ( ), ( )}j jd v d v

1 2( , )E G G  is calculated by summing each column in the  set of columns, 

adding the resulting values together, and then integer dividing the result by two.  Since the 

resulting sum equals 36, 

1 2min{ ( ), ( )}j jd v d v

1 2( , )E G G =18.  Now the cost-vector similarity value simcv(G1,G2) is 

calculated to be 0.70 using the Johnson measure.  Since this value is equal to the minimum 

acceptable similarity of 0.70, the 2nd tier screening process must be implemented. 

2nd Tier Screen 

Since there are three distinct vertex labels present in both molecular graphs, three 

separate linear assignments will need to be performed in order to calculate the updated value of 

1 2( , )E G G .  The three cost matrices associated with these assignments are presented in Figure 4. 

Considering the assignment of L3 first, it is clear from Figure 3 that the assignment cost 

matrix will consist of only one element.  In Figure 3,  in the methadone molecular graph 

corresponds to vertex 2 in methadone, and  in the meperidine molecular graph represents 

vertex 2 in meperidine.  Since both vertices have three incident edges and all incident edges are 

the same type (N-C), all incident edges in one graph have a compatible edge in the other graph.  

The corresponding element in the cost matrix will therefore be 3.  Since there is only one 

element in the cost matrix, the linear assignment is it is trivial and 

1( )d v

1( )d v

2

3

1
3( , )f L L = 3. 

This process has been repeated in Figure 4 for L1 and L2 consisting of the vertices of type 

carbon and nitrogen.  The L1 cost matrix is considerably more complex than the other two.  In 

this case an efficient linear assignment algorithm is necessary.  The maximum assignment in 

each cost matrix is highlighted.  For the L1 cost matrix, the resulting maximum score is 
1 2

1 1( , )f L L =29 (i.e., the sum of the boldface elements).  Note that it is irrelevant whether the 

computed assignment is unique as the upper bound is a scalar value.  Therefore ,  
1 2

1 2
1

( , ) 29 1 3( , ) 16
2 2 2 2

l
i i

i

f L LE G G
=

⎢ ⎥ ⎢ ⎥= = + +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∑ = . 
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The updated 2nd tier cost-vector similarity is then calculated to be 0.63. 

This upper bound value is less than 0.7, the minimum acceptable similarity; in this case, 

indeed, it is equal to the actual MCES-based similarity value that we would have obtained if the 

MCES calculation was carried out.  The proposed screening method would, therefore, prevent 

the unnecessary MCES comparison between these two molecules.  In concluding this section, it 

is important to emphasize that the currently proposed screening system is highly dependent upon 

the selection of an acceptable minimum similarity index (MSI).  This implies that the user knows 

a priori what MSI constitutes a sensible threshold for similarity. 

3.0 MCES ALGORITHM 

3.1 Modular Product 

The maximum common subgraph problem can be reduced to determining the maximum 

clique in the modular product graph, denoted as 1 2G G◊ .  This concept has been discovered on 

several occasions [21, 22, 23].  The modular product of two labeled factor graphs G1 and G2 is 

defined on the vertex set ) = 1 2( )V G G◊ 1( ) ( )V G V G2×  where the respective vertex labels are 

compatible with two vertices (ui,vi) and (uj,vj) being adjacent whenever 

1 2

1 2

( , ) ( ) and ( , ) ( ) and ( , ) ( , ), or

( , ) ( ) and ( , ) ( )
i j i j i j i j

i j i j

u u E G v v E G w u u w v v

u u E G v v E G

∈ ∈ =

∉ ∉
 

, where w(ui,uj) = w(vi,vj) indicates that the vertex and edge labels for each respective pair of 

vertices are compatible. 

3.2 Edge-Induced Isomorphism 

The transformation of the MCIS formulation to the MCES problem is based upon the 

work of Whitney [24], as illustrated in Figure 5.  Figure 5(a) shows two graphs G1=K3 and 

G2=K1,3, respectively.  It is evident by visual inspection that the two graphs in Figure 5(a) are not 

isomorphic.  Figure 5(b) depicts the line graphs of G1 and G2, respectively, and it is clear by 

inspection that the line graphs are isomorphic.  This is referred to as a YΔ  exchange.  Whitney 

proved that provided that a  exchange does not occur, an isomorphism between two line 

graphs L(G

YΔ

1) and L(G2) induces an edge isomorphism between the root graphs (G1 and G2) of the 

two line graphs.  By preventing the occurrence of a YΔ  exchange during clique detection, it is 

then possible to use the modular product approach to determine the MCES between two graphs 

rather than the MCIS [25, 26]. 

 8 
 



 

This procedure is illustrated with the example in Figure 6.  The chemical graphs G1 and 

G2 are shown in Figure 6(a), and their respective line graphs are depicted in Figure 6(b).  Each 

vertex in the line graph L(G1) is labeled with its respective edge and vertex endpoint labels in G1.  

Take for instance edge number 1 in graph G1 of Figure 6(a).  This corresponds to vertex number 

1 in the line graph L(G1) in Figure 6(b).  This vertex is labeled with the adjacent vertex pair 

C−O. 

The edges in a labeled line graph are also labeled.  Each edge between two vertices, vi 

and vj, in a labeled line graph L(G1) is labeled with the vertex label of the incident vertex in G1 

between the two edges in G1 corresponding to vi and vj.  For instance, edges 3 and 4 in graph G1 

of Figure 6(a) correspond to vertices 3 and 4 in the line graph L(G1) in Figure 6(b).  Since edges 

3 and 4 in G1 are incident on an atom of type carbon (C), then the corresponding edge in L(G1) is 

also labeled as type carbon.  

Since a labeled line graph can then simply be assumed to be an arbitrary labeled graph, 

the modular product can be constructed as previously described.  The modular product graph for 

the line graphs depicted in Figure 6(b) is presented in Figure 6(c).  Since no  exchange has 

occurred, the clique depicted in the modular product graph corresponds to the MCES between 

the two labeled graphs in Figure 6(a).  The MCES is highlighted in bold face in the respective 

factor graphs. 

YΔ

In practice, it is straightforward to verify whether a YΔ  exchange has occurred during 

clique detection.  Since a clique in the modular product graph corresponds to a subgraph 

common to both G1 and G2, the respective degree sequences for G1 and G2 should be identical 

when the vertices are sorted according to degree.  However, when a YΔ  exchange has occurred 

the degree sequences of the common subgraph in G1 and G2 will not be the same, as evidenced 

by Figure 5. 

3.3 Proposed Clique-Detection Algorithm 

Our clique-detection procedure is a branch and bound algorithm that incorporates 

improvements in both lower and upper bounding as well as node selection and pruning.  A 

branch and bound algorithm attempts to explore the search tree by iteratively obtaining 

subproblems of previous problem instances visualized as branches in the search tree and is a 

common approach to the maximum clique problem [27].  This process can be described 
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succinctly as the recursive implementation of the relation, 

. ( )( ) max{1 ( ) , ( \ )}G i iG N vω ω ω= + G v

Bounding techniques for traversing the search tree can generated using this procedure be 

categorized into two specific types, 1) lower bounds and 2) upper bounds.  A straightforward 

approach to reducing the number of branch traversals necessary to determine the maximum 

clique involves using the size of the largest clique so far detected [27] as a lower bound.  Upper 

bounds set a largest possible size on the maximum clique that can exist at a specific search tree 

node.  If this size is smaller than the size required to increase the size of the maximum clique 

thus far discovered, then it is not necessary to extend the search tree from the current search tree 

node, and a backtrack can be instanced. 

Lower Bounds 

Since it is widely known that the order of the largest clique thus far detected during a 

clique detection procedure can be useful in potential pruning heuristics, it seems reasonable to 

assume that an efficient heuristic capable of determining a relatively large clique in a graph G 

prior to initiating the clique detection could potentially prevent the investigation of numerous 

unnecessary search tree branches.  In the proposed algorithm, an MCES-based minimum graph 

similarity heuristic capable of establishing a relatively large lower bound on the size of the 

maximum clique in a modular product graph is developed. 

As noted previously, the MCES between two molecular graphs only has potential value if 

the two molecules are meaningfully similar; it follows that it is reasonable to determine the 

MCES between two molecular structures only if the similarity between the two structures is 

greater than some minimum established threshold.  If a value for the minimum similarity index 

(MSI) is established as the minimum threshold, a lower bound on the size of the maximum 

clique, |E(G12)|, can be constructed by observing  which for the previously 

discussed Johnson metric [17] can be shown to yield 

1 2( , )sim G G MSI≥

12 1 1 2 2 1 1| ( ) | (| ( ) | | ( ) |) (| ( ) | | ( ) |) | ( ) | ( )E G MSI V G E G V G E G V G V G≥ ⋅ + ⋅ + − +Δ , 

where 1 2( ) ( )E G E G≤  and  is defined as the number of vertices in graph G1( )V GΔ 1 with no 

equivalent label in G2. 

Upper Bounds 
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As previously stated, an upper bound sets a maximum value for the largest clique that can 

exist at a specific search tree node.  The two schemes that have been investigated include 

approximate coloring and edge projection onto the factor graphs 

Coloring Approaches 

A vertex k-coloring of a graph G is a partition of the vertices V(G) into independent sets 

{P1,P2,..Pk} such that no vertex in any one partition set Pi is adjacent to any other vertex in the 

same partition set.  The minimum k for which a graph G can be colored (i.e., partitioned) is 

called the chromatic number of G denoted ( )Gχ .  The problem of determining ( )Gχ  has been 

shown to be in the same class of problems as the maximum clique and MCES problems known 

as NP-complete for which no known polynomial-time complexity solution is known  [28].  It is 

clear from the definition of the chromatic number that ( ) ( )G Gω χ≤ ;  therefore, a requirement for 

forward traversal in the search tree can be given by ( )h G Mχ+ >  where h is the current depth in 

the search tree and M is the size of the current maximum clique (i.e., lower bound). 

Grimmett and McDiarmid [29] and Manvel [30] have shown that as the number of nodes 

of a graph G increases, the chromatic number starts to become an arbitrarily poor estimate for the 

upper bound of the maximum clique.  Moreover, approximate coloring methods such as the 

greedy algorithm can give arbitrarily poor estimates of the chromatic number further frustrating 

efforts to bound the size of the maximum clique in a graph.  We have found that the estimated 

chromatic number obtained using the greedy algorithm [31] provides an effective upper bound 

within the range 125 ( ) 175V G≤ ≤  when used in conjunction with edge projection with poorer 

performances resulting if the value is set outside of this range.  The median value of ( )V G =150 

has hence been selected as the threshold for initiating greedy coloring in the proposed algorithm. 

Projection Bounds 

Bessonov [32] has implemented a bounding technique based on the projection of vertex 

labels onto the graphs under consideration for the MCIS problem.  Although a simple bound, the 

projective bound is almost always superior to the chromatic bound in practice.  While the 

Bessonov implementation involved a projection bound for the MCIS problem, it is a simple 

matter to extend it to the MCES problem.  The projective bounds are easily conceptualized by 

considering the modular product in a matrix representation (see Figure 6).  Since each row in the 

modular product represents an edge in the graph G1 and each column represents an edge in graph 
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G2, each node in the modular product graph is assigned two labels,  for the i1
ie th edge in graph G1 

and  for the j2
je th edge in graph G2.  To determine the two projective upper bounds Kα  and Kβ , 

all the vertices under consideration in the modular product graph are projected back onto the 

factor graphs G1 and G2; the number of distinct edges conserved in the projection of the modular 

product onto each respective factor graph G1 and G2 then represents the projective bounds Kα  

and Kβ , respectively. 

When the simple modular product in Figure 6 is projected onto the factor graphs L(G1) 

and L(G2), edges {2, 3, 4} and {2’, 3’, 4’} are conserved in L(G1) and L(G2), respectively.  This 

results in Kα  = 3 and Kβ = 3.  The Bessonov projection upper bound is then given as 

min{ , }K Kα β , and in this case, the projection bound is trivial since the maximum clique 

constitutes the modular product. 

Although the simple projection of the modular product onto the factor graphs G1 and G2 

provides a fast and effective upper bound for the size of the maximum clique in the modular 

product, we have found that this simple procedure does not take optimal advantage of vertex and 

edge labeling in the factor graphs.  Let i represent an unambiguous identifier for pair of adjacent 

vertices in a graph incorporating the edge label as well as the labels for the two end point 

vertices.  Let  indicate the set of all adjacent vertex pairs with the unique identifier i in graph 

G

1
iS

1 and S1 denote the set of all such .  S1
iS 1=  where N is the number of unique .  

We propose a new and sharper upper bound (K

1 1 1

1 2{ , ,..., }NS S S 1
iS

wp) that is given as 

1 2

1
min{ , }

N

wp i i
i

K S S
=

= ∑ . 

This process is best illustrated using an example.  Figure 7 demonstrates the procedure 

for two molecules, juglone and scopoletin.  It is clear from the figure that all bonded pairs of 

atoms in both molecular graphs have a corresponding bonded pair of atoms with the same label 

identifier in the other graph; therefore, the simple projection procedure will yield the upper 

bounds Kα =14 and Kβ =15.  The value of Kwp is calculated as shown in Figure 7 by 

6+2+1+1+1=11. 

The initial partition used for the proposed vertex selection procedure is based on the 

initial labeled projection (i.e. h=0), and the upper bound resulting from this partitioning process 
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will be referred to as Ka.  Since the value of Ka at h>0 will be dependent upon the algorithm’s 

vertex selection procedure, the upper bound Kwp will be computed at each forward search tree 

node instance to account for the possibility that Kwp<Ka. 

In the event of a backtrack instance, a modular product vertex is removed from 

consideration at a particular search tree node.  It may then be possible to decrement Kwp.  If the 

vertex vi under consideration during a backtrack instance is the only vertex in a particular 

partition used to calculate Kwp such as the vertex corresponding to edge 9 in juglone and edge 8 

in scopoletin, then Kwp can be decremented. 

Vertex Selection 

Selkow [33] has shown that an upper bound for the clique number in a graph can be 

given as ( ){ }{ }( ) max min 1 ( ) ,G iG Nω ϕ≤ + v k , where ( )iv V G∈  and k represents the index for 

the independent set partition Pk of vertices of V(G) containing vi and ( )( )G iN vϕ  denotes an 

upper bound for the maximum clique of the graph induced by the vertices adjacent to vertex vi.  

This observation serves as the impetus for the novel method for node selection in the proposed 

branch and bound algorithm.  For instance, an arbitrary partitioning of the graph in Figure 8 into 

independent partitions is depicted in Figure 9(a).  If the current estimate for the maximum clique 

is M=2 (i.e., the lower bound), then it is apparent that ( )( )G iN vϕ  need only be calculated for 

vertices 1, 5, and 6, but if the partitions are sorted in non-increasing order according to the 

number of vertices in each partition, it is only necessary to calculate ( )( )G iN vϕ  for vertices 1 

and 3 (Figure 9(b)). 

Figure 9(b) serves to illustrate the concept that when trying to determine the maximum 

clique in a graph, the branch and bound procedure need only consider the vertices contained in 

the excess partitions PP

ex={P , P ,…, P }.  Furthermore, the number of vertices in the 

partitions Pex

k k-1 M+1

P  and possibly the number of partitions k can be reduced by reassigning vertices in 

PP

ex to partitions in PM
P ={PM, PM-1,…, P1}.  If there exists a vertex vi in a partition ex{ | }j jP P ∈P  

and a partition { such that | }M

m mP P ∈P ( )G i mN v P =∅I , then vi can be reassigned to partition 

Pm.  This is illustrated in Figure 9(b) and 9(c) where node vi = 3 in partition P3 can be placed into 

partition P1, thus reducing the number of partitions in PP

ex and the number of nodes in Pex
P  that 

must be investigated. 
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The branching and node selection procedure then consists of the following operations: 

1)  Perform an initial partitioning of the vertices for the root node of the search tree (i.e., the 

graph G) using the labeled edge projection procedure. Sort the resulting partitions Ph=0={Pk0, Pk0-

1,…, P1} such that 0 0 1 ...K KP P P−≤ ≤ ≤ 1  and reassign vertices in excess partitions PP

ex ={P , P

,…, P } to partitions PM 

k0 k0-

1 M+1 P ={PM, PM-1,…, P1} if possible. 

2)  Choose a vertex vi from partition Pkh in PP

( )i

ex and copy the nodes to partitions in the set P  

using .  Increment the depth h by one.  Sort the partitions P ={P , P ,…, 

P } as before and reassign vertices in excess partitions Pex

h+1 

+1 :h h GN v=P P I h kh kh-1

1 P ={Pkh, Pkh-1,…, PM+1} to M-partitions 

PP

M={P , P ,…, P } if possible.  Repeat (2). M M-1 1

The node selection procedure just outlined has the desirable property that the node vi will 

typically have large degree in NG(vi) since, on average, it is more difficult to partition (color) 

vertices of large degree than those with a lower degree, resulting in sparsely populated partitions 

in Ph.  This has the tendency to cause the maximum clique to be detected early in the traversal of 

the search tree.  It has been found that when |V(G)|>400 in the modular product of chemical 

graphs, the efficiency of the algorithm can be improved by re-sorting the partition blocks 

according to the non-increasing numbers of vertices in each partition block following the PP

ex to 

PM
P  vertex re-assignment procedure.  This re-sorting should only be performed at depth h=0 (i.e., 

the root node).  Performing the re-sorting at search tree nodes h>0 does not improve the run time 

for the algorithm. 

Horizontal Pruning 

Horizontal pruning can be defined as a procedure for reducing the number of nodes or 

edges in NG(vi) given an easily calculable property of NG(vi).  The horizontal pruning techniques 

proposed here attempt to take maximum advantage of the separation of Ph into PP

ex and PM
P .  

Since any clique larger than M, the current maximum clique, must have at least one node in PP

ex, 

only the nodes contained in Pex
P  need be considered in order to find any clique larger than M.  

Therefore, any horizontal pruning to eliminate any vertices from Ph need only be applied to the 

vertices in PP

ex. 

Kikusts Pruning 

Kikusts [34] has proposed a recursive relation for the determination of the maximum 

independent set of a graph.  This heuristic can be transformed in terms of the maximum clique by 

the following recursive relations, 
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( ) max{1 ( ( )), ( )}G i iG N v vω ω ϖ= +  

and 

( ) max{ , ( \ ) is complete and ( ) 2}i iv C C G v C N vϖ G i= ⊆ ≥I . 

Assume that a node vi is selected at a particular search tree node at depth h, and the 

recursive search for whether vi is contained in a clique larger than M has backtracked to the 

search tree node from which vi was selected.  At this point, the current value of M represents the 

term  in the previous equation.  It is then known that the largest clique that 

N

(( ) 1 ( )G iG Nω ω= + )v

G(vi) can be involved in is M-1.  Therefore, if there is a vertex vj in G that is not adjacent to vi, 

then the largest clique that ( )j G iv N vU  can be involved in is also size M.  So, in order for vj to be 

involved in a clique larger than M, it must be adjacent to another vertex vm such that vm is not 

adjacent to vi.  This is illustrated in Figure 10(a). 

Similarly, if vj  is adjacent to vi, then vj is in NG(vi).  This means that the largest clique in 

( )j G iv N vU  is M-1.  Therefore, in order for vj to be involved in a clique larger than M, it must be 

adjacent to at least two vertices, vm and vn, not adjacent to vi.  This can be strengthened slightly 

by requiring that vm and vn be adjacent.  This situation is represented in Figure 10(b). 

If any node vj at depth h, fails to satisfy either requirement illustrated in Figure 10 then it 

can be deleted from G because it cannot possibly be involved in a clique larger than M.  This 

means that it may be possible to remove other vertices in addition to vi upon a backtrack 

instance.  Rather than implementing this test for all vertices in G\vi, the separation of G (i.e., Ph) 

into PP

ex and PM
P  allows the simplification of this procedure as this test only need be performed on 

the vertices contained in PP

ex.  This procedure will be referred to as Kikusts pruning, denoted 

KP(v , Pex
i P ) and is performed during each backtrack instance in an attempt to reduce the number 

of vertices in PP

ex beyond Pex
P \vi. 

Equivalence Class Pruning 

One inherent difficulty associated with the computation of an MCES is degeneracy due to 

symmetry in a set of query graphs, as many molecules exhibit a fair degree of structural 

symmetry (e.g., the two molecules shown in Figure 11).  This often results in a modular product 

graph containing large numbers of MCES or near MCES maximal cliques making clique 

detection more difficult as the upper-bounding operations become less effective.  We have found 
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that by addressing symmetry in the graphs being compared prior to clique detection, the 

efficiency of the matching process can be significantly improved in many cases. 

Table 1 lists the edges for the molecular graphs in Figure 11 in their respective 

equivalence classes.  Take edge 3 in Figure 11(a) and edge 6’ in Figure 11(b).  It is clear that the 

edge pair (3, 6’) is equivalent to edge pairs (3, 3’), (3, 23’), (3, 26’), (6, 3’), (6, 6’), (6, 23’), (6, 

26’), (24, 3’), (24, 6’), (24, 23’), (24, 26’), (27, 3’), (27, 6’), (27, 23’), (27, 26’).  Any MCES 

rooted at any of these edge pairs cannot be larger than an MCES rooted at edge pair (3, 6’).  

Therefore once the MCES rooted at edge pair (3, 6’) is discovered, it is no longer necessary to 

consider any of the clique search tree branches rooted at these other equivalent edge pairs.  Since 

the equivalent edge pairs correspond to equivalence classes 5 (Graph (a)) and 6 (Graph (b)) in 

Table 1, it is simple to determine which edge pairs in the modular product graph are equivalent 

once the factor graphs have been processed using an equivalence testing algorithm.  Faulon [35] 

has shown that equivalence class testing of planar molecular graphs which comprise almost all 

molecular graphs can be performed in O(n2) time.  We have used the algorithm of Fan et al. in 

our experiments [36, 37] also of O(n2) time. 

Since the MCES modular product is constructed using the line graphs of the factor 

graphs, it must first be determined for what cases the automorphism groups of line graphs, L(G), 

correspond to the automorphism groups of the root graphs, G.  It has been shown that this 

correspondence will hold provided that the molecular graphs being compared are not isomorphic 

to the graphs illustrated in Figure 12 [38].  Therefore, in the absence of such a forbidden 

isomorphism, a simple horizontal pruning heuristic based on equivalence classes can be 

employed to simplify clique detection.  If one or both of the graphs being matched happen to be 

isomorphic to one of the forbidden graphs in Figure 12, it is still possible to use the equivalence 

class pruning heuristic provided that the equivalence class detection algorithm is modified to 

account for the forbidden graphs. 

The function Peq(vi, PP

ex) is defined as the pruning of symmetrically equivalent vertices 

from the modular product graph and is only performed at depth h = 0.  Let and  be the 

equivalence class labels of the edges in graphs G  and G , respectively, corresponding to the 

currently selected vertex v  in the modular product graph.  Then P (v , Pex

1
ivEQ 2

viEQ

1 2

i eq i P ) prunes any vertices vj 

in PP 1
j jex of the modular product graph where  and . 1

iv vEQ EQ= 2 2
iv vEQ EQ=

Overall Algorithm 
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The proposed algorithm can be summarized in the following pseudo-code: 

Algorithm RASCAL 

Step 0:  (Construct Modular Product)  If the current comparison passes both cost-vector 

screening stages then construct the modular product graph. 

 

Step 1:  (Initialization) Set h:=0 and M:= the clique lower bound determined using a specified 

MSI.  Partition V(G) into independent sets Ph=0:= using the labeled projection 

technique.  Sort P

0 0 1 1{ , ,..., } Ka KaP P P−

0 in order of non-increasing number of vertices in each partition block (i.e., 

1 ...Kah KahP P −≤ ≤ ≤ 1P ) and re-assign vertices in PP

ex to PM
P  if possible.  Update Kah if re-

assignment resulted the reduction in the number of partitions.  If a

1
400hK

ii
P

=
≥U , then re-sort the 

partitions Pi in order of non-increasing number of vertices in each partition block. 

 

Step 2:  (Upper Bound)  Determine Kwph.  If Kwph<Kah then { Kh:=Kwph } else {Kh:=Kah}.  If 
a

1
150hK

ii
P

=
≤U  and , then use the greedy coloring algorithm to estimate the chromatic 

number 

hh K M+ >

( )Gχ .  If ( ) hG Kχ <  then Kh:= ( )Gχ .  If hh K M+ ≤  then {go to Step 4} else {go to 

Step 3}. 

 

Step 3: (Branching) Choose a vertex .  Set ex
a a|h K h K hv P P∈ ∈P 1 :h h GN v+ ( )h=P P I , Kah+1 := |Ph+1|, 

and a a: \K h K hP P= hv .  If  then decrement KaK hP = ∅ ah.  Set h:=h+1.  If Kah=0 then { 1

0
:

h
ii

M v
−

=
= U  

and go to Step 4 } else {sort Ph+1 in order of non-increasing number of vertices in each partition 

block (i.e., 1 ...Kah KahP P −≤ ≤ ≤ 1P ) and reassign vertices in PP

ex to PM
P  if possible}.  Update Kah if 

re-assignment resulted the reduction in the number of partitions.  Go to Step 2. 

 

Step 4:  (Backtracking) If h=0 then end (M=max clique).  While hh K M+ ≤ , decrement h.  If 

h=0 then Peq(vh, PP

ex).  Perform KP(v , Ph
ex).  Update K .  Go to Step 2. wph

4.0 EXPERIMENTAL EVALUATION 

Unlike other graph problems such as the maximum clique or the coloring problem, the 

MCIS /MCES problem does not have a standardized set of benchmark graphs with which to test 
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the efficiency of published algorithms.  Since RASCAL has been developed for chemical 

information handling and no standardized test graphs are available, the experimental evaluation 

of the algorithm has been performed using a data set of chemical graphs.  While chemical graphs 

are sparse with respect to many of the types of graphs of interest to other research fields, it is 

assumed that they can be used to satisfactorily test the efficiency of the proposed algorithm.  

Using the definition of the modular product, it is clear that the resulting modular product will be 

very dense as most edge pairs in both factor graphs will not be adjacent. 

 The  data set of compounds selected for testing purposes consisted of a collection of 200 

compounds comprising steroids, melatonins, statins, anti-leukemia actives, and other various 

compounds from miscellaneous activity classes.  The average number of vertices is 25.6 with a 

standard deviation of 6.7.  In order to investigate the efficiency and robustness of the proposed 

algorithm, all possible pair-wise MCES comparisons between two molecules in a data set were 

examined.  For this data set, 19,900 pair-wise comparisons were performed. 

For comparative purposes, three separate algorithms were coded and tested against the 

RASCAL algorithm.  Two of these algorithms are advanced maximum clique detection 

algorithms for arbitrary graphs.  These are the MC1 algorithm of Wood [31] employing a greedy 

coloring upper bound and the Ostergard [39] algorithm.  The other algorithm is due to Bessonov 

[32] which was developed specifically for maximum clique detection in a modular product graph 

and uses the simple edge projection technique as an upper bounding procedure.  All three of 

these algorithms employ different vertex selection schemes for traversing the search tree.  Of the 

three, the vertex selection procedure used by Wood is most like the one employed in the 

RASCAL algorithm.  For the sake of uniformity, all algorithms were coded in Visual C++ 6.0 

using the same data structures where appropriate and executed on a 400 MHz Intel Celeron 

processor with 128 MB RAM using Windows 98.  To further ensure uniformity, all four 

algorithms were run in conjunction with the cost-vector screening procedure previously 

presented as well as the minimum similarity index (MSI) lower bound for the size of the 

maximum clique with the exception of the Ostergard algorithm which was run using only the 

cost-vector screening.  The unique branching procedure of the Ostergard algorithm precludes the 

use of a lower-bounding procedure for the size of the maximum clique. 

 The specification of an acceptable MSI value will depend in large part on the application 

as well as the connectivity of the graphs being considered.  It will also be dependent upon the 
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number of vertices and density of the graphs.  Figure 13 demonstrates a simple example 

depicting various similarity measures calculated for a set of small molecules.  In this figure, 

dyphylline is compared to a set of other small xanthine compounds.  For the efficiency 

evaluation,  trial simulations were run at MSI values of ranging from 0.5 to 0.85, and modular 

product simplification heuristics [40] were used to simplify the modular product based on 

chemical knowledge prior to clique detection whenever possible. 

To evaluate the performance of the cost-vector screening procedure, the “screen-out” was 

calculated at the same MSI values.  The “screen-out” is defined as the percentage of comparisons 

correctly excluded from further consideration relative to the total number of comparisons whose 

MCES-based similarity measure is calculated as being below the specified MSI threshold.  Table 

2 lists the results of the “screen-out” simulation.  Table 2 shows that the proposed screening 

method is effective in screening unnecessary comparisons and that the 1st tier cost-vector 

approach becomes increasingly effective as the value of MSI increases; whereas, the 2nd tier cost-

vector screen becomes more effective as the MSI value decreases. 

Table 3 presents the total time for each simulation trial.  A time limit of 24 hours was 

used for each trial.  It is clear from Table 3 that the RASCAL algorithm outperformed the other 

published algorithms.  This is especially so at the lower MSI thresholds, which permit the 

identification of more distant structural relationships between molecules and which are of most 

potential interest in the discovery of novel bioactive molecules.  While all of the heuristics 

presented in the RASCAL algorithm provide efficiency improvements, the majority of the 

decrease in run-time is due to the combination of the labeled edge projection upper bound in 

association with the partition re-ordering procedure.  The equivalence testing heuristic was also 

found to have a significant impact on run-time for molecular graphs with a high degree of 

symmetry. 

To further test the efficiency and durability of the RASCAL algorithm, it was tested on 

three separate data sets of molecular structures.  These consisted of a set of 5,386 chemical 

structures supplied by Asinex (at URL http://www.asinex.com), another 2,715 chemical 

structures acquired from Nanosyn (at URL http://www.nanosyn.com), and a set of 16,000 central 

nervous system targeted molecules obtained from ChemBridge (at URL 

http://www.chembridge.com).  These data sets are denoted ASX, NAN, and CNS, respectively.  

All possible pair-wise comparisons for each data set were evaluated using MSI values of 0.7, 
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0.75, 0.8, 0.85.  The minimum MSI of 0.7 was selected because MSI values below 0.7 failed to 

discriminate between the molecular structures in a chemically sensible manner to the degree 

desired.  Table 4 presents the results of these trial simulations.  These results indicate that rates in 

the range of thousands of comparisons per second using the specified processor can be achieved, 

even at the lower MSI threshold values, making it feasible to carry out MCES-based searching of 

large chemical databases in reasonable amounts of time, something that has not previously been 

possible in systems for chemical information management [41]. 

Table 4 shows that the per comparison time results for the CNS and NAN are 

comparable.  However, the time results for the ASX data set differ significantly.  Although the 

average size of a molecular graph for the ASX data set is larger than for both the CNS and NAN 

data sets, this difference does not fully explain the discrepancy in the performance of the 

algorithm.  The difference in performance is chiefly attributable to the relative similarity of the 

graphs in each data set.  A simple measure of diversity was calculated by determining the 

percentage of pair-wise comparisons whose MCES-based similarity exceeds the specified MSI 

relative to the total number of pair-wise comparisons possible in a data set.  Each cell in Table 5 

lists the number of comparisons as well as the percentage of comparisons exceeding the stated 

MSI value.  It is evident from Table 5 that the proportion of comparisons whose similarity 

exceeds the specified MSI value is larger for the ASX dataset than for the CNS and NAN data 

sets, indicating that the ASX data set requires proportionately more calls to the computationally 

expensive graph matching routine.  This difference corresponds closely with the noted difference 

in per comparison time results between the data sets. 

5.0 CONCLUSION 

 An efficient graph similarity procedure RASCAL has been proposed based on the 

concept of the maximum common edge subgraph.  The proposed algorithm consists of several 

heuristics discovered in the literature as well as several new heuristics such as the 1st and 2nd tier 

screening procedure, the suggested vertex selection procedure, a sharper upper bound based on 

graph projections, and the equivalence class pruning method to account for symmetry in the 

graphs being compared.  It is relatively straightforward to implement and has proven to be an 

efficient tool for similarity calculations in chemical graph databases, thus providing an 

alternative to existing measures of chemical similarity based on bit-strings.  While RASCAL has 
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been designed for use in chemical information management, the algorithm is conceptually 

general and is directly applicable to any graph-based similarity application. 

It may be possible to significantly improve the performance of the algorithm by 

incorporating other more efficient upper-bounding techniques in addition to the approaches 

suggested here.  This possibility remains for future work on the algorithm, as does its extension 

to the calculation of similarity for 3D chemical graphs and its application to chemical problems 

such as searching and the prediction of biological activity. 
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TABLES 

Table 1.  Equivalence Class Listing of Figure 10 

Graph (a) Graph (b) 

Equivalence 
Class 

Edge 
ID 

Equivalence 
Class 

Edge 
ID 

1 1, 12, 30, 34 1 1', 12', 29', 33' 

2 2, 11, 29, 33 2 2', 11', 28', 32' 

3 9, 31 3 9', 30' 

4 10, 32 4 10', 31' 

5 3, 6, 24, 27 5 7', 8', 24', 25' 

6 7, 8, 25, 26 6 3', 6', 23', 26' 

7 4, 5, 23, 28 7 4', 5', 22', 27' 

8 13, 22 8 13', 21' 

9 15, 21 9 14', 20' 

10 14, 20 10 15', 19' 

11 16, 19 11 16', 18' 

12 17, 18 12 17' 
 

Table 2.  “Screen-out” Performance 

MSI 
 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 

 1st tier 24.7% 34.3% 46.2% 59.8% 72.9% 85.0% 93.4% 97.6%

 2nd tier 59.0% 54.9% 47.3% 36.8% 25.4% 14.3% 6.2% 2.1% 

 Total 83.7% 89.2% 93.5% 96.6% 98.3% 99.3% 99.6% 99.7%

 

Table 3.  Algorithm Time Comparison Results (seconds) 

 MSI 

Algorithm 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 

 Bessonov >24 hr >24 hr >24 hr >24 hr >24 hr >24 hr >24 hr 93 

 Ostergard >24 hr >24 hr >24 hr >24 hr >24 hr >24 hr >24 hr >24 hr 

 Wood >24 hr >24 hr >24 hr >24 hr >24 hr >24 hr 12,898 13 

 RASCAL 304 188 120 80 43 22 11 7 
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Table 4.  RASCAL Time Trial Results [total (per comparison) in seconds (milliseconds)] 

 MSI 

Data Set Num. of 
Molecules 

Num. of 
Comparisons 

Avg. 
|V(G)| 

Std. Dev. 
|V(G)| 0.7 0.75 0.8 0.85 

ASX 5,386 14,501,805 32.5 5.0 71,806 
(4.95) 

37,229 
(2.57) 

17,570 
(1.21) 

7,058 
(0.487) 

CNS 16,000 127,992,000 23.3 4.7 55,340 
(0.432) 

22,216 
(0.174) 

8,462 
(0.0661) 

3,269 
(0.0255) 

NAN 2,715 3,684,255 26.3 5.5 1,883 
(0.511) 

826 
(0.224) 

349 
(0.0947) 

150 
(0.0407) 

 

Table 5.  Proportion of MCES Similarity Comparisons Exceeding MSI Threshold 

MSI Data 
Set 

0.7 0.75 0.8 0.85 

ASX 1,698,872/11.7% 892,315/6.15% 422,383/2.91% 150,385/1.04% 

CNS 1,425,165/1.11% 485,830/0.38% 167,584/0.13% 50,920/0.040% 

NAN 48,279/1.31% 22,224/0.60% 9,749/0.26% 3,522/0.096% 
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FIGURES 

 
a)

b)

 
Figure 1. a) Maximum Common Subgraph  b) Maximum Common Edge Subgraph 
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Figure 2.  Example MCES Comparison  (a) meperidine  (b)  methadone  
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9C

8CC74C

3
C

C
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C13

2N

C1

O
16

17
C

C18

methadone  (1) meperidine  (2)

L 1
1=C L 1

2=O L 1
3=N L 2

1=C L 2
2=O L 2

3=N L 1=C L 2=O L 3=N
d (v 1)= 4   (7) d (v 1)= 1  (9) d (v 1)= 3  (2) d (v 1)= 4   (5) d (v 1)= 2  (16) d (v 1)= 3  (2) d (v 1) = 4 d (v 1)= 1 d (v 1)= 3
d (v 2)= 3   (8) 0 d (v 2)= 3   (6) d (v 2)= 1  (15) d (v 2) = 3 d (v 2)= 0
d (v 3)= 3   (4) d (v 3)= 3   (14) d (v 3) = 3
d (v 4)= 3   (18) d (v 4)= 2   (3) d (v 4) = 2
d (v 5)= 3   (12) d (v 5)= 2   (4) d (v 5) = 2
d (v 6)= 2   (6) d (v 6)= 2   (7) d (v 6) = 2
d (v 7)= 2   (10) d (v 7)= 2   (8) d (v 7) = 2
d (v 8)= 2   (13) d (v 8)= 2   (9) d (v 8) = 2
d (v 9)= 2   (14) d (v 9)= 2   (10) d (v 9) = 2
d (v 10)= 2  (15) d (v 10)= 2  (11) d (v 10)= 2
d (v 11)= 2  (16) d (v 11)= 2  (12) d (v 11)= 2
d (v 12)= 2  (17) d (v 12)= 2  (13) d (v 12)= 2
d (v 13)= 2  (19) d (v 13)= 2  (17) d (v 13)= 2
d (v 14)= 2  (20) d (v 14)= 1  (1) d (v 14)= 1
d (v 15)= 2  (21) d (v 15)= 1  (18) d (v 15)= 1
d (v 16)= 2  (22) 0 d (v 16)= 0
d (v 17)= 2  (23) 0 d (v 17)= 0
d (v 18)= 1  (1) 0 d (v 18)= 0
d (v 19)= 1  (3) 0 d (v 19)= 0
d (v 20)= 1  (5) 0 d (v 20)= 0
d (v 21)= 1  (11) 0 d (v 21)= 0

SUM = 32 1 3 =  36

min {d (v 1
j ), d (v 2

j ) }

 
Figure 3.  Example 1st Tier Cost-Vector Screening 
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L1 (carbon) :

9O
8C

7C

12
C 13C

14C
15
C

C16

C17

6C

4C

C5

2N

3C

1C18C

23CC22

C21

C20 19C
C10

11C

15O

14C

5C 6C

C11 10C

9C

8CC74C

3
C

C
12

C13

2N

C1

O
16

17
C

C18

methadone  (1)

meperidine  (2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (i)
5 6 14 3 4 7 8 9 10 11 12 13 17 1 18 (v i)

1 7 4 1 1 1 2 0 0 0 0 0 2 1 1 0 1
2 8 2 1 2 1 2 0 0 0 0 0 2 1 1 0 1
3 4 2 1 1 2 2 0 0 0 0 0 2 2 1 1 1
4 18 1 3 1 1 1 2 2 2 2 2 1 1 1 0 1
5 12 1 3 1 1 1 2 2 2 2 2 1 1 1 0 1
6 6 2 1 1 1 2 0 0 0 0 0 2 1 1 0 1
7 10 2 1 1 1 2 0 0 0 0 0 2 1 1 0 1
8 13 0 2 0 0 0 2 2 2 2 2 0 0 0 0 0
9 14 0 2 0 0 0 2 2 2 2 2 0 0 0 0 0

10 15 0 2 0 0 0 2 2 2 2 2 0 0 0 0 0
11 16 0 2 0 0 0 2 2 2 2 2 0 0 0 0 0
12 17 0 2 0 0 0 2 2 2 2 2 0 0 0 0 0
13 19 0 2 0 0 0 2 2 2 2 2 0 0 0 0 0
14 20 0 2 0 0 0 2 2 2 2 2 0 0 0 0 0
15 21 0 2 0 0 0 2 2 2 2 2 0 0 0 0 0
16 22 0 2 0 0 0 2 2 2 2 2 0 0 0 0 0
17 23 0 2 0 0 0 2 2 2 2 2 0 0 0 0 0
18 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
19 2 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
20 5 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1
21 11 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1
(i) (v i)

L3 (nitrogen):
1 (i)
2 (v i)

1 2 3
(i) (v i)

L2 (oxygen) :
1 2 (i)

16 15 (v i)

1 9 0 1
(i) (v i)

 
Figure 4.  2nd Tier Linear Assignment Cost Matrices  
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Figure 5.   Exchange YΔ
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Figure 6.  Modular Product of Line Graphs  
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Figure 7.  Example of Labeled Projection Upper Bound 
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Figure 9.  Vertex Partitioning Procedure 

 

 28 
 



 

NG(vi)

vi vj

vm

NG(vi)

vi

vj

vm

vn

a) b)

 
Figure 10.  Kikusts Heuristic 
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Figure 11.  Symmetrical Molecular Graphs 
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Figure 12.  Forbidden Subgraphs for Line Graph Automorphism 
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Figure 13.  Example of Chemical Graph Similarity 
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