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Abstract

A simple and elegant method is presented to perform anti-aliasing in ray traced images. The method uses stratified
sampling to reduce the occurrence of artifacts in an image and features a B-spline filter to compute the final
luminous intensity at each pixel. The method is scalable through the specification of the filter order. A B-spline
filter of order one amounts to a simple anti-aliasing scheme with box filtering. Increasing the order of the B-spline
generates progressively smoother filters. Computation of the filter values is done in a recursive way, as part of
a sequence of Newton-Raphson iterations, to obtain the optimal sample positions in screen space. The proposed
method can perform both anti-aliasing in space and in time, the later being more commonly known as motion blur.
We show an application of the method to the ray casting of implicit procedural surfaces.

Keywords: Anti-aliasing, B-spline filter, ray tracing, stratified sampling

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Picture/Image Generation]: Antialiasing I.3.7
[Three-Dimensional Graphics and Realism]: Raytracing

1. Introduction

Anti-aliasing is an important component in the rendering of
ray traced images and is used to eliminate high frequencies
that would otherwise show up as objectionable image arti-
facts. The most common approach to anti-aliasing relies on
the concept ofsuper-sampling, where each image pixel is
subdivided into many smaller sub-pixels. The final pixel col-
our is averaged down from the computed luminous intensit-
ies of all sub-pixels [Gla95].

Super-sampling, by itself, pushes coherent artifacts into
higher frequencies and makes them less noticeable but
cannot eliminate aliasing completely. An improvement
was introduced by Cook with the concept ofstratified
sampling [Coo89]. In stratified sampling, the position of
each sample is slightly jittered from its original position
on the node of a regular sampling grid. The placement
of samples in stratified sampling mimics the placement of
the photoreceptors on the human retina, which are known

† Supported by grant SFRH/BD/16249/2004 from Fundação para a
Ciência e a Tecnologia, Portugal.

to obey a Poisson-disc distribution [Yel83]. This distribu-
tion of photoreceptors trades coherent aliasing artifactsfor
noise, most of which is later masked out by the percep-
tion mechanisms in the brain. Stratified sampling becomes
a very effective anti-aliasing technique by taking advantage
of this characteristic in the human visual system. Although
algorithms for generating Poisson-disc distributions exist,
these are expensive to compute [Mit87]. The strategy of jit-
tering samples from their positions on a regular grid provides
a reasonable and much cheaper approximation. The concept
of stratified sampling is general enough that Cook was able
to use it not only to perform anti-aliasing and motion blur
but also to simulate depth of field.

Anti-aliasing techniques can be further enhanced with the
use of low-pass filters. Instead of performing a simple arith-
metic averaging to compute the pixel colour from the colour
of all neighbouring samples, a weighted average is taken.
The weight for each sample is given by the filters and usually
depends on the distance in screen space between the sample
and the pixel position.

This article will present a method for performing strati-
fied anti-aliasing on ray traced images with a low-pass filter
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chosen from a family of B-spline basis functions. A similar
approach has been presented by Starket al. [SSA05]. Stark
et al. present the solution for B-spline filters of up to order
four (cubic B-splines) whereas our method can work with
any filter order and is also simpler to implement. We also
consider anti-aliasing in time for ray traced animations. By
choosing the order of the B-spline filter, one can have differ-
ent filter behaviours for anti-aliasing, starting with the box
filter and proceeding through the tent filter, the cubic filter,
and beyond.

Section2 presents a more detailed formulation of the
anti-aliasing problem. Section3 introduces some proper-
ties of B-spline basis functions that are necessary for this
work. Section4 presents our anti-aliasing method. Sec-
tion 5 explains how anti-aliasing can be extended into the
time dimension. Section6 presents some results and Sec-
tion 7 gives conclusions. Two animations illustrating our
anti-aliasing method in space and in time are available online
athttp://www.dcs.shef.ac.uk/~mag/bspline.html.

2. Stratified Monte Carlo Anti-aliasing

We seek to compute the luminous intensityI(x) for each
point x in screen space in such a way that high frequencies
are removed and do not cause aliasing whenI(x) is regu-
larly sampled onto the discrete pixel positions. Removal of
high frequencies from a signal is possible by convolving it
with some appropriate low-pass filterh(x). The anti-aliased
intensityI ′(x) becomes:

I ′(x) =
∫

I(u)h(x−u) du (1)

Anti-aliasing algorithms for computer graphics always tryto
provide some numerical approximation to this integral thatis
both accurate and not too expensive to compute. With no as-
sumptions being made on the shape of the filter, the simplest
approximation to (1) replaces the integral by a summation
over several image positions:

I ′(x) ≈ ∑
i

I(ui)h(x−ui) (2)

The samplesui are regularly placed around pointx, with
N samples along each of the horizontal and vertical direc-
tions, for a total ofN2 intensity computations necessary to
obtain a single pixel intensity. This amounts to performinga
weighted average of all the computed luminous intensities,
where the weights are obtained from the filter kernel.

This approach is not particularly efficient because it does
not take into account the influence of the filter when placing
the samples. The samplesui are regularly spaced aroundx,
regardless of which values the filter will take there. It can
happen, and usually does, that many samples will be placed
in regions farthest fromx where the values ofh(x−ui) will
be small. These farthest samples will have a negligible im-
pact on the anti-aliased intensityI ′(x), due to the small value

of their weights during averaging. This can be seen as a ma-
jor source of inefficiency when one remembers that compu-
tation of the luminous intensitiesI(ui), with ray tracing or
some other rendering algorithm, is always an expensive pro-
cedure.

A better approach than (2) is to numerically compute
the anti-aliasing convolution (1) with Monte Carlo integra-
tion [SM03]. In Monte Carlo integration, a simple arithmetic
average is used to compute the filtered intensity value:

I ′(x) ≈

1
N2 ∑

i
I(ui) (3)

With Monte Carlo the positionsui are taken to be the out-
come of a random variable, whose probability density func-
tion (PDF) is the low-pass filter itself. There is now a very
low probability that samples will be placed in regions where
h(x−ui) is small. By treating the filter as the PDF of some
random process, we are assured that samples will be placed
in regions where they are more likely to contribute to the
anti-aliased intensity. We must now deal with the issue of
how to randomly place samples in screen space, according
to some arbitrary probability densityh(x).

First we considerh(x) itself. It must obey certain con-
straints if it is to be a valid PDF. The most obvious constraint
is thath(x) must be strictly positive, since it does not make
sense to talk about negative probabilities. Secondly, the in-
tegral

∫

∞ h(x)dx must be unity. This means that there is a
probability of one (a certainty) that a sample will be located
somewhere in screen space. If this later constraint does not
hold but the filter still has a finite positive integral, it is pos-
sible to obtain a normalized PDF by usingh(x)/

∫

∞h(x)dx
as the filter kernel.

With a valid PDF, we can now obtain another important
measure for a random process: the cumulative density func-
tion (CDF). If h(x) is a PDF, then its CDF is given by:

H(x) =
∫ x

−∞
h(t) dt (4)

The CDFH(x) gives us the probability that the random vari-
able will take values belowx. In the case of two-dimensional
random variables, as is the case in this work, it gives us
the probability that a screen sample will be inside the rect-
angle that has a lower left vertex at minus infinity, in both
horizontal and vertical coordinates, and an upper right ver-
tex at pointx. If h(x) is a proper PDF, then we have again
H(+∞) = 1, meaning the sample is bound to be somewhere
on the screen.

To numerically compute a sample from a random pro-
cess, knowing its CDF, we use the method offunction inver-
sion [PTVF92]. We begin by generating a uniform random
variabley that takes values in the unit rectangle[0,1[×[0,1[.
The sample having our desired CDF,H(x), and PDF,h(x),
is now obtained by finding the solution to the equation:

y = H(x) (5)
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Figure 1: A probability density function (left) and its cor-
responding cumulative density function (right). To obtaina
sample x with this PDF, sample uniformly with y and obtain
x by inverting the CDF.

Figure1 exemplifies this process for a typical low-pass filter
in one dimension. It is possible to see thatH(x) is a mono-
tonically increasing function from 0 to 1. This is true of any
CDF and it is a property that will be used to advantage in
Section4. To distribute sample points around the pointx for
Monte Carlo integration we create a regular grid of samples,
not in screen space, but in the unit square space of they
variable. These samples become stratified by the addition of
a random componentξ that breaks up the regularity of the
grid:

vi = ∆v i +ξ (6)

If we useN samples, along both the horizontal and vertical
coordinates, then the vector∆v has equal components 1/N
and the random vectorξ has components taking uniform ran-
dom values in the interval[0,1/N[. We thus obtain a strat-
ified distribution of samplesui to use in the Monte Carlo
approximation (3) to the anti-aliasing integral. The samples
obey a PDF equal to the filterh(x) by having them be the
solution ofvi = H(ui) for all i.

3. A Family of Uniform B-splines

A family of B-spline basesnm(x), with knots placed at in-
teger positions, can be obtained by performing consecutive
convolutions with the characteristic function on the interval
[0,1[. We start off with the B-spline of order one, which is
the aforementioned characteristic function itself:

n1(x) =

{

1 if x∈ [0,1[,

0 otherwise.
(7)

The convolution of a B-spline of orderm−1 with the char-
acteristic function gives the next B-spline in the sequence:

nm(x) = (nm−1 ∗n1)(x)

=

∫ 1

0
nm−1(x− t) dt, for m> 1. (8)

Because of the consecutive convolutions, the B-spline curves
become progressively smoother asm increases.

From [Chu92], we can state the properties of the family

of B-spline functions that make them particularly attractive
for use as low-pass filters in anti-aliasing:

nm(x) > 0, for 0 < x < m. (9a)
∫ +∞

−∞
nm(x) dx = 1, for all m. (9b)

suppnm = [0,m]. (9c)

nm(x) =
x

m−1
nm−1(x)+

m− x
m−1

nm−1(x−1), for m> 1.

(9d)

Properties (9a) and (9b) together tell us that anynm(x)
is a valid probability density function for Monte Carlo
anti-aliasing. The support of a B-splinenm(x), when defined
according to (8), is the interval[0,m]. For anti-aliasing, how-
ever, we require that random samples be centered around
some desired pixel position. This can be achieved for
B-spline filters by generating the samples, as explained in
the previous section, and performing a simple offset of
−m/2 along the horizontal and vertical coordinates. Prop-
erty (9d) is the most important. It gives us an algebraic re-
lation between the B-spline of orderm and the B-spline of
orderm−1. With this knowledge and with knowledge of the
shape ofn1(x) (7) we can computenm(x) recursively, at any
point x and for any orderm.

We now know that B-splines can be used as filters for
anti-aliasing and that a simple recursive procedure exists
to evaluate them. To study the behaviour of B-splines as
low-pass filters, we must also study their spectra ˆnm( f ), as
given by the application of the Fourier transform tonm(x):

n̂m( f ) = F {nm(x)} =

(

sinπ f
π f

)m

e−iπ fm/2 (10)

If we admit a unit distance between pixels on the screen, we
then have a sampling frequency of 1 Hz along the horizontal
and vertical directions. The Nyquist Sampling Theorem tells
us that we must filter out all frequencies above 0.5 Hz if no
aliasing is to occur. Ideally, we would like to have a perfect
low-pass filter with a sharp frequency cut-off at 0.5 Hz. Such
an ideal filter, however, would have an infinite support and
would be intractable under any of the approximations to the
anti-aliasing integral. The family of B-spline basis functions
provides a sequence of approximations to this ideal low-pass
filter.

Figure2 shows the shape of four B-splines with orders of
1, 2, 4 and 20, on the left, together with the modulus of their
respective spectra, on the right. These spectra are symmetric
about the origin, since they are the transform of real func-
tions, and only the positive frequencies are shown. The spec-
trum of the ideal low-pass filter for anti-aliasing has been su-
perimposed as a dashed rectangle. The basisn1(x) gives the
well-known box filter for anti-aliasing. It is quite simple to
implement but it allows too many high frequencies to pass
through, as evidenced by the significant lobes that fall out-
side of the spectrum for the perfect filter. The basisn2(x) is
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Figure 2: B-spline basis functions (on the left), for m equal
to 1, 2, 4 and20, and their respective spectra (on the right).
The spectrum for the ideal anti-aliasing filter is superim-
posed as a dashed rectangle on the later.

also known as the tent or triangle filter because of its shape.
It has a better spectral behaviour than the box filter, since the
lateral spectral lobes are now more attenuated. However, the
trend of increasingm in order to block more of the high fre-
quencies cannot continue indefinitely. For too large a value
of m, the low frequencies also become excessively attenu-
ated. This is exemplified by the B-spline filter of order 20
in Figure2. Visually, this distortion in the low frequencies
translates into a blurry image, where the amount of blurring
is far greater than necessary to eliminate aliasing. It is gen-
erally considered that a good compromise between blocking
the high frequencies and not distorting the low frequencies
is achieved with the cubic B-spline filtern4(x), also shown
in Figure2.

Once a particular order for the B-spline is chosen,
a two-dimensional anti-aliasing filter is made from the
cartesian product of thenm(x) kernel with itself:

h(x) = h(x1,x2) = nm(x1−m/2)nm(x2−m/2) (11)

As previously explained, the offset by−m/2 properly
centres the kernels around the origin. It would be equally as
simple to have different orders for the horizontal and vertical

kernels but there does not seem to be, however, any signific-
ant advantage in doing so.

4. Stratified Anti-Aliasing with B-splines

Stratified Monte Carlo anti-aliasing with B-spline low-pass
filters requires random screen samples to be computed with
a PDF given bynm(x). This, in turn, requires the following
CDF to be known:

Nm(x) =
∫ x

0
nm(t) dt (12)

Based on [Chu92] we can derive four properties about the
integralNm(x) of a B-spline basis function that are important
when writing an implementation of anti-aliasing:

suppNm(x) = [0,+∞[ (13a)

Nm(x) increases fromNm(0) = 0 toNm(+∞) = 1. (13b)

nm(x) = Nm−1(x)−Nm−1(x−1), for m> 1. (13c)

Nm(x) =
x
m

Nm−1(x)+
(

1−
x
m

)

Nm−1(x−1), for m> 1.

(13d)

Properties (13a) and (13b) are a direct consequence of (12),
together with (9a), (9b) and (9c). These two properties tell
us thatNm(x) is a valid CDF. Properties (13c) and (13d) are
derived in the Appendix. Property (13c) gives an algebraic
relationship between the spline function and its integral at
the next lower order. Property (13d) presents a numerical
recipe for computing any value ofNm(x) in a recursive way.
At the end of the recursion lies theN1(x) function, whose
shape has a trival expression, as given by (14).

N1(x) =











0 if x < 0,

x if x∈ [0,1[,

1 if x≥ 1.

(14)

The generation of random samples for Monte Carlo integra-
tion, with a B-spline acting as the PDF, now requires solving
the following equation for a samplex in either horizontal or
vertical screen coordinates, wherey is a stratified uniform
random variable in the[0,1[ interval:

y = Nm(x) (15)

The solution is immediate whenm = 1 but, unfortunately,
becomes rather involved for higher orders. Rather than try to
solve (15) analytically, the best approach is to use a numer-
ical iterative method like Newton-Raphson to find the zero
of the auxiliary functionf (x) = Nm(x)− y (see [PTVF92]
for such a method).

Newton-Raphson is a powerful root finder since it has
quadratic convergence, but some care must usually be taken
before its application. The root must first be bracketed in-
side a suitable interval. Then,f (x) must be monotonic inside
that interval with a non-vanishing derivative everywhere.All
these conditions are naturally met in the case of a B-spline
CDF. Clearly, there is one and only one rootx inside the
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interval betweeny = 0 andy = 1. The function is monoton-
ically increasing inside that interval, as assured by property
(13b), and the only points where the derivative vanishes are
the two interval extremes. If we first clear the boundary case
y = 0⇒ x = 0 (becausey ∈ [0,1[, the boundaryy = 1 need
not be considered) then a series of Newton-Raphson itera-
tions can be started, with full confidence that it will converge
to the solution:

xi+1 = xi −
f (xi)

f ′(xi)
= xi −

Nm(xi)− y
N′

m(xi)

= xi −
Nm(xi)− y

nm(xi)
(16)

The cost of performing (16) is 2m − 1 recursive calls of
Nm(xi) and 2m− 1 recursive calls ofnm(xi), giving a total
complexity ofO(2m+1) per Newton-Raphson iteration. It is
possible to do better by replacing (13c) and (13d) in (16):

xi+1 = xi −
xi
mNm−1(xi)+

(

1− xi
m

)

Nm−1(xi −1)− y

Nm−1(xi)−Nm−1(xi −1)
,

for m> 1. (17)

The cost is now 2m−1 − 1 recursive calls to compute
Nm−1(xi) and similarly forNm−1(xi − 1). The complexity
is O(2m), half of what it was before.

The Newton-Raphson iterations are started off withx0 =
m/2, which is at the centre of the interval (9c) where the
random variablex is bound to lie.

Figure 3 shows the sampling patterns used by several
anti-aliasing techniques. The boundaries between the pixels
are marked with horizontal and vertical lines. The dia-
mond shape shows the centre of the pixel for which the
sampling patterns apply. In all cases, 102 samples per
pixel was used. The pattern on the top left corresponds to
super-sampling where the pixel is uniformly divided into
sub-pixels. Super-sampling implies the use of a box filter
which covers the extent of the pixel. The pattern on the top
right uses a cubic B-spline filter whose area of support is the
square[−2,2]× [−2,2]. For this pattern the weighted aver-
age formula (2) is used to compute the anti-aliased pixel in-
tensity. The pattern on the lower left applies stratification to
the samples but continues to use (2). The stratification con-
verts any aliasing artifacts that might still remain into noise.
Finally, the pattern on the lower right uses Monte Carlo
anti-aliasing, expressed by formula (3), with samples that
were pre-stratified in the[0,1]× [0,1] domain and later con-
verted to the screen-space domain through function inver-
sion. The samples are now preferentially located in areas
where the filter has higher importance, which is to say, closer
to the centre of the pixel.

5. Motion Blur

Our anti-aliasing method can be extended to the extra dimen-
sion of time. Anti-aliasing in the time domain is commonly
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Figure 3: From left to right, top to bottom: super-sampling,
uniform anti-aliasing, stratified anti-aliasing and stratified
Monte Carlo anti-aliasing. All sampling patterns use102

samples per pixel. Except for the image on the top left, a
cubic B-spline filter was used.

referred to asmotion blur. To obtain a combined space and
time anti-aliasing for a screen intensityI(x, t) we perform
the three-dimensional Monte Carlo integration:

I ′(x, t) ≈

1
N2 ∑

i
I(ui,vi) (18)

The random spatial samplesui obey the PDF (11), as be-
fore. The random time samplevi obeys a PDF given by a
B-spline filter nl (t − l/2) in time. The orderl of the time
filter need not be the same as the orderm of the spatial
filter. In (18), a total ofN2 samples is still being used in-
stead of theN3 samples that might seem more obvious
for a three-dimensional Monte Carlo integration. A table
of N2 random permutations is created before starting the
anti-aliasing algorithm. Then, for each evaluation of (18),
N random time samples are generated and accessed through
this permutation table, based on the index of theui samples.
This technique, which was originally presented in [Coo89],
keeps the cost of (18) constant atN2 evaluations ofI(x, t)
without introducing significant correlation between the spa-
tial and the time domains.

The common example of motion blur generated by a cam-
era with a finite exposure time can be easily modelled with
our anti-aliasing method. Each frame in a movie runs from
time ti to time ti + δt, whereδt is the inverse of the frame
rate. The camera shutter is only open during a smaller inter-
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Figure 4: Anti-aliasing test pattern. From left to right: no anti-aliasing, anti-aliasing with a box filter and anti-aliasing with a
cubic B-spline filter.

val of time, fromti to ti +s, wheres< δt is called theshutter
speed(even though it is really a time quantity). During the
final portion of the frame, the shutter must be closed while
the camera’s motor advances the film into the next position.
The shutter, therefore, behaves as a box filter with a shape
given by 1

sn1(
t
s). The 1/s factor outsiden1 gives a constant

unit area to the filter and ensures it is a valid PDF for any
value ofs.

If B-splines with l > 1 are used a smoother motion will
be obtained even though it will not be the same as what
a real camera would record. A stronger objection to using
nl (t − l/2) with l > 1 is that such a filter, being symmet-
rical about the origin, would weight equally past and future
values ofI(x, t) relative to some instantti . No physical ima-
ging device could possibly have such a behaviour. It would
be relatively straightforward to havenl (t) obey a principle of
causality (which basically states that any value ofnl (t) for
t < 0 must be zero) by manipulating the position of the spline
knots and thus generating a new family of non-uniform
B-splines. We have, however, decided not to pursue this
since there is still much speculation about how the human
retina processes time-varying information [AA93, VK03].
Without more research from the psychophysical sciences it
is difficult to decide what time filter best matches the beha-
viour of our own visual system.

6. Results

A good test of the anti-aliasing properties of our method is
shown in Figure4. The images in this Figure where gener-
ated by directly sampling the function:

I(x,y) =
1
2

(

sin

(

1000
x2 +y2

)

+1

)

, (19)

with a resolution of 320×320. The origin(x,y) = (0,0) is
at the lower left corner of each image. This function was
chosen to highlight the problems caused by aliasing and to
show how B-spline filtering can solve them. It has a fre-

Figure 5: A procedural implicit surface rendered by ray
casting with our anti-aliasing method.

quency content that increases without bounds for pixels pro-
gressively closer to the origin. The left image in Figure4
does not use anti-aliasing and takes only one sample at the
centre of each pixel. In this image, the outer rings are cor-
rectly rendered, the middle rings show Moiré patterns caused
by aliasing and the inner rings have become totally masked
by severe white noise. The image in the middle of Figure4
uses a box filter and shows how the noise of the inner rings
has been replaced by a constant grey value. The middle rings
still show some Moiré patterns. The image on the right of
Figure4 uses a cubic B-spline filter. The uniform gray area
is larger than in the previous image and no Moiré patterns
remain.

Figure5 shows the results of rendering an implicit surface
by ray casting with our anti-aliasing method [GM05]. An
animation of this surface is available from Figure6 shows a
small area of the implicit surface and illustrates the effect of
changing the number of samples per pixel for a small section
of the implicit surface from Figure5. From left to right the
sequence shows no anti-aliasing, and anti-aliasing with a cu-
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Figure 6: From left to right: no anti-aliasing, anti-aliasing with a cubic B-spline filter with N equal to 2, 3 and 10 samples
along each coordinate direction.

Figure 7: From left to right: no anti-aliasing, anti-aliasing with a B-spline filter of order 1, 4, and 15. N= 10 samples were
used along each coordinate direction for the anti-aliased images.

bic B-spline filter withN2 equal to 4, 9 and 100 samples per
pixel. Performing anti-aliasing by taking only four random
samples (two samples along each coordinate direction) is not
very effective but it does show that coherent aliasing arti-
facts are converted into noise by the stratification of sample
points. WhenN2 increases to 9 and then to 100 results be-
come progressively better.

Figure 7 shows another small area of the surface. This
time, the number of samples per pixel was kept constant and
the order of the B-spline filter was increased. From left to
right, the sequence shows no anti-aliasing and anti-aliasing
with a B-spline filter of orderm equal to 1, 4 and 15. In the
cases where anti-aliasing was used,N2 = 100 samples per
pixel were computed. It can be seen that as the filter order is
increased the image becomes progressively blurred. This is
because, for higher orders, the filter has a larger area of sup-
port and therefore spreads the influence of the bright pixels
farther into the dark areas. The optimal order ism = 4, as
explained in Section3

The number of Newton-Raphson iterations, whilst render-
ing the images of Figures6 and7, was from 1 to a maximum
of 8, depending on the value ofy when inverting (15). If
y= 0.5 thenx = x0 = m/2 and the algorithm converges after
exactly one iteration. If, on the other hand,y moves away
towards one of the extremities of the[0,1[ interval, a larger
number of iterations will be required forxi to converge to

the solution. Nevertheless, the number of iterations always
remains small due to the quadratic convergence properties
of Newton-Raphson root finding.

Figure8 shows, on the left, two frames from an animation
of a rotating wheel at 25 frames per second (δt = 0.04) as
seen by a camera with a shutter speeds= 0.033. This illus-
trates the famouswagon wheel illusion[PPA96]. In the lower
left image, the spokes are turning counter-clockwise at high
speed but the blurred features in the image are slowly turning
clockwise. If we replace the box filter, which models the be-
haviour of the camera shutter, by a cubic B-spline filter, the
images on the right of Figure8 result. In the lower right im-
age, the spokes are no longer discernible and a uniform cir-
cular blur results, showing no indication of wheel rotation.
There is some controversy as to whether or not this is what
the human eye would see under constant lighting conditions
since it has been reported that the wagon wheel illusion is
sometimes discernible under these circumstances [VRK05].

7. Conclusions and Future Work

We have presented an approach to anti-alias ray traced im-
ages using B-spline basis functions that improves upon the
approach by Stark et al. [SSA05]. Our method is simpler
to implement, can generate B-spline filters of any order and
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Figure 8: A rotating wheel as seen by a camera (on
the left) and filtered with a cubic B-spline (on the right).
The images at the top show the wheel rotating slowly
and the images on the bottom show the wheel rotating
at high speed. The complete animation is available at
http://www.dcs.shef.ac.uk/˜mag/bspline.html .

can perform anti-aliasing simultaneously in both the space
and the time domains.

Our approach can generate any B-spline filter through a
simple and elegant recursive procedure. This recursive pro-
cedure means we do not have to deal with the actual piece-
wise polynomials that describe the shape of the B-splines.
Explicitly working with the polynomial representation for
some B-splinenm(x) can become quite an involved proced-
ure, even for moderate values ofm. The cost of recursively
evaluatingnm(x) grows geometrically withm. This is not,
however, a serious constraint for our method since filters of
too high an order introduce excessive blurring and should
be avoided. A filter of orderm= 4 (a cubic B-spline filter)
provides the best compromise between blocking the undesir-
able high frequencies and not distorting the low frequencies,
thereby introducing minimal blurring.

Generation of random samples for Monte Carlo
anti-aliasing, havingnm(x) as their probability density
function, requires inversion ofy = Nm(x) where Nm(x)
is the cumulative density function associated with the
B-spline filter. This can be accomplished numerically with
Newton-Raphson root finding in a way that is always
guaranteed to converge. Experiments have shown that the
number of required iterations is always less or equal to
eight.

Our method was developed to perform anti-aliasing in
space but it extends trivially to anti-aliasing in time. The
motion blur behaviour of a camera shutter was demonstrated

with a B-spline of orderm= 1. B-spline filters of higher or-
der are non-causal. This is not a problem for pre-scripted
animations, whose behaviour in time is known a priori, but
it does raise the objection of physical implausibility since a
filtered intensity value will depend equally on samples from
the past and from the future.

Performing anti-aliasing on computer generated images is
an expensive proposition. By usingN2 samples per pixel we
are doing the same amount of work as though we were ren-
dering a virtual image with a resolutionN2 higher than the
actual image. The present method does not take into account
local image information when performing anti-aliasing. In
the example presented in the previous section, it is quite
wasteful to be castingN2 rays for a pixel located on the
inside of the implicit surface and far from any edge. A
single ray would have sufficed, as the non-antialiased im-
age on the left of Figure6 shows. In this image, aliasing
is only evident at the edges, while the internal surface fea-
tures remain smooth. Techniques for turning the present
anti-aliasing method with B-splines into an adaptive proced-
ure, similar to the work by [PS89], should be further invest-
igated.
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APPENDIX

We begin by deriving the relation (13c) between a B-spline
of ordermand the integral of B-splines of orderm−1. To do
so, we need to expressnm(x) as anmth-order finite difference
of powers ofx. The reader is invited to consult [Chu92] for
more details. Take the notationx+ = max(x,0) to represent
the restriction ofx to positive values only. Similarly,xm

+ =
(x+)m. Consider also the finite differences of orderm for
some functionf (x). These are defined with the following
recurrence relation:

(∆ f )(x) = f (x)− f (x−1) (A.1)
(

∆m f
)

(x) =
(

∆m−1(∆ f )
)

(x), for m> 1. (A.2)

Armed with this notation, we can write a B-splinenm(x)
as:

nm(x) =
1

(m−1)!
∆mxm−1

+ , for m> 1. (A.3)

submitted to COMPUTER GRAPHICSForum.



M. Gamito & S. Maddock / Anti-aliasing with Stratified B-spline Filters 9

Taking the integral of (A.3), we arrive at a similar equa-
tion for Nm(x):

Nm(x) =
∫ x

0
nm(t)dt =

1
(m−1)!

∫ x

0
∆mtm−1

+ dt

=
1

(m−1)!

∫ x

0
∆m−1

{

tm−1
+ − (t −1)m−1

+

}

dt

=
1

(m−1)!
∆m−1

{

∫ x

0
tm−1
+ dt−

∫ x

0
(t −1)m−1

+ dt

}

=
1

(m−1)!
∆m−1

{

∫ x

0
tm−1
+ dt−

∫ x−1

−1
tm−1
+ dt

}

=
1

(m−1)!
∆m−1

{

∫ x

0
tm−1
+ dt−

∫ x−1

0
tm−1
+ dt

}

=
1

(m−1)!
∆m

∫ x

0
tm−1
+ dt =

1
m!

∆mxm
+, for m> 1.

(A.4)

Using (A.4) twice, we have:

Nm−1(x)−Nm−1(x−1) =

=
1

(m−1)!
∆m−1xm−1

+ −
1

(m−1)!
∆m−1(x−1)m−1

+

=
1

(m−1)!
∆m−1

{

xm−1
+ − (x−1)m−1

+

}

=
1

(m−1)!
∆mxm−1

+ = nm(x), for m> 1. (A.5)

This completes the derivation of (13c).

We now take the recurrence relation that exists fornm(x)
and arrive at a similar relation forNm(x), expressed in (13d).
We place an integral on both sides of (9d) and perform in-
tegration by parts:

Nm(x) =

∫ x

0
nm(t)dt

=
∫ x

0

t
m−1

nm−1(t)dt

+

∫ x

0

m− t
m−1

nm−1(t −1)dt

=
t

m−1
Nm−1(t)

∣

∣

∣

∣

x

0
+

m− t
m−1

Nm−1(t −1)

∣

∣

∣

∣

x

0

−
1

m−1

∫ x

0
Nm−1(t)dt

+
1

m−1

∫ x

0
Nm−1(t −1)dt

=
x

m−1
Nm−1(x) +

m− x
m−1

Nm−1(x−1)

−
1

m−1

∫ x

0
{Nm−1(t)−Nm−1(t −1)} dt,

for m> 1. (A.6)

Replacing (13c) in (A.6), we get:

Nm(x) =
x

m−1
Nm−1(x) +

m− x
m−1

Nm−1(x−1)

−
1

m−1

∫ x

0
nm(t) dt

=
x

m−1
Nm−1(x) +

m− x
m−1

Nm−1(x−1)

−
1

m−1
Nm(x), for m> 1.

(A.7)

Sending theNm(x) term on the right to the left hand side
of the equation and rearranging terms, we finally arrive at:

Nm(x) =
x
m

Nm−1(x) +
(

1−
x
m

)

Nm−1(x−1), for m> 1.

(A.8)

This completes the derivation of (13d).
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