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From chemical documentation to 
chemoinformatics: fifty years of 
chemical information science 

Peter Willett 1

University of Sheffield 

Abstract 

This paper summarises the historical development of the discipline that is now called ‘chemoinformatics’.  It shows how 
this has evolved, principally as a result of technological developments in chemistry and biology during the past decade, 
from long-established techniques for the modelling and searching of chemical molecules.  A total of 30 papers, the 
earliest dating back to 1957, are briefly summarised to highlight some of the key publications and to show the 
development of the discipline. 

Keywords: Chemical documentation; Chemical structures; Chemoinformatics; Drug discovery; History; 
Informatics; Molecules; Pharmaceutical research  

1. Introduction 

Chemistry is, and has been for many years, one of the most information-rich academic disciplines. The very 
first journal devoted to chemistry was Chemisches Journal, which was published 1778-1784 and then, under the 
name of Chemische Annalen, till 1803 [1]. The growth in the chemical literature during the 19th century led to a 
recognition of the need for comprehensive abstracting and indexing services for the chemical sciences.  The 
principal such service is Chemical Abstracts Service (CAS), which was established in 1907 and which acts as the 
central repository for the world’s published chemical (and, increasingly, life-sciences) information. The size of 
this repository is impressive: at the end of its first year of operations, the CAS database contained ca. 12K 
abstracts; by the end of 2006, this had grown to ca. 25M abstracts with ca. 1M being added each year. Most 
chemical publications will refer to one or more chemical substances.  The structures of these substances form a 
vitally important part of the chemical literature, and one that distinguishes chemistry from many other disciplines. 
The CAS Registry System was started in 1965 to provide access to substance information, initially registering just 
small organic and inorganic molecules but now also registering biological sequences [2]. At the end of 1965 there 
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were ca. 222K substances in the System; by the end of 2006 this had grown to ca. 89M substances, of which ca. 
one-third were small molecules and the remainder biological sequences, with ca. 1.5M being added each year. 
There are also many additional molecular structures in public databases such as the Beilstein Database [3], and 
corporate files, in particular those of the major pharmaceutical, agrochemical and biotechnology companies. 

The presence of chemical structures requires very different computational techniques from those used for 
processing conventional textual information. These specialised techniques - now referred to by the name of 
chemoinformatics as discussed further below - have developed steadily over the fifty years that have passed since 
the founding of the Institute of Information Scientists in 1958. This paper provides an historical overview of the 
development of these techniques by highlighting some of the key papers that have been published over the years. 
The focus is on the representation and searching of small molecules; the reader is referred elsewhere for the 
processing of textual chemical information (e.g., [4-6]) and of biological sequence information (e.g., [7,8]). 
Readers interested in the history of chemoinformatics are referred to Williams and Bowden’s Chronology of 
Chemical Information Science [1], Metanomski’s history of the Division of Chemical Information (formerly the 
Chemical Literature Group and then the Division of Chemical Literature) of the American Chemical Society [9], 
and Chen’s recent historical review [10].   

2. Historical development of the field 

The importance of chemical information was recognised in 1961 by the establishment of what has since 
become the core journal for the field, the Journal of Chemical Documentation (as it was then named) published by 
the American Chemical Society. The focus on the documentation of the literature is evidenced by the journal’s 
title, and an inspection of early tables-of-content demonstrates the importance of the published literature and of 
manual, rather than computerised, information processing. Very soon, however, papers began to appear in the 
journal that focused on the computer handling of structural information so that, for example, the first issue of 
Volume 2 contained articles describing the use of fragmentation-code and linear-notation systems based on 
punched card systems.  

The Sixties and Seventies were a time of intensive research, with techniques being introduced that are, with 
appropriate development, still playing an important role in present-day systems. Examples include: the 
introduction of efficient algorithms for (sub)structure searching of databases of chemical molecules and for the 
indexing of databases of chemical reactions; the application of expert-systems technology to chemical problems; 
and the use of statistical correlation methods for the prediction of molecular properties (called QSAR for 
quantitative structure-activity relationships). The early Seventies saw the publication of the first two books 
devoted to the computer handling of chemical structure information. The first of these was that by Lynch et al., 
providing not just a snapshot of the current state-of-the-art but also summarising much of his early research at the 
University of Sheffield into methods for searching molecules and reactions [11]. The second was the proceedings 
of a NATO Advanced Study Institute held in Noordwijkerhout in Holland and attended by all the key researchers 
of the time [12], with the published proceedings including contributions from what have proved to be the three 
longest-lived academic research groups in the field: the DARC group in Paris under Dubois; the group in 
Sheffield initially under Adamson and Lynch and more recently under Gillet and Willett; and the group under 
Gasteiger, initially in Munich and more recently at Erlangen-Nuremberg. Then, in 1975, there was published what 
became the standard text for the next decade, Ash and Hyde’s Chemical Information Systems [13], with further 
books from the same lead-author and publisher appearing in 1985 [14] and then in 1991 [15]. 1975 also saw the 
first change of name of the core journal, with its new title - the Journal of Chemical Information and Computer 
Sciences - emphasising the centrality of computerised techniques in the handling of chemical information.   

The Eighties and early Nineties were – in part at least - developmental in nature, with much of the work 
building on techniques that had been introduced in the two previous decades. For example, similarity and generic 
searching methods were developed to complement structure and substructure searching, and the much enhanced 
computer technology of the time enabled the widespread implementation of operational systems, both public and 
in-house, for searching chemical databases. Perhaps the major enhancement was the move from two-dimensional 
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(2D, i.e., the conventional chemical structure diagram) to three-dimensional (3D, i.e., full atomic coordinate 
information) representations of molecular structure. This move was spurred by the appearance of structure-
generation programs that permitted the conversion of 2D structure databases to 3D form, the latter necessitating 
the extension of existing systems for 2D searching and structure-property correlation to encompass the increased 
dimensionality of the structure representation. Developments in this period are exemplified by the third issue of 
Volume 25 of the Journal of Chemical Information and Computer Sciences, which celebrated the silver 
anniversary of the founding of the journal, and the sixth issue of Volume 3 of Tetrahedron Computer 
Methodology, which contained the papers from the first major symposium on 3D structure handling to be held by 
the American Chemical Society. Noordwijkerhout has been mentioned already as the location of the 1973 NATO 
Advanced Study Institute: 1987 saw it being the venue for the first of what has proved to be a three-yearly 
International Conference on Chemical Structures [16].  This rapidly established itself as the principal conference 
in the field, with the next in the series to be held in June 2008.  The other major international conference dedicated 
to chemoinformatics has been held in Sheffield, co-sponsored by the Chemical Structure Association Trust and 
the Molecular Graphics and Modelling Society, every three years since 1998, in the year preceding the 
Noordwijkerhout meeting. 

The commercial importance of many chemicals has meant that industry – in particular the pharmaceutical 
industry - has for long played a vitally important role in the development of chemical structure handling. The 
pharmaceutical industry is based on the synthesis of novel molecules that exhibit useful biological activities.  Both 
the synthesis of molecules and the subsequent testing of these molecules for bioactivity underwent dramatic 
changes in the Nineties: taken together, the developments in these two areas resulted in significant increases in the 
volumes of data associated with pharmaceutical research programmes. Specifically, combinatorial chemistry 
provided the ability to synthesise not just one, but hundreds or even thousands, of structurally related compounds 
at a time; and high-throughput screening provided the ability to test very small samples of these large numbers of 
molecules at a time. There was thus an explosion in the volumes of structural and biological data that needed to be 
assimilated and rationalised, and this resulted in the emergence of what has come to be called chemoinformatics to 
deal with these requirements [17]. To quote Brown (who first used the term): 

The use of information technology and management has become a critical part of the drug 
discovery process. Chemoinformatics is the mixing of those information resources to transform 
data into information and information into knowledge for the intended purpose of making better 
decisions faster in the area of drug lead identification and optimization  [18]. 

This definition ties chemoinformatics very firmly to pharmaceutical research; whilst many of the techniques have 
their roots in that industry, they are of much broader applicability, as noted by Paris and quoted by Warr: 

Chem(o)informatics is a generic term that encompasses the design, creation, organisation, storage, 
management, retrieval, analysis, dissemination, visualisation and use of chemical information [19]. 

Note the use of “chem(o)informatics” above since there has been some discussion as to whether the term should 
be “cheminformatics” or “chemoinformatics” [17]: we shall use the latter form here. Finally, a particularly 
succinct definition is given by Gasteiger 

Chemoinformatics is the application of informatics methods to solve chemical problems [20]. 

Chemoinformatics is not really new: instead, it is the integration of two previously separate aspects of 
chemical structure-handling. The group of researchers considered thus far had developed techniques to store, 
search and process the molecules in databases of chemical structures, so as to identify useful (in some sense) sets 
of compounds; a second, almost totally distinct group of researchers had for many years developed techniques to 
model and to correlate the structures of those molecules with biological properties, so as to enable the prediction 
of bioactivity in previously untested molecules [21-23]. At the risk of simplification, the former techniques were 
designed to handle the large numbers of molecules (hundreds of thousands or even millions) that would exist in a 
database; the latter techniques were designed to handle the few tens (or the few hundreds at most) of molecules for 
which the appropriate biological training data was available. Chemoinformatics is thus, at heart, a very specialised 
type of data mining, involving the analysis of chemical and biological information to support the discovery of new 
bioactive molecules [18,20].  
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The recent emergence of chemoinformatics has been marked by the publication of several new books, and by 
a further change in the title of the core journal, which has been called the Journal of Chemical Information and 
Modeling since 2005. The new title makes clear the linkage between chemical information (the archival and 
repository functions of chemical information systems) and the modelling and prediction of biological activity (the 
QSAR functions of molecular modelling systems) noted above. The emergence is also evidenced by the 
appearance of specialist educational programmes in chemoinformatics. Skolnik suggested that four elements are 
needed to characterise a discipline: a body of active researchers; a forum for the interaction of these researchers; a 
journal for the presentation of leading-edge papers in the discipline; and roots in the educational structure [24]. 
The first three of these had been present for many years, but it was not till the start of this century that the fourth 
was achieved with the appearance of several masters-level programmes in chemoinformatics in higher-education 
institutions in Europe and in the USA: the need for these is discussed by Schofield et al. [25] while Wild and 
Wiggins provide a detailed review of current provision [26]. 

3. Selection of key papers 

This section reviews some of the most important papers in the development of chemoinformatic techniques. 
In each case, we briefly summarise the key paper, mention a few significant subsequent publications and give a 
recent review article (if available) to summarise the current status. More detailed accounts of all the topics 
considered here are provided in the textbooks by Leach and Gillet [27] and by Gasteiger and Engels [28], and in 
the extremely comprehensive Handbook of Chemoinformatics edited by Gasteiger [29]. As with any selection of 
key papers, the choice is inevitably biased by my own research interests and those of my colleagues, especially as 
I have spent my working life in an institution that has hosted for some four decades one of the most active 
research groups in the field [30,31]: as Alexander Pope noted 

To observations which ourselves we make, we grow more partial for th’observer’s sake. 

Table 1 lists the papers that have been chosen for discussion, many of which will be very familiar to workers 
in the field. Others are less well known. In some cases, this is because they are by now very old, such as the 
seminal – and I use the word advisedly – contributions by Ray and Kirsch [32] and by Vleduts [33] to the 
searching of molecules and of reactions, respectively. In other cases, the original work was over-shadowed by 
subsequent publications: for example, the 1981 paper by Lynch et al. [34] was merely the first in a sequence of 
over twenty publications on the representation and searching of generic structures; and the 1983 graph-matching 
paper by Crandell and Smith [35] resulted a decade later in the first successful commercial system for 
pharmacophore mapping [36] (vide infra). In still other cases, the importance of the work was simply not fully 
recognised at the time, e.g., the paper by Adamson and Bush [37] on comparing fragment bit-strings to compute 
molecular similarity preceded the first descriptions of similarity searching systems by over a decade [38,39]; 
indeed, it was this 1973 paper that was one of the principal drivers for work in Sheffield on fingerprint-based 
searching and clustering that commenced in the Eighties [40] and that continues to the present day [41]. Even with 
such less well-recognised papers included, the thirty selected papers in Table 1 had attracted a total of 7363 
citations in the Web of Science by May 2007, with four of those in the drug discovery area [42-45] each receiving 
over 500 citations in the literature.  

The focus here is on the computational techniques underlying operational systems, but there are at least two 
further ways in which we could chart the development of chemoinformatics. The first approach would be by 
reference to the major operational systems (which are, of course, based on the techniques considered here). 
Examples of such milestones include the appearance of: the batch [67] and then online [68,69] implementations of 
the CAS Registry System; the NIH-EPA Structure and Nomenclature Search System (the first fully interactive 
structure and data retrieval system) [70]; ORAC [71] and REACCS [72] (the first in-house systems for storing and 
searching chemical reactions); and the Cambridge Structural Database [73] and the Protein Data Bank [74] (the 
two principal sources of experimental 3D coordinate data for organic molecules). The second approach would be 
by reference to the activities of those individuals responsible for the most important research findings. There is, 
however, a ready source of such information, this being the winners of the Herman Skolnik Award of the  
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1. Ray and Kirsch (1957) Substructure searching of connection tables [32] 

2. Hansch et al. (1962) Correlation of bioactivity with physicochemical properties [46] 

3. Vleduts (1963) Indexing of reactions and generation of synthetic pathways [33] 

4. Free and Wilson (1964) Correlation of bioactivity with substituent contributions [43] 

5. Morgan (1965) Canonicalisation of connection tables [47] 

6. Sussenguth (1965) Set reduction technique for substructure searching [48] 

7. Hyde et al. (1967) Conversion of WLNs to connection tables [49] 

8. Corey and Wipke (1969) Interactive computer-aided synthesis design [50] 

9. Crowe et al. (1970) Selection of dictionary-based screens [51] 

10. Topliss and Costello (1972) Sample-feature ratios in QSAR [52] 

11. Adamson and Bush (1973) Calculation of inter-molecular structural similarity [37] 

12. Cramer et al. (1974) Correlation of bioactivity with substructural fragments [53] 

13. Blair et al. (1974) Non-interactive computer-aided synthesis design [54] 

14. Feldman and Hodes (1975) Selection of superimposed-coding screens [55] 

15. Ullmann (1976) Efficient algorithm for substructure searching [56] 

16. Gund (1977) Possibility of 3D substructure searching [57] 

17. Lynch and Willett (1978) Indexing of chemical reactions [58] 

18. Marshall et al. (1979) Active analogue approach for pharmacophore mapping [59] 

19. Lynch et al. (1981) Representation and searching of Markush structures [34] 

20. Kuntz et al. (1982) Protein-ligand docking [44] 

21. Crandell and Smith (1983) Graph matching approach for pharmacophore mapping [35] 

22. Jakes and Willett (1986) Selection of distance screens for 3D substructure searching [60] 

23. Cramer et al. (1988) CoMFA method for 3D QSAR [42] 

24. Danziger and Dean (1989) De novo molecular design [61] 

25. Gasteiger et al. (1990) Generation of 3D atomic coordinates [62] 

26. Johnson and Maggiora (1990) Similar property principle [63] 

27. Martin et al. (1995) Computer selection of diverse molecules [64] 

28. Brown and Martin (1996) Comparison of methods for compound selection [65] 

29. Patterson et al. (1996) Neighbourhood behaviour [66] 

30. Lipinski et al. (1997) Physicochemical properties of drug-like molecules [45] 

 

Table 1. Key papers in the development of chemoinformatics 

 

Division of Chemical Information of the American Chemical Society.  The Division established this Award in 
1976 to recognize outstanding contributions to, and achievements in the theory and practice of, chemical 
information science. It is named in honour of the first recipient, Herman Skolnik (the editor of the Journal of 
Chemical Documentation and then the Journal of Chemical Information and Computer Sciences from 1961 to 
1982), and the awardees (listed at http://acscinf.org/dbx/awards/skolnik.asp, together with links to supporting 
information) comprise many of the pioneers in the field.   
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We have identified five broad categories of technique to structure the discussion below, these being 
techniques for: searching databases of 2D molecules; searching databases of patents, reactions and 3D molecules; 
quantitative structure-activity relationships and molecular modelling; knowledge-based systems; and diversity 
analysis and drug-likeness. It must be emphasised that these categories are rather arbitrary; for example, one could 
have separate sections for processing information about molecules and reactions, with the latter encompassing 
material about reaction databases and synthesis planning that are currently discussed in two separate sections 
(Sections 5 and 7, respectively). The reader should also note that the categories chosen here overlap to some 
considerable extent, e.g., pharmacophore mapping is discussed in Section 6, despite one of its main applications 
being for 3D database searching as discussed in Section 5.  

4. Searching databases of 2D molecules 

Database search is one of the principal facilities in any information system, and much of the early research in 
chemoinformatics targeted the development of efficient access mechanisms for databases of 2D structures. The 
key paper here, and the earliest to be discussed in this review, is that by Ray and Kirsch [32]. These authors were 
the first to describe an automated procedure for substructure searching, i.e., the identification of those molecules 
in a file that contain a user-defined query substructure. The paper described the use of a connection table, a 
labelled graph representation in which the nodes and edges of a graph encode the atoms and bonds of a 2D 
chemical structure diagram, to describe each of a file of 200 steroid molecules, and then the use of a subgraph-
isomorphism algorithm based on an exhaustive, depth-first tree-search to analyse each molecule’s connection 
table for the presence of a query substructure.   

The connection table format was chosen for the CAS Registry System, which started operations in 1965 
following several years of intensive research and development [75]. An important criterion in the development of 
the System was the need to provide a unique machine-readable identifier for each distinct molecule. The creation 
of a unique, or canonical, graph requires that the nodes of the graph are numbered, and for a graph containing N 
nodes there are up to N! possible sets of numberings. Drawing on ideas first presented by Gluck [76], Morgan [47] 
described an algorithm to impose a unique ordering on the nodes in a graph, and hence to generate a canonical 
connection table that could provide a unique molecular identifier for computer processing (in much the same way 
as systematic nomenclature uniquely describes a molecule in a printed subject index). With subsequent 
enhancements [77,78], the Morgan algorithm continues to lie at the heart of the CAS Registry System (and also of 
many other chemoinformatics systems) right up to the present day.   

The issue of Journal of Chemical Documentation that contained Morgan’s paper on graph canonicalisation 
also contained the paper by Sussenguth describing his set reduction algorithm. Ray and Kirsch’s substructure 
search algorithm was certainly effective but was also extremely inefficient, requiring a huge amount of 
backtracking. Sussenguth [48] realised that much of the backtracking could be eliminated, and hence the number 
of atom-to-atom comparisons minimised, by partitioning a graph into sets of nodes that possessed common 
characteristics, e.g., nodes of type nitrogen linked to not more than two other nodes. Nodes from the graph 
describing the query substructure then need to be considered for matching only against those nodes from a 
database structure that possess the same characteristics. It is interesting to note that this work was carried out in 
collaboration with Gerard Salton, as part of his pioneering work on statistical methods for retrieval that laid the 
foundation for present-day information retrieval systems [79]. The idea of linking query nodes to database nodes 
is fundamental to all substructure searching algorithms, including the refinement procedure that lies at the heart of 
the subgraph isomorphism algorithm due to Ullmann [56]. Although not designed specifically for the processing 
of chemical graphs, subsequent studies showed that it was particularly well suited to these sorts of graphs [80,81], 
and the Ullmann algorithm now forms the basis for most current substructure searching systems, both 2D and 3D.   

However, even the use of set reduction was not sufficient to enable subgraph searching of chemical databases 
with acceptable response times, and it was only with the introduction of fragment-based screening methods that 
substructure searching became feasible on a large scale. The idea of screening is a simple one: to filter out that 
great fraction of the molecules in the search file that do not contain all of the substructural fragments that are 
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contained in the query substructure (in much the same way as keywords are used to filter searches of text 
databases). This idea was first suggested by Ray and Kirsch, who experimented with a simple molecular-formula 
screen but who realised that more sophisticated approaches might be required for large-scale operations [32]. This 
is now normally done using a fragment bit-string, in which the presence or absence of small substructural 
fragments in a molecule is encoded in a binary vector. Two main approaches have been developed for selecting 
the fragments that are used for screening: dictionary-based approaches in which there is a pre-defined list of 
fragments with normally one fragment allocated to each position in the bit-string; and fingerprint-based 
approaches, where hashing algorithms are used to allocate multiple fragments to each bit-position.   

Effective dictionary-based screening requires that the fragments encoded in the bit-string have been selected 
so as to maximise the degree of filtering. In particular, the best use will be made of the available bits if the 
selected fragments are statistically independent of each other and if they occur with intermediate frequencies of 
occurrence [82]: if the fragments occur very frequently (in the database that is to be searched) then their presence 
in a query will eliminate only a small fraction of the database; if the fragments occur very infrequently in the 
database that is to be searched then they are most unlikely to be specified in a query. The use of frequency criteria 
was first studied by Lynch et al. in a series of papers, commencing with a study by Crowe et al. [51] of the 
frequencies of occurrence of bond-centred fragments. Subsequent papers in this series considered atom- and ring-
centred fragments, culminating in a prototype system [83] that strongly influenced the subsequent design of 
dictionary-based screening systems such as that used for the CAS Registry System [67,68]. The screening 
methods developed by Feldman and Hodes at the National Institutes of Health do not make use of a dictionary of 
carefully selected fragments; instead, fragments are grown in an algorithmic fashion, one atom at a time, until they 
meet a frequency criterion, with a superimposed coding procedure being used to allocate multiple bits to each 
fragment and multiple fragments to each bit position [55]. The fragments here are hence closely tuned to the 
specific database that is to be screened, and the methods have strongly influenced the design of subsequent 
fingerprint-based screening systems. 

Substructure searching requires the availability of a substructural query, this in turn requiring detailed insights 
into the structural requirements for biological activity. A common alternative situation is when the only 
information available is the existence of a known active molecule, such as a literature compound or a competitor’s 
product.  Use can then be made of the Similar Property Principle, which states that molecules that have similar 
structures will have similar properties. It is not clear where this was first stated explicitly; many people (including 
the present author) have cited the 1990 book by Johnson and Maggiora [63] as the source but the Principle had 
certainly been articulated prior to the book’s publication in 1990. For example, writing in 1980, Wilkins and 
Randic [84] noted that it is 

generally accepted that molecules of similar structural form may be expected to show similar 
biological or pharmacophoric patterns, 

and such considerations clearly underlie the 1973 paper by Adamson and Bush that is discussed further below. It 
is, however, appropriate to include the Johnson and Maggiora book [63] as one of the key contributions since it 
was the first publication to highlight the role played by similarity in a whole range of chemoinformatics 
applications, including database searching, property prediction, and computer-aided synthesis design inter alia. 
While there are many minor exceptions to the Principle, there is now a considerable body of experimental 
evidence for its general correctness [40,85-87]: the Principle provides a rational basis for a wide range of 
applications in chemoinformatics, including not just similarity searching and molecular diversity analysis (both of 
which are discussed later in this paper) but also database clustering and property prediction inter alia.   

In a similarity search, a known active molecule, often referred to as a reference or target structure, is 
compared with all of the molecules in a database; molecules that are structurally similar to the reference structure 
are more likely to be active than are molecules that have been selected at random from a database. A similarity 
search hence provides a simple way of identifying further compounds for testing, and is thus one example of the 
more general concept of virtual screening, i.e., the use of computational, rather than biological, methods to 
identify bioactive molecules [88-90]. At the heart of any similarity searching system is the measure that is used to 
quantify the degree of structural resemblance between the target structure and each of the structures in the 
database that is to be searched.  There are many such measures but by far the most common are those obtained by 
comparing the fragment bit-strings that are used for 2D substructure searching, so that two molecules are judged 
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as being similar if they have a large number of bits, and hence substructural fragments, in common. This approach 
was first described by Adamson and Bush for property prediction purposes [37]; over a decade was to pass, 
however, before bit-string similarities started to be used on a large scale for database searching, as exemplified by 
the first operational similarity searching systems at Lederle Laboratories [38] and Pfizer UK [39]. Similarity 
searching has now established itself as one of the most important tools for virtual screening, with widespread and 
continuing interest in the development of new similarity measures and search algorithms [91-93]. 

Thus far, we have considered only connection table records of 2D molecules. There is, however, an 
alternative type of representation that was very popular in the early days, at least in part since it had significantly 
lower processing costs at a time when computers were orders-of-magnitude slower than is the case today. This 
representation was the line notation, which encodes the topology of a molecule in an implicit form in an 
alphanumeric string, rather than explicitly as in a connection table. The Wiswesser Line Notation (WLN) system 
enjoyed widespread use for both in-house and public chemical information systems during the Sixties and early 
Seventies [13]. In 1967, Hyde et al. showed that it was possible to convert between WLN and a connection table 
[49], thus opening the way to providing full substructure searching capabilities on WLN-based systems, 
something that had previously been difficult to achieve with a high degree of effectiveness [94]. Although we 
have chosen normally to ignore systems papers, the paper by Hyde et al. is included here not just because of the 
relationship between linear notations and connection tables, but also because it (and two subsequent papers by this 
group [95,96]) described CROSSBOW, probably the first fully integrated in-house chemoinformatics system that 
allowed for compound registration, substructure searching and, importantly, structure display. This work set a 
standard that has driven the development of in-house systems ever since. WLN is now of historical interest only, 
but two other line notations – the SMILES [97] and IUPAC International Chemical Identifier (InChI) (details 
available at http://www.iupac.org/inchi/) notations – are widely used today as convenient input and storage 
representations.   

5. Searching databases of reactions, patents and 3D molecules 

Chemistry is as much about reactions as it is about molecules, but the development of databases of chemical 
reactions lagged behind the development of databases of chemical molecules for many years. The principal 
problem was the need to characterise not just the sets of reactant and product molecules, but also the reaction sites 
(or reaction centres), i.e., those parts of the reacting molecules where the substructural transformation takes place 
and which are the focus of many reaction queries. The key role of the reaction site in developing reaction database 
systems was first highlighted by Vleduts in an important 1963 paper [33].  This paper made three contributions: it 
suggested that the sites could be detected by comparing the connection tables of the reactant and product 
molecules to identify the structural commonalities and differences; it described a simple classification scheme 
based on bonds broken or formed that could be used to organise and to search a database of chemical reactions; 
and it considered the use of computers to suggest synthetic pathways (as discussed further in Section 7 below). 
Starting in 1967 [98], Lynch and collaborators studied a range of comparison methods for the mapping of reactant 
and product atoms, but some ten years passed before an effective and efficient procedure for reaction-site 
detection was identified, based on a maximum common subgraph (MCS) isomorphism algorithm [58]. Lynch and 
Willett’s original procedure used an approximate MCS algorithm that was based on an adaptation of the Morgan 
algorithm, but the operational systems that soon emerged (such as CASREACT [99] and REACCS [100]) used 
exact graph-matching procedures for reaction-site detection that, with appropriate development, are used to the 
present day [101].   

Specialised techniques are also required for the handling of the structural information that occurs in chemical 
patents. In many cases, a patent will describe specific chemical molecules, but it may also describe generic, or 
Markush, structures, which encode many, or even an infinite number of, different specific molecules in a single 
representation. The individual specific molecules normally result from variations in the nature, position and 
frequency of substituents on a central ring system, or scaffold, with further complexities arising from, e.g., a 
variable substituent itself being capable of variation. These complexities drove a long-term research programme 
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by Lynch’s group to develop the connection-table, screening and atom-by-atom components of conventional 
substructure searching systems so that they could be used to represent and to search Markush structures. The basic 
strategy is outlined by Lynch et al. [34], this being the first of over 20 papers that are summarised and reviewed 
by Lynch and Holliday [102].  These studies resulted in a body of algorithms and data structures that provided 
much of the theoretical and practical basis for the current sophisticated systems for structure-based access to 
generic chemical structures [103]. Many of the techniques that were developed on this project have found further 
application in the representation and searching of combinatorial libraries, large (and sometimes extremely large) 
sets of structurally related molecules that can be generated using the techniques of combinatorial synthesis [104] 
as discussed further in Section 8.    

Thus far, we have considered only 2D molecular representations. However, the 3D structure of a molecule is 
of crucial importance in determining its properties, and it is thus hardly surprising that interest turned to the 
provision of facilities for 3D searching, often referred to as pharmacophore searching where a pharmacophore is 
the geometric pattern of features in a drug that interacts with a biological receptor [105]. Pharmacophore 
searching was first described by Gund. His 1977 paper (there is an earlier, difficult-to-obtain report in the 
proceedings of a 1973 conference [106]) showed that the graph matching techniques that were by then well 
established for 2D substructure searching could be applied to 3D substructure searching using graphs in which the 
edges denoted inter-atomic distances, rather than bonds as in a conventional connection table [57]. However, there 
was little interest in this remarkable achievement for over a decade, because two problems had to be addressed 
before searching systems could be developed.   

The first problem was the lack of data. The principal source of experimental atomic coordinate data for small 
molecules is the Cambridge Structural Database (CSD) produced by the Cambridge Crystallographic Data Centre 
[73,107], which started in 1964 and which now contains the 3D structures for ca. 400K molecules. Although the 
database is a vital resource for drug research, it contains only a very small fraction of the molecules that might be 
of interest to a pharmaceutical company. Accurate 3D structures for many molecules can be obtained using 
computational techniques such as quantum mechanics, molecular dynamics and molecular modelling, but these 
are too time-consuming for large numbers of molecules. There was hence much interest in 1987 when two 
programs for structure generation were reported.  These could rapidly convert a 2D structure into a reasonably 
accurate 3D structure, thus opening up the possibility of converting chemical databases to 3D form. These two 
programs were CONCORD, developed by Pearlman and co-workers [108], and CORINA, developed by Gasteiger 
and co-workers [109]: despite many subsequent programs for structure generation [110], these two remain the 
principal sources of computed 3D structures to the present-day. The two listed papers are both hard-to-get – one is 
in an informal newsletter and the other in a German conference proceedings – so the paper chosen for inclusion 
here is that by Gasteiger et al. in the 1990 issue of Tetrahedron Computer Methodology mentioned previously 
[62].  

The second problem was that while Gund had demonstrated that 3D substructure searching was possible, the 
matching algorithm was far too slow for large-scale processing. We have noted that operational systems for 2D 
substructure searching only became feasible with algorithmic developments such as the use of set-reduction and of 
bit-string screening. In a series of papers, Willett and co-workers developed the basic algorithmic techniques 
necessary for efficient 3D substructure searching. In the first of these, they reported the development of a 
screening system in which the bit-strings encoded the distances between pairs of heavy atoms in a molecule as a 
distance-range, these ranges being chosen using frequency-based methods analogous to those developed 
previously for selecting screens for 2D substructure searching [60]. Subsequent papers compared subgraph 
isomorphism algorithms that could be used for 3D substructure searching, and reported the first operational 3D 
searching system developed in collaboration with Pfizer UK; they then extended their techniques to take account 
of the fact that most molecules are not rigid but can, instead, exhibit some degree of flexibility owing to the 
existence of one or more rotatable bonds in a molecule. The work of the Sheffield group is summarised by Willett 
[111] and 3D substructure searching, both rigid and flexible, is now a standard facility for in-house 
chemoinformatics systems [105,112].  

There is a further type of 3D database search that is now one of the key components of systems for virtual 
screening: protein-ligand docking or, more simply, docking. Docking assumes that a 3D structure has been 
obtained, typically by X-ray crystallography, of the biological receptor, such as the active site of an enzyme, that 
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is involved in a biological pathway of interest. The “lock-and-key” theory of drug action assumes that a drug fits 
into a biological receptor in much the same way as a key fits a lock; thus, if the shape of the lock is known, one 
can identify potential drugs by scanning a 3D database to find those molecules that have shapes that are 
complementary to the shape of the receptor. The original description of docking, by Kuntz et al. [44], considered 
the fitting of just a single molecule into a protein active site, with the molecule and the binding site being 
described by sets of spheres that were checked for a steric match.  However, it was soon realised that if this fitting 
operation was repeated for all of the molecules in a database then docking could provide a highly sophisticated 
approach to virtual screening, with a database being ranked in order of decreasing goodness of fit with the active 
site (and hence in decreasing likelihood of activity). Developments in the basic technique involved matching not 
just geometric but also chemical characteristics of a molecule and a protein; however, the recent surge in interest 
in docking has come about as the result of systems that take account of the inherent flexibility of many small 
molecules, with docking systems such as GOLD [113] and FlexX [114] being used on a very large scale in 
industrial lead-discovery programmes. Rester [115] and Leach et al. [116] summarise the current state-of-the-art, 
the latter in the preface to a special issue of Journal of Medicinal Chemistry that focuses on studies of protein-
ligand docking.   

6. Quantitative structure-activity re lationships and molecular modelling 

Chemoinformatics is principally concerned with the lead-discovery and lead-optimisation stages of drug 
discovery: finding one or more exemplars of a class of compounds that exhibits the bioactivity of interest; and 
then identifying those members of that class that possess the best combination of potency, synthetic feasibility, 
pharmacokinetic properties (e.g., solubility and metabolic stability) and minimal side-effects. Early studies of 
computational methods in drug discovery focussed on the second of these two stages, whilst modern work also 
contributes to the lead discovery stage, most obviously by means of virtual screening as described previously.  

The classical approach to quantitative structure-activity relationships (QSAR) is Hansch analysis.  In a series 
of papers in the early Sixties, Hansch and his co-workers showed that it was possible to use multiple linear 
regression (MLR) to derive statistically significant correlations between the biological activities of sets of 
structural analogues and experimental or computed physicochemical parameters that describe the molecules’ 
steric, electrostatic and hydrophobic properties; once the correlation has been obtained, the resulting equation can 
be used to predict the bioactivity of previously untested molecules. The first such paper was published in 1962 
[46], with this being followed by several others that, taken together, provided an approach to lead optimisation 
that has played a crucial role in the development of QSAR and that continues to be used to the present day 
[117,118]. Many different physicochemical parameters have been used in Hansch analysis, but by the far the most 
common is the octanol-water partition coefficient, which has spurred the development of many different programs 
for the calculation of this important descriptor [119]. Just two years after Hansch’s seminal paper, Free and 
Wilson published a further technique for lead optimisation that was again based on MLR but that used structural, 
rather than physicochemical, variables in the analysis [43]. The basic idea is that the presence of a specific 
substituent at a specific position on a ring scaffold makes a constant and additive contribution to the overall 
activity of those molecules that contain it. These contributions are obtained using MLR, and then used to suggest 
new analogues for synthesis and testing.   

The use of MLR to predict biological activities was rapidly adopted as a key tool for lead optimisation. There 
is, however, a problem – common to many statistical and machine-learning methods – that is related to the 
sample-feature ratio, i.e., the ratio of the number of variables to the number of observations. Specifically, it is 
possible to derive seemingly strong correlations even if no meaningful correlation exists in practice when the 
value of this ratio is less than some threshold value, typically 5-10 being quoted in the literature. The importance 
of these statistical considerations was first demonstrated by Topliss and Costello [52] (see also [120]), who 
showed that seemingly good QSAR correlations could be obtained using random variables if sufficient of them 
were included in the predictive equation; indeed the crucial factor is the number of variables considered for 
inclusion (a number that is often greater than the number included in the final equation) [121,122]. Such statistical 
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considerations need to be taken into account whenever a new predictive tool becomes available, as evidenced by 
studies of the applications of neural networks to the prediction of biological activity [123]. Sample-feature ratios 
continue to be of importance given the very large numbers of descriptors that can now be generated for a molecule 
[124,125], although techniques such as cross-validation and data scrambling can help to confirm the significance 
of potential structure-activity correlations [126,127]. Other problems associated with the use of MLR for QSAR 
are discussed by Wold and Dunn [128]. 

A limitation of Free-Wilson analysis is the large number of analogues that need to be synthesised and tested if 
multiple substituent positions are allowed on the central scaffold, and this has restricted the use of the approach as 
originally described. However, the applicability of the method is significantly enhanced if the location-specific 
criterion is relaxed, and the biological activity is expressed merely in terms of the presence of a substituent (or, 
more generally, substructural fragment) rather than its location. Thus Adamson and co-workers correlated several 
biological and physical properties with the occurrences of fragments generated from connection tables or WLN 
using MLR (see, e.g., [129,130]), an approach that foreshadows the commercial HQSAR package [131]. 
However, the most important development of Free-Wilson analysis is probably substructural analysis, as first 
described by Cramer et al. in 1974 [53].  This used qualitative, i.e., active/inactive, biological data, and also 
allowed the analysis of large, structurally diverse datasets, thus enabling the analysis of the screening data that 
forms one of the principal components of lead-discovery programmes. Substructural analysis involves calculating 
a weight for each fragment (often denoted by a particular bit-location in a fingerprint) that is used to characterise 
the molecules in the training data, this weight being a function of the numbers of active and inactive molecules 
that contain this fragment [132].  A score is then obtained for a molecule of unknown activity by summing the 
weights for its constituent fragments.  The resulting score represents the molecule’s probability of activity, and 
untested molecules can hence be prioritised for screening in order of decreasing probability of activity; the anti-
cancer screening programme that was carried out during the Eighties by the National Cancer Institute [133] is an 
important example of such an approach. Substructural analysis is important not just in its own right but also as the 
first example of machine learning being used on a large scale in chemoinformatics since, although not realised at 
the time [134], substructural analysis is an example of a naive Bayesian classifier, a machine-learning technique 
that is now widely used for the analysis of biological screening data [135]. 

The QSAR methods discussed thus far take no explicit account of the 3D structures of molecules, despite the 
fact that molecular size and shape is a key factor in determining the interactions between a potential drug 
molecule and its biological receptor. The methods of computational chemistry – quantum mechanics, molecular 
dynamics and molecular modelling – provide effective tools for analysing the conformations that molecules can 
adopt in 3D space but, as noted previously, these can be very demanding of computational resources. Marshall et 
al. were the first to describe a conformational searching procedure that was sufficiently rapid in operation to 
investigate the shapes of sets of molecules such as those that might be encountered in a QSAR analysis [59]. With 
programs such as this, and then structure-generation procedures such as CONCORD and CORINA, it was not 
long before QSAR methods started to appear that sought to correlate bioactivity with the 3D structures of 
molecules. Two papers were published in 1988 describing the Hypothetical Active Site Lattice (HASL) approach 
of Doweyko [136] and the Comparative Molecular Field Analysis (CoMFA) approach of Cramer et al. [42]. The 
latter has been far more widely used, not least because it rapidly became available as a successful commercial 
product. A molecule in a CoMFA analysis is placed at the centre of a regular 3D grid, and the steric and 
electrostatic interaction energies between the molecule and a standard probe then computed at each point in the 
grid. The resulting sets of interaction energies for each molecule are then correlated with those molecules’ 
bioactivities using not MLR but an alternative multivariate technique, Partial Least Squares (PLS). PLS describes 
the variations in the bioactivity by means of latent variables that are linear combinations of the original variables, 
i.e., the grid-point interaction energies. The use of latent variables, rather than the original variables, makes 
analysis of the resulting correlation equations rather more difficult than in the case of MLR, but this is 
compensated for by the fact that PLS can handle datasets with very large numbers of variables, i.e., with sample-
feature ratios that would preclude the use of MLR. This it does by means of a multiple-sampling technique known 
as cross-validation that ensures the statistical significance of the resulting predictive equations. There are several 
factors that need to be taken into account when carrying out a CoMFA analysis [137] but these have not prevented 
it becoming the method of choice for present-day QSAR [138]. 
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Many of the techniques that are used in molecular modelling are too time-consuming for use in 
chemoinformatics applications, although this is starting to change [139]. There is, however, one such technique 
that has proved of considerable value, and that is the application of methods for conformational searching, i.e., a 
detailed exploration of the conformations that a molecule can adopt in 3D space, to the identification of 
pharmacophoric patterns, where a pharmacophoric pattern, or pharmacophore, is the geometric arrangements of 
features that is responsible for some particular type of bioactivity. A pharmacophoric pattern can be used both to 
rationalise the activities of molecules and to act as the query for a 3D substructure search to find new molecules 
that contain the pattern and that are hence also possible actives. The active analogue approach of Marshall et al. 
[59] was the first automated procedure for pharmacophore mapping. Given a set of molecules with a common 
biological activity, the low-energy conformational space of each of the molecules is explored to find a 
conformation (or conformations) that allows the chosen features (typically hydrogen-bond donors or acceptors, or 
the centres of aromatic rings) to appear in the same geometric arrangement in all of the molecules. The 
effectiveness of the approach was demonstrated by the identification of the pharmacophore common to a set of 
diverse angiotensin-converting enzyme (ACE) inhibitors [140], and its efficiency was later increased by means of 
an improved conformational searching algorithm [141].  

The active analogue approach is widely used but does require the specification of the matching features prior 
to the conformational search, implying some knowledge of the protein-ligand interactions that are involved in the 
observed bioactivity. This limitation was first overcome in a study by Crandell and Smith [35], who described the 
use of an MCS algorithm to find 3D patterns common to sets of molecules.  The work was carried out as an aid to 
structure elucidation (see below) but is also clearly applicable to the problem of pharmacophore mapping. The 
Crandell-Smith algorithm involves a breadth-first search and becomes very slow if multiple molecules are 
required. However, a detailed study of a range of algorithms for 3D MCS detection [142] demonstrated the 
general efficiency of the clique-detection algorithm of Bron and Kerbosch [143] for this application. An 
operational implementation of the Bron-Kerbosch algorithm by Martin et al. [36] resulted in DISCO, the first 
widely used program for pharmacophore mapping and a direct influence on the many such programs that are now 
available [105,144].   

7. Knowledge-based systems 

It may be argued that the term “knowledge-based” is rather non-specific since any computer system must have 
at least some knowledge of the types of data that are to be processed and the results that are required.  However, it 
is a term that has come to be applied to a class of systems that encode human expertise – either explicit or implicit 
– in machine-readable form to facilitate the solution of some problem, normally one that cannot be tackled 
efficiently by a conventional, deterministic computer program. Such systems, often referred to as “expert 
systems”, “intelligent knowledge-based systems” or “fifth generation computer systems” were much to the fore 
during the Eighties and early Nineties; they are rather less prominent now, with many of the basic techniques that 
were developed then having been assimilated into more conventional types of computer system. Interestingly, 
much of the early work on expert systems was carried out in the field of structural chemistry, with three 
applications being of particular importance: computer-aided structure elucidation (CASE); computer-aided 
synthesis design (CASD); and de novo design.   

Structure elucidation is the task of identifying an unknown molecule given knowledge of its properties, which 
can be of any type although spectral properties have been the principal focus of work in CASE. There are two 
ways in which a computer can be used to assist the analyst when faced with an unknown molecule.  The first, and 
simpler approach, is to carry out a database search, matching the spectrum of the unknown molecule with those 
available in an existing database; a complete or partial match can then suggest the identity or the principal 
substructural components of the unknown molecule [145,146]. The second, expert-systems approach derives from 
some of the very earliest work in the area of expert systems.  This was the DENDRAL project at Stanford 
University for the analysis of mass spectra [147], which derived from work by Lederberg [148]. Given the mass 
spectrum and the molecular formula of the unknown molecule, the program would exhaustively generate all 
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possible molecules satisfying these constraints.  The spectrum of each generated molecule would be computed, 
and then compared with the source data, this process identifying further constraints that could be included in 
subsequent iterations of the generation cycle.  The process continues until the unknown has been identified or 
until it is not possible to identify any further constraints. Although massively influential in the development of 
expert systems in general, DENDRAL was never as successful in practice as some of its proponents claimed 
[146].  However, the techniques that were developed for generating structures have proved to be of widespread 
applicability, and systems based on a range of types of spectral data (including not just mass spectra but also 
nuclear magnetic resonance and infra-red spectroscopy) are widely used [149], as are systems for searching 
databases of spectra [150-152]. 

Another application of expert systems to structural chemistry is the area of computer-aided synthesis design 
(CASD), as reviewed recently by Ott [153]. CASD was first suggested as a possible area of research in Vleduts’ 
1963 paper on automatic reaction indexing that has been mentioned in Section 5 above [33]. Given stored 
information about the most common reactions and the conditions under which they could be applied successfully, 
Vleduts suggested that a computer could be used to generate a sequence of reactions that would result in the 
generation of a user-specified synthetic target in acceptable yield. Descriptions of synthesis in the chemical 
literature move from the starting materials to the final products, even though a synthetic chemist will normally 
design the synthesis by starting with the final product and then working backwards until known starting materials 
are reached. This retrosynthetic approach was the basis for the first published description of a CASD system: 
Corey and Wipke’s OCSS (for Organic Chemical Simulation of Syntheses) program [50]. The retrosynthetic 
approach attracted much attention in the Seventies and Eighties, with programs such as LHASA [154] and SECS 
[155] undergoing extensive development, much of it in collaboration with industry who saw such programs as a 
complement to the work of their synthetic chemists [156]. However, it came to be realised that very large amounts 
of synthetic knowledge needed to be captured from the chemists and then encoded in machine-readable form 
before the programs could be expected to perform at a reasonable level of effectiveness [157]. Ugi and Gillespie 
[158] were the first to advocate an alternative approach in which the computer would take a set of starting 
materials and then generate synthetic pathways by the making and breaking of bonds. The program CICLOPS 
operated in a fully automated mode that was not constrained by the existing chemical knowledge, and that could 
thus generate all syntheses that were mathematically feasible [54], whereas retrosynthetic programs involve 
considerable interaction with the chemist running the program. Gasteiger and colleagues suggested that the 
effectiveness of CICLOPS and similar programs could be enhanced by the inclusion of chemical knowledge, in 
the shape of computed physical properties such as heats of formation and reaction enthalpies, that could be used to 
assess the feasibility of the suggested molecules [159]. The resulting EROS program has undergone extensive 
development over the years [160] and there is an associated program, called WODCA, for reaction prediction that 
uses both forward and backward planning [161].  An important component of any CASD program is a module to 
predict the synthetic feasibility of the molecules under consideration, and such procedures are now being used 
more generally in drug discovery programmes [162]. 

The final example of knowledge-based systems to be described here are the de novo design programs, which 
produce novel molecules that possess specific properties, typically the ability to fit within the binding site of a 
biological target such as an enzyme. They can hence be regarded as complementary to the docking programs 
discussed in Section 5: docking identifies known molecules that are able to fit into the binding site, where as de 
novo design generates unknown molecules with this ability. The approach was first described by Danziger and 
Dean [61], whose HSITE program identified those regions in a receptor that could form strong hydrogen-bonding 
interactions with a ligand, thus specifying geometric constraints that must be satisfied by potential ligands. A new 
molecule is then designed by placing appropriate molecular fragments – typically individual atoms or 
substructures chosen from a dictionary - into the binding site at locations that satisfy these constraints, and then by 
linking these fragments together to form a connected entity. Other programs soon followed; examples that 
continue to be widely used include LUDI [163], which includes one of the most widely used functions for 
estimating the energy of binding for a suggested molecule, and SPROUT [164], which includes both hydrogen-
bonding and hydrophobic interactions in its scoring function. Most work on de novo design has focussed on 
molecules that will fit a binding site, but any type of constraint can be used, for example ranges of values for 
chemical and physical properties [165]. Schneider and Fechner review the current state-of-the-art, and include 
several examples of the use of de novo programs in the design of bioactive molecules, while emphasising that the 
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principal role of such programs is to suggest novel structural types for further consideration rather than to provide 
fully-fledged lead molecules [166].   

8. Diversity analysis and library design 

The last area of research to be discussed here is also the most recent, being driven by the developments in 
combinatorial chemistry and high-throughput screening that took place in the early Nineties. These technological 
improvements meant that it was now possible to synthesise and to test vastly more molecules than had previously 
been the case. However, real-world experiments were still expensive and there was hence much interest in 
computational methods to ensure that those molecules that were put forward for testing could provide the 
maximum amount of information to support lead discovery in a cost-effective manner. This requirement led 
initially to work on maximising the structural diversity (i.e., the level of dissimilarity) of the molecules that are 
submitted for biological testing, whilst minimising the numbers of molecules that are tested. The Similar Property 
Principle discussed in Section 4 implies that structurally similar molecules are likely to exhibit the same 
bioactivity, and hence the synthesis of large numbers of structurally related molecules is unlikely to result in a 
commensurate amount of useful structure-activity data. Patterson et al. [66] postulated the related, but distinct, 
concept of Neighbourhood Behaviour, which states that structurally dissimilar molecules may give different 
biological responses. The maximum amount of structure-activity information that can be extracted from testing 
some fixed number of molecules (as determined by the testing capacity that is available) will thus be obtained by 
selecting a set of molecules that are as diverse as possible.  

Structural diversity had long been recognised as an important factor in the selection of compounds for testing 
[167], but it was the vast libraries of compounds that became available as a consequence of combinatorial 
chemistry that focused interest on computer techniques for diversity analysis. Two problems were of initial 
interest: selecting a set of molecules from those already available, either from a corporate database or from 
commercial suppliers; or selecting a set of molecules that could be obtained from an appropriately designed 
combinatorial synthesis. The basic problem of selecting the most-diverse subset of a set of available (or possible) 
molecules is a very simple one; however, it is also one that is computationally infeasible, as there is an 
astronomical number of subsets that can be chosen from a dataset of non-trivial size. A wide range of techniques 
was hence suggested for selecting diverse sets of molecules, whilst not being able to guarantee the identification 
of the optimally diverse subset. Examples of these techniques are described in detail in two books [168,169] and a 
recent review [170], with Martin et al. providing an interesting overview of the early history of molecular 
diversity analysis [171]. We exemplify this work by two of the earliest, and most heavily cited, studies, those by 
Martin et al. [64] and by Brown and Martin [65].  

Combinatorial synthesis operates by reacting together sets of reactant molecules in parallel to yield a set of 
products called a combinatorial library, e.g., sets of acids and sets of amines to yield a combinatorial library of 
amides. Martin et al. [64] described the use of similarity measures based on fingerprints and on computed 
properties to select diverse sets of reactants, with the expectation that this would yield a diverse set of products in 
the resulting combinatorial library. This approach was rapidly taken up, and there is now an extensive literature on 
the use of reactant-based selection to ensure diverse combinatorial libraries. Later work focussed on the diversity 
of the final library rather than of the input reactants, and demonstrated that such product-based approaches could 
yield more diverse libraries, albeit at the cost of increased computational complexity [172]. The paper by Brown 
and Martin [65] compared different types of clustering method and structural descriptor in terms of their ability to 
predict a range of types of property, and hence of their suitability for compound selection. The study is notable not 
only in terms of the very detailed comparisons that were carried out (and also in a second, related paper [173]) but 
also because it concluded that simple, 2D descriptors were at least as effective as more sophisticated 3D 
descriptors for database-scale operations such as compound selection. The latter, surprising result has been 
confirmed in several subsequent studies of compound selection, although it is probably the case that an 
appropriate level of 3D representation has yet to be identified, rather than that 3D representations are inherently 
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less suitable for database-scale operations.  It is also the case that much 3D information is implicit in the 2D 
structure of a molecule, especially if there are few rotatable bonds. 

Initial studies of methods for diversity analysis focussed on the identification of sets of molecules that were 
structurally diverse, but it was soon realised that other factors also needed to be taken into account when selecting 
molecules for biological testing. For example, Gillet and co-workers have described the use of multiobjective 
optimisation to ensure the design of libraries that are not only structurally diverse but that contain molecules 
whose physicochemical properties resemble those of known drugs [174]. There is widespread interest in such 
drug-likeness (or drugability) studies, driven in large part by the “Rule of Five” first suggested by Lipinski et al. 
[45]. Methods of combinatorial synthesis had been rapidly adopted by the pharmaceutical industry; however, 
whilst these had resulted in very large numbers of molecules, they had not resulted in significantly larger numbers 
of bioactive molecules than could be obtained using conventional synthetic methods. Lipinski et al. analysed over 
two-thousand molecules that had entered phase II clinical trials (i.e., the phase in drug discovery where a potential 
drug is given to a small number of patients for initial studies of efficacy and side-effects) and observed that many 
of these obeyed simple physicochemical constraints that were simple multiples of five, e.g., the molecular weight 
should be less than 500 and the molecule should contain not more than five hydrogen-bond donor features. 
Molecules not satisfying these physicochemical constraints were likely to exhibit poor absorption or permeation, 
thus providing an obvious filtering mechanism for the selection of molecules and for the design of new 
combinatorial libraries. Subsequent studies have involved more detailed analyses of the physicochemical 
requirements for activity [175], the differences in properties between leads (i.e., molecules that are considered 
appropriate for detailed study in a drug-discovery programme) and drugs (i.e., molecules that get to the stage of 
being administered to patients) [176,177], the use of machine-learning tools to differentiate between databases of 
drugs and (assumed) non-drugs [178-180], and the development of analogous techniques for the design of 
agrochemicals [181].  

9. Conclusions 

In this paper, we have sought to highlight some of the major contributions to the historical development of 
chemoinformatics, although considerations of length inevitably mean that many other important papers have had 
to be omitted or merely mentioned in passing. However, it is hoped that this personal selection – however biased – 
is sufficient to make clear the intellectual debts that we owe to the early pioneers, many of whose techniques are 
still in widespread use many years after they were first published.   

Chemoinformatics is, of course, continuing to develop, with three areas of particular importance for the next 
few years. The first, already mentioned, area is the use of machine learning methods for virtual screening. 
Machine learning and data mining is the subject of intense research in computer science, with the resulting 
methodologies starting to be applied in very many application areas, including chemoinformatics. Thus techniques 
such as decision trees, kernel discrimination, and support vector machines have been rapidly adopted for 
chemoinformatics applications and this trend will undoubtedly continue as new techniques become available 
[182]. The second area is ADMET prediction (standing for absorption, distribution, metabolism, excretion and 
toxicity). Work in QSAR over many years has resulted in reasonably effective methods for the prediction of 
biological activity; the aim now is to extend these methods to enable the prediction of these more complex types 
of pharmacokinetic and biological properties. The work mentioned previously on drug-likeness can be regarded as 
a first step in this direction, with measures of drug-likeness representing an implicit codification of the 
pharmacokinetic properties required for a molecule to be not just bioactive but also potentially a drug; ADMET 
prediction studies try to model these properties explicitly [183]. The third area arises from the observation that 
QSAR uses computationally simple, but surprisingly effective, techniques to model the requirements for 
bioactivity. As noted previously, the emergence of chemoinformatics has been driven in large part by the scaling-
up of these techniques, which had traditionally been aimed at just a few tens of molecules, to the very large 
datasets that characterise modern pharmaceutical research. Given the successes that have been achieved thus far, it 
seems not unreasonable to expect that further increases in effectiveness could be achieved by application of the 
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sophisticated techniques of computational chemistry. These have traditionally been aimed at the detailed analysis 
of small numbers of molecules, but improvements in computer hardware and software mean that the methods are 
starting to be applied on a significantly larger scale than heretofore, as exemplified by the work of Beck et al. 
[139], and this trend can only increase further.  In brief, we can expect the next fifty years to be at least as 
productive as the fifty years that have passed since the founding of the Institute of Information Scientists.   
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