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Abstract

This paper provides a formulation for using the delta-operator in the modelling of non-linear systems. It is shown that a
unique representation of a deterministic non-linear auto-regressive with exogenous input (NARX) model can be obtained
for polynomial basis functions using the delta-operator and expressions are derived to convert between the shift- and delta-
domain. A delta-NARX model is applied to the identification of a test problem (a Van-der-Pol oscillator): a comparison is
made with the standard shift operator non-linear model and it is demonstrated that the delta-domain approach improves the
numerical properties of structure detection, leads to a parsimonious description and provides a model that is closely linked to

the continuous-time non-linear system in terms of both parameters and structure.
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1 Introduction

Middleton and Goodwin (1986) have renewed interest
in the use of a gradient based discrete-time operator,
0 to parameterise data-driven system models. This has
been shown to improve on the numerical ill-conditioning
problems found when using the absolute valued forward
shift operator ¢ (Li and Fan, 1997), especially under
conditions of fast-sampling.

The §-operator has been widely investigated in prob-
lems in the areas of adaptive signal processing (Fan
and De, 2001), systems’ modelling (Kuznetsov et al.,
1999; Fan et al., 1999; Larsson et al., 2006) and con-
trol (Middleton and Goodwin, 1990; Lauritsen et al.,
1997; Suchomski, 2003; Shim and Sawan, 2006). In the
context of non-linear systems investigations into the
use of the §-operator are currently limited: analysis of
non-linear §-domain models (in terms of generalised fre-
quency response functions) was conducted in Chadwick
et al. (2006) and a sampled data model for non-linear
continuous-time systems has been developed in Yuz and
Goodwin (2005).
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An advantage of modelling linear systems in the 6-
domain is that, whilst it provides an exact discrete-time
representation of the system, the identified model has
structural similarity to the continuous-time differential
equation describing system dynamics; additionally the
parameters of the identified model approach the con-
tinuous time values as the sample time tends to zero
(Soderstrom et al., 1997; Fan et al., 1999). Such a direct
equivalence between continuous and discrete-time non-
linear system descriptions does not necessarily exist
(Monaco and Normand-Cyrot, 1995). However, it may
be expected in some cases that the use of the d-operator
can lead to the identification of discrete-time non-linear
models that retain a link to the continuous-time system
description, in terms of both structure and parameters.
This aspect is investigated here along with the numeri-
cal improvements that result from use of the §-operator
in non-linear system identification.

The non-linear auto-regressive moving average with
exogenous inputs (NARMAX) model (Leontaritis and
Billings, 1985; Liu et al., 2000) is able to represent a
wide range of non-linear dynamical systems, via the use
of a range of potential basis functions. This paper takes
the approach of defining a deterministic §-NARX model
and investigating its relationship to the corresponding
g-domain non-linear model for the case of polynomial
basis functions. An advantage of using polynomial basis
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functions is that it is often more straightforward to find
some relationship between the model and the physical
system.

An investigation into the effect of sample time choice
on non-linear system identification was carried out in
Billings and Aguirre (1995). One conclusion was that
fast-sampling hampers structure selection. This is due
to the numerical similarity between samples. The advan-
tage of utilising the d-operator is that it naturally over-
comes the problem of numerical similarity, especially in
conditions of fast-sampling. Therefore simply describing
the model in the j-domain directly results in the numer-
ical properties of structure detection.

There is an exact relationship between the polynomial
6- and g-domain NARX models, which is shown in sec-
tion 3. This theoretical equivalence, which does not nec-
essarily exist for all classes of non-linear model, implies
that the use of either domain should lead to equivalent
models in the practical application of non-linear system
identification techniques. Any differences in both model
parsimony and consistency of non-linear term selection
should be ascribed to the procedure of structure detec-
tion and parameter estimation, which are affected by
numerical properties. In order to elucidate these differ-
ences the properties of the d-operator are investigated
through an example problem, with regard to: conver-
gence of the discrete-time model representation to the
continuous-time system, consistency of structure detec-
tion and model parsimony.

The structure of the paper is as follows: section 2 pro-
vides background information on the §-operator and the
polynomial NARX model, and presents the J-domain
polynomial model. Section 3 explores the link between
the polynomial 6-NARX model and the equivalent g-
domain model. Section 4 compares from a theoretical
perspective the numerical problems that would be ex-
pected when using the g-operator and the improvements
due to use of the J-operator. Section 5 demonstrates
non-linear system identification in both the ¢- and 4-
domains, on the test problem of the identification of a
Van-der-Pol oscillator. Finally the main results of the
paper are summarised in section 6.

2 Background

A discrete-time single-input single-output non-linear
system can be described by the deterministic NARX
model

y(t+n) :f[y(t)a""y(t+n_1)7
u(t),...,u(t+n—-1)] (1)

where f(.) is a non-linear function and u(t) and y(¢)
are sampled input and output data respectively. The

structure of f(.) is usually unknown unless certain a
priori knowledge is available.

In order to consider a general NARX model term irre-
spective of categorising the input or output term explic-
itly, the operator ¢(t) is defined, which may be either an
input or output term,

¢(t) € {u(t), y()} (2)

where the signal ¢(¢) is defined by the implementation of
the system model. This allows model terms to be spec-
ified via a numerical indexing notation rather than an
alphabetical system, which will prove useful later when
mapping between ¢- and -domain descriptions. Using
this notation the general polynomial NARX term x(t)
is defined as

x() = [T a5 )

where p is the number of cross-product terms (commonly
known as the order of non-linearity), n; is the forward

shift delay of the j** cross-product term and ¢ is the
forward shift operator, that is qu(t) = u(t + 1).

Definition 2.1 The ezpansion of a NARX model corre-
sponding to (1) in the form of polynomial basis functions
18

g"y(t) = bix(t) (4)
=1
where

xi(t) = H q" du;(t) (5)

and w is the number of model terms within the NARX
model, p; is the number of cross-product terms within the
I*" model term (known as the order of non-linearity), ng;

is the forward shift delay of the I*" model term and ji"
cross-product term and 0; are model parameters.

Similarly to the g-domain NARX model, the determin-
istic 6-NARX model is defined as

§"y(t) = f [y(t),0y(t) ..., 6" ty(b),
u(t), du(t), ..., 68" u(t)] (6)

where

qg—1
0= -—— 7
- 7)
where T is the interval between samples. The d-operator
has the useful property, given a differentiable signal y(t)
that

lim oy (1) = %y(t) (8)



The §-domain polynomial basis function ¢ can be de-
fined similarly to the g-domain as

P

UOES | REII0} (9)

Jj=1

Definition 2.2 The expansion of the §-NARX model
corresponding to (6) in the form of polynomial basis func-
tions (using the previously defined notation) is

)= G(t) (10)
=1

where
P

di(t) = [T 6™ 60;(2) (11)
j=1
and (; are the §-domain model parameters.

3 Relationship between the ¢- and J§-domain
polynomial NARX models

The equivalence of the model in each domain (§ and q)
is important for translation and interpretation, which
has already been established for linear models (Neuman,
1993). This section establishes a relationship between
the - and g-domain polynomial NARX models.

Lemma 3.1 The expression that maps from a single [*?
q-domain NARX model term x(t) defined in (3) to the
d-domain is given by

p
[Tavei) =
j=1

where

T

P
DT [T emn,a6™ 6500 (12)

k=1 j=1

J , i+ 1) (15)

(16)

mg.j mod
H'L 1 I"L

|
nj:

(nj — my,j)!mg,;!

Cmp ;g =

where the floor function |x| and modulus function
mod (x) are defined as

ze€R
(17)

mod (z,y) =z — (y x EJ) (18)

] =y where z—-1<y<z, yEZ,

where Z is the set of integer numbers and R is the set of
real numbers.

Lemma 3.2 The expression that maps from a single §-
domain NARX model term (t) defined in (9) to the q-
domain is given by

Hm] ZT mkHcka,]qmwm() (19)

where

.|
n;:

(nj — my,j)!mg ;!

co = (1)

mk,j 5] (20)
Theorem 3.1 The mapping of a 6-domain to qg-domain
polynomial NARX model is unique, preserves the order of
non-linearity and preserves the input/output term order.
The mapping of a full model of w terms is

ZelZTmlkHclmH”]é DTy (1)
=1 =

(21)
where
pi
ro=T] (s +1) (22)
j=1
PL
MLk =Y Mk, (23)
j=1
k: _
myg; = mod — |,y +1 (24)
H,L 1 ny K
n !
Clomy ki, = b (25)

(0,5 — M k) 5!

Theorem 3.2 The mapping of a g-domain to §-domain
polynomial NARX model is unique, preserves the order of
non-linearity and preserves the input/output term order.
The mapping of a full model of w terms is

w T
:Z ZT mlk]:[lmzm7]qlk]¢l ()
=1 k=1

(26)
where Ty, My, and my g ; are as defined in (22), (23) and
(24), and

Tllyj!

(naj — mukg)mig ;!

= (-1 (27)

Cl,mz,k,j,j

Remark 3.1 [t has been shown that the mapping of each
term from one domain (either q or §) induces many more
terms in the target domain. Hence, the mapped model
will not be a useful vehicle for system interpretation and



analysis due to the large number of terms resulting from
mapping all but the most simple of models. This suggests
that the identification should be performed in the appro-
priate domain, whether q or §. This will lead to parsimo-
nious model descriptions useful for modelling, analysis
and control.

Remark 3.2 The resultant expressions for mapping be-
tween model domains are the same for NARMAX mod-
els, when the model is augmented by error terms.

4 Identification of the non-linear model
4.1  Parameter Estimation

The identification of a polynomial NARX model can
be structured as a linear regression, using a predictive
model, which in the d-domain is (for a single-input single
output description),

0"y = PiC + € (28)

where ¢; is the regression matrix comprised of input and
output cross-product terms, ¢ is the set of parameters
to be estimated and € is the modelling error, that is

¥, = [1(0) - ()] (29)
c=[a.a] - (30)

The prediction model for the g-domain non-linear model
is similarly defined as

Yr = X0 +m (31)

where 7, is the model error and

|

Xt = | X
¢ = {91 an}

(1) - xwl®) | (32)
" (33)

It is straightforward to show that the least-squares esti-
mate of the parameter vectors ¢* and 8" pertaining to
the - and ¢g-domain models respectively, is given by

-1 N
¢ = (%Zw?m) Sl (34

. 1 1
0" = (N ZX?Xt) N ZXtTyt (35)

It has been demonstrated for the case of ¢-domain
linear models that the so called information matrix,
which is equivalent to the non-linear g-domain term

L Zivzl ¢L ¢y, tends to a singular matrix as T — 0
Goodwin et al., 1992). This leads to numerical prob-
lems in the estimation of model parameters. In contrast,
the linear term corresponding to % Zivz 1 ]y tends to
the continuous-time result as T' — 0, which is also the
case for the non-linear §-domain model.

The numerical ill-conditioning arises for the case of the
non-linear g-domain model, because the regressor terms
are formed analogously to the linear case; indeed the
linear terms are included as a subset of the polynomial
g-domain non-linear model.

4.2  Model Term Selection

The regression matrix corresponding to the prediction
model defined in (28) can be decomposed, using for
example the modified Gram-Schmidt method (Chen
et al., 1989); this leads to the expression of a new predic-
tion model where the regression matrix has orthogonal
columns, which allows the independent assessment of
the significance of model terms,

y=Wg+e (36)
where W € RVX% is the new regression matrix (with

orthogonal columns) and g is the corresponding param-
eter vector to be estimated, that is,

W =vA"1 (37)

g = AC, (38)
T

y=[y . omyn | (39)
T

v= [yl ek (40)

and A € R¥*™ is an upper triangular matrix.

The forward regression orthogonal (FRO) algorithm
(Chen et al., 1989) is used to select the model structure
by iteratively comparing and ranking terms by their
significance; a term’s significance is measured by its
contribution to the variance of the target data (based
on a one-step-ahead prediction in time). This metric is
called the error reduction ratio (Err), where

2,1
9 Wi Wi

yly

Err, = (41)

where wy is the k" column in W and the subscript
k € {1,...,w} denotes the k** model term. Terms are
picked in order of the size of their Err, where the largest
Err is most significant.

A particular problem associated with the FRO algorithm
occurs under conditions of fast-sampling when identi-
fying g-domain NARX models (Billings and Aguirre,



1995); consider the Err for the case where there is only
a single regressor

2 N 2
t—1
Err 91 Zt—l y( ) (12)

St y(t)?

N
where g1 = > :le(t)y(t—l)

Doy y(t—1)?
as T — 0 in (42):

. Now considering the limit

lim Err =1 (43)
T—0

Therefore it is apparent that in the limit 7" — 0, only one
term is necessary to explain the target data, specifically
y(t — 1). Under conditions of fast-sampling this means
that y(¢t — 1) will be selected as the first significant term,
overly dominating the significance of all other terms.

Discretising the data via the d-operator naturally over-
comes this problem, because columns in the regression
matrix are not numerically similar. Consider the Err of
a model with a single regressor, similarly to (42), but
now in the -domain

Erry = (44)
N
Zt:1 y(t)?
In the limit as the sample-time tends to zero
2 N 2
. 9 Zt:l y(t)
11"1—>InO ET”I"l = W (45)
t=1 dt

Evidence of these improved properties of structure selec-
tion will be seen in the next section, where the method is
applied to the identification of a Van-der-Pol oscillator.

5 Identification of a Van-der-Pol oscillator

This section investigates the d-operator modelling
framework applied to a test system. The motivation for
this is to show the advantages of working in the J-domain
in comparison to the ¢g-domain, in two specific areas: (i)
insight into the physical system and (ii) numerical im-
provements of the identification procedure. The chosen
test system was a Van-der-Pol oscillator (VDPO).

5.1 Data Generation

The particular Van-der-Pol oscillator utilised in this in-
vestigation was

2o o d
2V =02 [1 =y ()] —y(t) —y(t) +ult)  (46)

The bandwidth of the VDPO (neglecting the non-linear
term) was known to be 1Hz. Therefore a conservative ex-
citation signal was applied using a sum-of-sinusoid sig-

nal, with frequencies, wy evenly distributed between 0
and 2Hz:

d

u(t) = Z apcos(2mwit + o) (47)

k=1

where ar = 0.2, d = 50 and the phase shift between
each wave was defined according to the Schroeder choice
(Schroeder, 1970):

k(k—1

(z)k:(lsl*i( y )7r (48)
where ¢; = 0.
The continuous-time system was simulated using a 4"
order Runge-Kutta method and signals were sampled
at varying frequencies: 10Hz, 20Hz, 40Hz, 80Hz, 160Hz
and 320Hz. The simulation step-length was defined as
1/320. The range of sampling frequencies was chosen to
illustrate the effect of relative slow and fast-sampling on
structure selection and parameter estimation.

5.2  Ezpected discrete-time description of the Van-der-
Pol oscillator

In the fast-sampling limit the non-linear §-domain de-
scription is the equivalent of the continuous-time system.
Hence at sampling frequencies below the continuous-
time limit it may be expected that this equivalent 6-
domain description dominates the structure selection.
The structural equivalent of the continuous-time system
in the J-domain, in the fast-sampling limit, is

§2y(t) = [ — GyP ()] Sy(t) — Csy(t) + Cault)  (49)

This model description can be mapped directly to the ¢-
domain using the expression (26). Mapping (49) to the
g-domain, after appropriate backward shifting, leads to
the description

y(t) =01y(t — 1) — Ooy(t — 2) + Oy>(t — 2)y(t — 1)
+ 043 (t — 2) + Osu(t — 2)
(50)

The model structure above may indicate the non-linear

basis functions likely to dominate the structure selection
in the ¢g-domain.

5.8 Identification

The structure of the non-linear model was detected by
searching model orders {nq, np, k} € {1,...,5} (where k



Iteration Terms Err Param.
1 y(t) 0.31 -0.9981
2 u(t) 0.60 0.9956
3 Sy(t)y*(t) 0.072  -0.1991
4 dy(t) 0.011 0.1864
5 dy(t)y(t) 0.0050 -0.0757

Table 2
Significant terms selected for the é-domain non-linear model
of the Van-der-Pol oscillator at a sampling frequency of 40Hz.

was an input delay) and then iteratively increasing the
maximum order of non-linearity p up to p = 5. The num-
ber of terms selected in the FRO procedure was a super-
set of 19 terms, which was pruned using the Bayesian
Information Criterion (BIC) (Haber and Unbehauen,
1990).

The input-output order of the §-domain model was de-
tected as n, = 2, np = 0 and delay k = 0. The identifica-
tion of the difference equation model was performed us-
ing the usual backward shift operator ¢~ !, where ug~' =
u(t — 1). The input-output order of the g-domain model
was identified as n, = 2, np = 1 and k = 1. In the case
of both the §- and g-domain models the maximum order
of non-linearity was selected as p = 3.

The results of the model identification procedure are
shown for a sampling frequency of 40Hz, for the ¢-
domain model in table 1 and the J-domain model in
table 2. These tables reveal the following points:

(1) The d-domain model terms that are the fast-
sampling limit equivalents of the continuous-time
model have dominated the structure selection and
the corresponding parameter estimates of those
terms are similar to the continuous-time values.

(2) The FRO algorithm has attributed an Err of 1.00
to the g-domain term y(¢ — 1), which implies that
close to 100% of the data is described by that one
term. This potential problem was initially implied
by the analysis in section 4.2.

(3) The g-domain model contains significantly more
terms than the d-domain model, suggesting that the
use of the J-operator has lead to a more parsimo-
nious structure.

5.3.1 Parameter Estimation

Figure 1 demonstrates that the information matrix that
was inverted during least squares parameter estimation
was ill-conditioned for the ¢g-domain model, even at low
sampling frequencies. This numerical problem was exac-
erbated at higher sampling frequencies. In contrast the
condition number of the d-domain model was preserved
across all sampling frequencies tested. This improvement
in conditioning was notably present even at the slowest
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Fig. 1. The condition number of the information matrix that
is inverted during least squares parameter estimation.

sampling frequency which was 10Hz (5 times the excita-
tion frequency bandwidth).

The parameters of the J-domain model terms contained
in (49) were found to converge towards the continuous-
time values as the sampling rate was increased, as shown
in figure 2. This suggests that the d-domain parame-
ters converge towards the continuous-time values, even
whilst the relevant terms are contained as a subset of
the full discrete-time model. The parameter estimates of
the ¢g-domain model terms contained in (50) were found
to have some similarity to the expected values, as shown
in figure 2, but not the same properties of convergence
as the 6-domain model. This result shows that the lin-
ear model d-operator property of parameter convergence
can extend, in some cases, to that of non-linear system
identification.

5.3.2  Structure Detection

The model terms expected to dominate the structure
selection were the § equivalents of the continuous-time
model and the corresponding g-domain model terms. It
was found that the four expected §-terms consistently
dominated structure selection at all but the lowest sam-
pling frequency (see table 3). In contrast the expected
linear terms of the ¢-domain model dominated the struc-
ture detection, but the expected non-linear terms ap-
peared at inconsistent intervals (see table 4).

Figure 3(a) demonstrates that the error variance of the
model predicted output of the §-domain model effec-
tively converges after 5 model terms. This structure in-
corporates one additional term to the continuous-time
system. The implication is that the process of sampling
necessitates the inclusion of auxiliary terms in the iden-



Iteration Terms Err Param.
1 y(t—1) 1.00 2.0006
2 y(t —2) 5.19 x1076 -1.0006
3 u(t —1) 5.30 x10™""  9.7390 x107°
4 yt —Du?(t—1) 2.03 x107"  1.6993 x107°
5 y(t —2)u?(t—1) 6.14 x107**  -1.7023 x107°
6 3t —2) 1.70 x107* -0.5093
7 3t —1) 4.20 x107* 0.5080
8 Y2 (t —2) 3.98 x10714 0.0023
9 y(t— 1yt —2) 218 x107* -0.0044
Table 1
Significant terms selected for the g-domain non-linear model of the Van-der-Pol oscillator at a sampling frequency of 40Hz.
Freq. (Hz) Model Terms
y(t=1) y(t—-2) w(t-2) (-2 *(t-2yt-1)
10 1 2 3 5 7
20 1 2 3 5 7
40 1 2 3 6 10
80 1 2 3 6 10
160 1 2 3 9 10
320 1 2 3 9 10

Table 4

Iteration at which the relevant g-domain model term is selected in the FRO algorithm; with varying sample frequency.

10 —— \
/ T == = - —
/ -
_ /
—— &d-domain
_ — — — g-domain
107t q |
L
D)
>
o
107} ;
0 50 100 150 200 250 300 350

Sampling Frequency (Hz)

Fig. 2. Difference between continuous-time model param-
eters and the estimated parameters corresponding to the
model terms expected to be obtained in the fast-sampling
limit for both the ¢g- and §-domain models.

tified non-linear model. This does not appear to be af-
fected by increasing the sampling rate. This is a con-
trasting result to that of parameter estimation, where
the parameters do converge towards the continuous-time
values as the sample rate increases.

Model Terms
)y (H)oy(t)

Freq. (Hz)

—~

yt) wu Sy(t)

10
20
40
80
160
320

NONNN NN

6
4
4
4
4
4

W W W w w w

Table 3
Iteration at which the relevant d-domain model term is se-
lected in the FRO algorithm; with varying sample frequency.

Figure 3(b) shows how the prediction error variance of
the g-domain model has a tendency to increase at higher
frequencies for a given number of model terms. This is
in contrast to the d-domain model; figure 3(a) shows
that the error variance is decreased at higher sampling
frequencies. This implies that the use of the d-operator in
non-linear system identification leads to more consistent
performance across a range of sampling frequencies than
the g-operator.

The structure of the non-linear model in both domains
was detected by the use of the Err metric. In general
it would be expected that the significant model terms
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Fig. 3. Prediction error variance at increasing sampling frequencies, where each line corresponds to a model with a given
number of terms from 1 to 19 in the order selected by the FRO algorithm: (a) 6-domain and (b) g-domain.

would have high Err and vice-versa. Therefore the sum
of error reduction ratios (SERR) should be an indicator
of model structure. Figure 4(a) indicates that there is
a progressive usefulness in the selection of the first four
terms in the é-domain model, each of which have a di-
rect correspondence to the continuous-time model (ex-
cept in the case of the lowest sampling frequency). This
progressive usefulness of model terms is not indicated in
figure 4(b), for the ¢g-domain model, where the SERR
converges towards unity after the first term is selected.
Note that this was to be expected from the analysis per-
formed in section 4.2.

The BIC was used to truncate the ordered selection of
model terms detected by the FRO algorithm. Figure 4(c)
shows that the use of the J-operator lead to the selec-
tion of fewer terms at all sampling frequencies compared
to the ¢-domain model, where the corresponding results
are shown in figure 4(d). The use of the §-operator in the
test scenario presented here has consistently lead to a
more parsimonious structure at fast and slow sampling
frequencies; this implies that in general the use of the
d-operator may lead to a more parsimonious description
for certain model classes in non-linear system identifica-
tion problems.

6 Conclusions

This investigation has shown the correspondence be-
tween polynomial non-linear models described in the g¢-
and d-domains. This exact relationship implies the po-
tential theoretical equivalence of the use of either op-
erator in non-linear system identification. However, the
practical application of non-linear modelling techniques
(e.g. FRO structure selection) has highlighted the fact

that differences in identification (between ¢ and §) may
arise, presumably resulting from numerical issues. Im-
provements from using the d-operator in the identifica-
tion of a deterministic continuous-time non-linear sys-
tem have been demonstrated, focusing on: (i) the con-
vergence of the parameter estimates of the non-linear
d-domain model to the continuous-time values (ii) the
consistency of the detection procedure in terms of struc-
tural linking to the continuous-time system and consis-
tent selection of auxiliary model terms that contribute
to an accurate system description at higher sampling fre-
quencies, and (iii) the parsimonious model description.
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A Proof of Lemma 3.1

Consider a single polynomial NARX model term x(¥)
with non-linear order p, mapped to the d-domain by
substitution of ¢ = 1+ T4 in (3),

p
Hq%] =[] @+T5)" ¢;(t) (A1)
Jj=1

The terms arising from the RHS of this mapping can be
be expressed as the ordered set M, ,,

Mp,np =
60’150¢1 (t) X 60’2(50(,252@) X ... X Co’pcso(ﬁp(t)
1,167 01(t) X c020%a(t) X ...x o p00¢y(t)
Cnl’lgnl(ﬁl (t) X 60’2(50(,252@) X ... X Co’pcso(ﬁp(t)
60,150(f)1 (t) X 61,251¢2(t) X ... X Co,p(so(f)p(t)
X 120 a(t) X...X  cop0Qg,(t)

Cny,10™ P1 (1)

X
X
X

0,101 (t) Cnp 2072 P2 (t) c0,p0° (1)

X
X

Cny 10" P1(t) X Cny20™Pa(t) 0,p0° dp(1)

60,150(f)1 (t) X 60,250¢2(t) X ... X cl,pél%(t)
Cl’lgl(ﬁl(t) X 60’2(50(,252@) X ... X 01,p51¢p(t)
Cn1,15n1¢1 (t) X 60,250¢2(t) X ..o X cl,pél%(t)
60’150¢1 (t) X Cn2’25n2¢2 (t) X ... X cnp,pénpd)p(t)
Cnl,l(snl(bl (t) X Cn2,25n2¢2 (t) X ... X cnp,pénp%(t)
(A.2)

The powers my, j, of 6% from M, ,, can be defined for
successive cross-product terms as (where the notation
my, ; indicates the power of the k*" element and j*" cross-
product term),

mip1 = mod (k—1,n1+1)
mg2 = mod 'f;i—llJ , N2 + ].)
_ k-1
mk3 = mod (n1+1)(n2+1>J 13 1) (A.3)

mEp =  mod ({ﬁJ s Mp + 1)

Hence an arbitrary element my(t) in the set M, can




be defined as

5 (t) (A.4)

P

— ANMk,5

t) = | | Cmy 5,50
=1

The full mapping of a ¢g-domain term to the é-domain
involves the summation of the rows of the set M,, ,, after
each row is scaled by T raised to the appropriate power.
The appropriate power of T' corresponds to the sum of
the powers of ¢ in the row k, mj = Z§=1 my, ;. Hence

the mapping of a single g-domain NARX term x(¢) is

H q" ¢;(t) Z Ty (t)

k=1

(A.5)

O

B Proof of Lemma 3.2

Consider the expression of a single J-domain polynomial
NARX model term t(t) of order p mapped to the g-
domain by substitution of (7) in (3)

TTom 050 f[( S0

j=1 -1
The terms arising from the expansion of (B.1) can be
written as an ordered set M, similarly to My, , re-
placing the J-operator by the g-operator and the bino-
mial coefficients ¢, ; j by ¢, - ; and where each row
of M, is scaled by T~™.%, Hence the mapping of a
single 0-domain NARX term ¢ (t) to the ¢g-domain is

(B.1)

H 5™ b (t Zkamk (B.2)
where my; (£) is the k' element in the set M,
p
= [, 4™ 60 (B.3)
Jj=1

O

C Proof of Theorem 3.1

The mapping of the I*" §-domain to g-domain polyno-
mial NARX model term follows from the extension of
Lemma 3.1,

an”éf)zg ZT””’“Hszlk],j TR gy ().

(C.1)
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where the application of Lemma 3.1 to the {** model
term leads to the definitions of (22), (23), (24) and (25).
Hence the mapping of a full §-domain model to the g¢-
domain as defined in (21) follows immediately from the
substitution of (C.1) in (4).

The preservation of the order of non-linearity when map-
ping a single term of order p from the ¢- to §-domain
follows from the definition of the set M, ,,,, where the
number of cross-product terms in each element, result-
ing from the binomial expansion of (A.1), is exactly p.

The set of term orders my ; contained within the set
Myn, is N ={0,...,n1,...,0,...,n,}. Correspond-
ingly the set of term orders contained within the g¢-

domain model term H§=1 quig;(t)isNg ={ni,...,np},
ien; € Ny, forj=1,...,p. Clearly,
max V()= max (V,(7)  (C2)
=1,...,r Jj=1,...,p

where the notation for a set V'(k) indicates the k" ele-
ment of the set. By extension of (C.2) to the full model
composed of w terms

max

0) _
o (s (W0w))
max

max |
I=1,...,w \J=1,....;m

which proves that the maximum time order of the model
terms is preserved when mapping between domains. O

(V@) e

D Proof of Theorem 3.2

The mapping of the I** g-domain to d-domain polyno-
mial NARX model term follows from the extension of
Lemma 3.2,

Hé"”@ ZT mlkHclmH”q LR gy (t).

(D.1)
where the application of Lemma 3.2 to the I** model
term leads to the definition of (27). Hence the mapping
of a full g-domain model to the §-domain as defined in
(26) follows immediately from the substitution of (D.1)
in (10).

The preservation of the order of non-linearity when map-
ping a single term of order p from the ¢- to §-domain
follows from the definition of the set M, , where the
number of cross-product terms in each elemen‘c7 result-

ing from the binomial expansion of (B.1), is exactly p.

The set of term orders my ; contained within the set
M, isNT ={0,...,n1,...,0,...,np}. Correspond-

p,np



ingly the set of term orders contained within the 4-
domain model term [[5_, 6" ;(t) is N5 = {n1,...,np},
,len; € Ny, for j =1,...,p. Clearly,

max (N7 (k)) = max (Ns(j)) (D.2)

k=1,...,r j=1,...,p

and by extension to the full model composed of w terms

(s (V00) ) =
max (max (N(;(l)(j))) (D.3)

I=1,ccow \J=1,..;t

which proves that the maximum time order of the model
terms is preserved when mapping between domains.
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