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System Identification From Multiple
Short-Time-Duration Signals

Sean R. Anderson*, Paul Dean, Visakan Kadirkamanathan, Member, IEEE, Chris R. S. Kaneko, and John Porrill

Abstract—System identification problems often arise where the
only modeling records available consist of multiple short-time-
duration signals. This motivates the development of a modeling
approach that is tailored for this situation. An identification
algorithm is presented here for parameter estimation based on
minimizing the simulated prediction error, across multiple signals.
The additional complexity of estimating the initial states corre-
sponding to each signal is removed from the estimation algorithm.
A numerical simulation demonstrates that the proposed algorithm
performs well in comparison to the often-used least squares
method (which leads to biased estimates when identifying systems
from measurement noise corrupted signals). The approach is
applied to the identification of the passive oculomotor plant;
parameters are estimated that describe the dynamics of the plant,
which represent the time constants of the visco-elastic elements
that characterize the plant connective tissue.

Index Terms—Initial conditions, oculomotor plant, output error,
parameter estimation, state-space.

1. INTRODUCTION

COMMON approach to system identification is to assume

that the model structure corresponds to an autoregressive
with exogenous inputs (ARX) description, for which parame-
ters are estimated using least squares (LS) [1]. However, the LS
method can lead to significant bias in the parameter estimates if
the signals are corrupted by measurement noise [2]. There are
limited conceivable scenarios where measurement noise-free
signals are recorded in a physiological context; hence, use of
the ARX model is often inappropriate (except where the noise
model has the same poles as the system). Therefore, an output
error model is utilized in the modeling problem discussed
here as an alternative to the ARX model, which results in
correct treatment of the measurement noise entering the system
description.

There is no closed-form solution for the output error model
parameter estimation problem. Therefore, the parameters must
be estimated via a nonlinear search. An estimate of the param-
eters can be obtained by minimizing the simulated prediction
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error (SPE) [1]. However, the SPE is significantly dependent on
the initial system conditions for short time periods after excita-
tion [3]. Therefore, if the initial conditions are unknown, which
is generally true if they are unobserved, then these should be es-
timated along with the model parameters if the signal is of short
time duration.

A further complication arises when modeling a system from
multiple signals: the number of initial conditions to estimate in-
creases in proportion to the number of experimental signals: an
nth-order system will have n initial conditions corresponding
to a single experimental signal; if there are M experimental sig-
nals available for modeling, then there will be Mn additional
parameters to estimate. There are many cases, arising especially
in the biological sciences, where multiple short-time-duration
signals are collected for the purposes of system identification,
for instance, when modeling muscle dynamics [4], [5] and the
oculomotor plant [6], [7].

This paper takes the approach of solving the output error
model identification problem via a separable least squares (SLS)
estimation algorithm [8], [9]. The optimal estimate of the initial
states is rewritten as a function of the model parameters. This
removes the additional computational burden of estimating the
initial state vector corresponding to each signal. Specifically, the
state-space output error (SSOE) model representation is used,
which leads to natural inclusion of the unknown states.

The proposed SLS method is applied to the practical problem
of identifying the passive oculomotor plant using multiple sig-
nals. The modeling of the oculomotor plant dynamics is im-
portant for a number of reasons, including relating eye move-
ment to oculomotor firing patterns [10], [11] and also for under-
standing the underlying algorithms governing eye-movement
control [12], [13].

The identification of the oculomotor plant that is conducted
here involves a reanalysis of signals that were previously mod-
elled in [6], where a specialized estimation algorithm was de-
veloped. The aim of applying the proposed SLS algorithm to
the problem of modeling the oculomotor plant is to demonstrate
that this generic method works successfully on a real-world
problem, which is validated by reference to the previous study
described in [6].

There are alternative approaches to solving the joint state-pa-
rameter estimation problem, such as subspace methods [14],
[15]. An advantage of the SLS approach proposed here is that
it makes the parameterization of the model particularly straight-
forward so that states and model parameters can be easily related
to physical quantities of interest. For instance in the application
demonstrated here (modeling of eye movement dynamics), the
model states are the extensions of each visco-elastic element
representing the connective tissue and the model parameters are

0018-9294/$25.00 © 2007 IEEE
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the poles relating to the time-constants of the aforementioned
visco-elastic elements.

The paper is structured as follows. Section II reviews the
LS method in the context of identifying systems from signals
corrupted by measurement noise; motivation is then demon-
strated for the approach of minimizing the SPE as an alter-
native. Section III provides background on the use of SLS in
system identification. The SLS approach to modeling multiple
signals is derived in Section IV. The proposed method is ana-
lyzed and compared with LS in Section V. In Section VI, the
method is applied to the estimation of the parameters that char-
acterize the passive oculomotor plant. The paper is concluded
in Section VIIL.

II. PROBLEM MOTIVATION

This section demonstrates the bias inherent in using LS to
estimate the parameters of a model from an output signal cor-
rupted by measurement noise. The minimization of SPE is then
shown to be an appealing alternative, which provides motivation
for the parameter estimation approach subsequently developed
in the later sections.

A. Parameter Estimation via LS

It is often assumed that the structure that describes a linear
time-invariant system (in discrete-time) is that of an ARX
model. In fact, if no process noise is present and the observed
system output is corrupted by measurement noise, then the
correct system description is the output error (OE) model [1].
The purpose of this background section is to demonstrate how
the LS parameter estimation of an OE model is biased by
measurement noise. The single-input single-output OE model
is described as

Ze+a1ze—1+ - @pZ—n, = b1Us—1 + -+ bpUp_n,
)
Yt = 2t + V¢ 2

where z; is the system output at time ¢, y, is the observed system
output corrupted by measurement noise, wu, is the system input,
and v; ~ N(0,0?) is a zero-mean normally distributed white
process noise signal.

A one-step-ahead prediction model (based on the ARX struc-
ture) may be formed to estimate the model parameters from the
observed signals, which is

y =90 +¢e, fort=1,....N 3)

where ¢ is the one-step-ahead residual modeling error, NV is the
number of data samples, and

P, = [—yt—1

0= [a1 e Anp, bl

Uiepy] (4
by " (5)

— Yt—n, Ut—1
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In order to track the influence of the measurement noise signal
on the LS estimate, the prediction model (3) can be separated
into

Y = @0+ v 0 + ¢4 (6)

where
¢t = [—Zt—l - Zt—n, Ut-—1 ut—nb] @)
Ve = [~V — Uy, 0 ... 0]. ®)

This form of the prediction model immediately shows that the
problem formulation is incorrect, for this system, because the
prediction of the system output is partially dependent on mea-
surement errors at previous sample times.

The parameter estimation cost function corresponding to the
prediction model (6) is

1 N
V(o) =+ > (g — ¢ — vi8)”. )
t=1

Minimizing V'(0) leads to the LS estimate

1Y 1Y T
Ors=| = T —SN'R — z 1
LS N§¢t¢t+N; t N;‘ﬁt?/t (10)

where

E[R:] =E [v]v:] = [Rl;l 0} (11)

0 0

where E[-] denotes expectation and each diagonal element of
Ri1 € R™*™a is the variance o2 of the measurement noise,
that is

o2 0
Riy = (12)

0 o2

This analysis demonstrates that the LS estimate is biased,
when estimating parameters from measurement noise corrupted
signals, because the solution includes the additional term R,
which is related to the variance, or power, in the noise signal.

Intuitively, it may be supposed that for high SNR, the LS esti-
mate will not incorporate significant bias. However, it is the case
that if any of the singular values of R; are of similar magnitude
to any of the singular values of qS;‘FqSt, the parameter estimates
will be significantly biased. This point is demonstrated on an
example problem in Section V-B.

B. Parameter Estimation via Minimization of SPE

The bias in the LS estimate of the model parameters origi-
nates from the specification of the prediction structure, as seen
in (6). A way of overcoming the measurement noise problem
is to generate the system model predictions by some alternative
method; for instance via model simulation. This leads to an op-
timization problem where the SPE is minimized (by a nonlinear
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search). This is the method typically used to identify the output
error model [1].

The minimization of SPE is accomplished by filtering the
input sequence through a transfer function model of the system
H(0,x1), which for short-duration signals is dependent on the
parameter vector @ and the initial state x1

Ur = H(0,%1)us. (13)
The parameter vector @ and initial state x; can be updated by a
nonlinear least squares routine, minimizing the simulated pre-
diction error 7;, which is defined as

m=yt— Yy Vi (14)
It is apparent that this approach does not suffer from the bias
of the LS method because the recorded output variables are not
used in predicting the model output, in contrast to (6). Instead,
the recorded (noisy) output signal is only used to obtain the
residual error 7;; the model predictions are obtained indepen-
dently of the recorded output signal using the input sequence
and the system model H (8, x1).

III. SEPARATING THE OPTIMIZATION PROBLEM: MODEL
PARAMETERS AND INITIAL STATES

The problem of estimating the model parameters and initial
states is simplified by recognizing that for any given model pa-
rameters the corresponding initial states can be obtained from a
closed form solution. Therefore, an SLS problem can be con-
structed, where the model parameters are estimated via non-
linear least squares and the initial states are obtained via the use
of a state-space prediction model [9].

A linear discrete-time invariant system can be represented by
the SSOE model

Xt = A(a)xt,1 + B(ﬂ)ut,l
Y = C(ﬂ)xt + V¢

15)
(16)

where A(f) € R"*™ is the state transition matrix, B(#) €
R™*™ is the input matrix, C'(#) € R™»*™ is the measurement
matrix, x; € R"™ is the system state, y; € R™v is the system
output, v; € R"v is the measurement error, u; € R™* is the
system input, and @ is a vector of unknown model parameters.

The sequence of system outputs can be written as a function
of the unknown parameter vector f and the initial state vector
X1

Y = F(8)x; + GO)U +V (17)
where
Y = [y! yul" (18)
U= [u1 u%—1]T (19)
v=[rT ... VR, (20)

2207
F(6) = [C(8)A°(0) cE) A1 o))" @
0 - 0
91,1 g1,N—-1
G(0) = . (22)
gN-1,1 gN-1,N—-1
where F(a) € RnyNXn_/G € RnyNXn,,,(N—l) and
_Jo®ATI0)Be), 1<j<i

Jid = {0, otherwise. 23)

The sequence of measurement errors V' is assumed to be zero
mean and normally distributed. Therefore, it is apparent from
(17) that for any given parameter vector 6 a closed-form solution
can be obtained for the initial state vector x;.

When the B matrix is unknown, the state-space prediction
model defined in (17) may be separated further so that the B
matrix is linearly related to the output along with the initial state
vector [9]. In practice, a control canonical form may always be
used to represent an input-output system where the B matrix
is known. Furthermore, for multiple signals, the number of ini-
tial conditions will usually be much greater than the number of
parameters in the B matrix. Thus, the main computational ben-
efits (from a state-parameter estimation perspective) are derived
from separating out the initial states, which is discussed further
in the next section.

The parameter vector can be estimated using an iterative non-
linear search routine where the direction of update is dependent
at each iteration on the estimate of x;. The particular nonlinear
search used in this investigation was a quasi-Newton method,
where the gradient is estimated using a numerical update; see,
for instance, [16] and [17].

IV. PARAMETER AND STATE ESTIMATION FROM
MULTIPLE SIGNALS

A. Problem Definition

The identification task is to estimate the single set of model
parameters that describes the dynamic behavior of the system
that generated all the available signals and the initial states cor-
responding to each signal; that is, to minimize the cost function

1
V(0, X1) = 5ln(0, X1)lI3 (24)
where (6, X1) is the SPE corresponding to all signals and X
is the stacked initial state vectors corresponding to each signal

1T
X, = |:X§1)T XgM)T} (25)
where M is the number of signals.

As mentioned above, the task of solving the optimization
problem is separated into two parts: a closed-form solution of
the initial state vector as a function of the model parameters and
ii) parameter estimation via non-linear search. These are dealt

with in the subsequent section.
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B. Parameter and State Estimation

The model prediction error (6, X ) can be expressed using
a prediction model that is similar to (17), which is augmented
to include all signals,

n(6.X,) = T(8) — A()X, — I(6), (26)

where the model that predicts the output corresponding to all
signals is T(0) = A(0) X1 + I'(#) and

T(8) = [v{ vl @7)
F1(6) 0

A(B) = - (28)

r(o) = [v7 6T 0) ULGR®)] . @9

Substituting (26) in (24) leads directly to the definition of the
cost function

1
V(0 X1) = SIT(6) - AO)X: ~T@)I3  G0)
Formulating the above optimization task as a separable least
squares problem requires finding a closed-form solution for the
optimal initial state vector X as a function of #. Taking the
partial derivative of V (8, X;) with respect to X leads to

%V(a, X,) = XTAT(0)A6) — Y(0)TA(B) +TT(9)A(6).
(€2

Setting (0/0X1)V (0, X1) = 0 and solving for the optimal es-
timate X] leads to

Xi = AT(0)(7(9) - T(6)) (32)

where Af(8) denotes the pseudoinverse of A(8).

Substituting (32) in (30) has the desired effect of removing the
unknown initial state vector from the cost function V (6, X1),
leading to a new cost function that is only a function of the
parameter vector, that is

V(o) = %II[I— T(O)]Y(8) - [T(6) - IIT@)I5  (33)

where

U(0) = AB)AT(0). (34)
The optimal model parameters 6 are obtained by minimization
of (33)

A

0 = argminy V' (6). (35)

Note that this minimization problem is not a function of the
initial state vector. Hence, the number of parameters to estimate
via a non-linear search is reduced from Mn + ng to just ng,
where M is the number of signals, n is the system order and ng
is the number of model parameters.
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System Output

System Input

Time (s)

Fig. 1. One set of input/output training signals used in the test identification
problem.

V. ANALYSIS OF SLS PARAMETER ESTIMATION
ALGORITHM PERFORMANCE

This section describes the application of the SLS identifica-
tion algorithm developed above to a test problem, focusing on

the parameter estimation problem; a comparison is made with
LS.

A. Problem Definition

The discrete-time test system was described in input—output
form as

_0.04818q — 0.04583

G(g) = .
(9= T 88q 7 08825

(36)

A total of M = 10 signals were generated using a set of
input records (normally distributed zero-mean white noise) and
varying initial conditions in each case. The transfer function
G(q) was mapped into state-space control canonical form (of
system order n = 2) for the straightforward inclusion of initial
conditions; each initial state was defined as a random number,
drawn from a uniform distribution in the range (0, 1).

To simulate measurement noise each signal was corrupted
by normally distributed zero-mean white noise (adjusted to an
SNR of 20 dB for each separate signal). The duration of the
simulation was 5 s, and the sample rate was defined to be 20 Hz.
The training signals are shown in Fig. 1.

To demonstrate the consistency of each estimation algorithm,
the initial ten signals were duplicated 200 times with different
measurement noise corruption. Each estimation algorithm (LS
and SLS) was then applied to these different data sets. The LS
estimate was obtained by concatenation of the regression matrix
pertaining to each signal as described in [1].

The SLS estimation procedure was initialized by first low-
pass-filtering the signals (cut-off at 5 Hz) and then obtaining
the LS estimate from this filtered set of signals. This method
has been demonstrated to lead to improved results in the initial-
isation of parameter estimates for output-error-type modeling
approaches, over applying LS to the raw data [2].
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Fig. 2. Histograms that compare the true and estimated parameter values using (a) LS and (b) the SLS algorithm.
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B. Parameter Estimation Results 10 20 3 20 50 60 70

The application of each estimation algorithm led to parameter
estimates that were consistent. However, the LS method lead to
parameter estimates that were consistently and significantly bi-
ased (excepting the parameter by, which may have been due to
the fact that it was a gain term). In contrast, the application of the
proposed SLS algorithm reduced the bias in the estimate con-
siderably. The results of parameter estimation for each method
are shown in Fig. 2 in the form of histograms. The mean values
of the parameter estimates are given in Table 1.

To emphasize the poor performance of LS at even very high
SNR levels (as hypothesized in Section II), each estimation al-
gorithm (LS and SLS) was applied to a similar problem as de-
fined above, but varying the SNR (note that only one set of sig-
nals was used at each level of SNR). The results confirmed that
the LS estimate can be significantly biased at high SNR, whereas
the SLS algorithm can reduce the bias to very small magnitudes
at both low and high SNR. The results are shown in Fig. 3, in
terms of RMSE in the parameter estimates.

Signal-to-Noise Ratio (dB)

Fig. 3. Accuracy of parameter estimates when varying SNR.

VI. MODELING OF THE OCULOMOTOR PLANT

The modeling results presented here are compared to those
previously presented in [6]. That method utilized the contin-
uous-time system relationship x;, = e“*x;, and hence was only
useful in the case of modeling systems with zero input. The val-
idation results presented in [6] show that the method was effec-
tive in describing the system dynamics; therefore, the compar-
ison of new results presented here provides a cross-validation of
the generic SLS systems modeling algorithm developed above.

A. Data Collection

Measurements were obtained from a juvenile rhesus monkey
(Macaca mulatta), which was referred to as animal M in [6].
The animal had been implanted with a scleral search coil, a
recording chamber and stabilizing lugs. The location of the
nucleus prepositus hypoglossi had been mapped with standard
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Fig. 4. Mechanical connectivity of the oculomotor plant.
extracellular electrophysiological recording techniques, but the 40
nucleus itself had not been injected with ibotenic acid when 30} _
these measurements were taken.

Following calibration of eye movements by requiring the 5 20 ]
animal to fixate targets at known eccentricities, the animal was 3 10} _
lightly anaesthetized with ketamine (~10 mg/kg). Ketamine S
was chosen so that the animal would tolerate mechanical ® O ]
manipulation of the globe and because it is a dissociative & _10} i
anaesthetic and should thus minimize the affects on normal 2
activity level in brainstem structures. Topical anaesthetic could * 20 ]
not be used because completely alert animals do not tolerate 30 i
manipulation of the globe even when it is anaesthetised. The
exact dosage was titrated to the minimum level necessary —400 1 > 3 a 5 6 2

to allow the animal to tolerate manipulation of the globe. It
was low enough to avoid precipitating the vertical nystagmus
that often accompanies higher doses (e.g., 25 mg/kg). If the
threshold for vertical nystagmus was exceeded measurements
were postponed until a future session. Horizontal nystagmus
was never observed.

After a sufficient anaesthesia level was attained, the coiled
eye was deviated manually with small forceps to between 15°
and 45° either medial or lateral in the horizontal plane and
abruptly released. Care was taken to avoid vertical deviation by
monitoring eye position via the coil output. Trials were excluded
if the return to resting position could be seen not to follow a
smooth velocity trajectory due to the occurrence of a blink, sac-
cade or slow eye movement. Eye position was sampled at 1 kHz.

B. Modeling

1) Model Structure: Knowledge of the physical system can
lead to a useful representation of the system model in an identi-
fication context. This section describes the formation of an ap-
propriate model structure based on physical insight.

The connective tissue of the oculomotor plant is a viscoelastic
structure [18], which can be represented by a small number of
Voigt elements in series [6], [7], as described in Fig. 4. Fig. 4
shows the mechanical structure of the eye connectivity, where c;
is a damping constant and k; is an elasticity constant (the time
constant associated with the jth Voigt element is 7; = (¢;/k;)).

The model representation of the system with zero input is
defined in the state-space form as

(37
(38)

Xt = Axt_l

yi = Cx¢ + vy

Time (s)

Fig. 5. Eye rotation data used for training and validation.

The states can be defined with physical significance; in this case
the extension of a Voigt element. This requires the measured
output (the extension of the muscle) to be the sum of the exten-
sion of each individual Voigt element (that is, the states). This
leads to a natural definition of the state-space matrices as

j41 0
A= ) 39)
0 Dn
c= 1] (40)
where the poles of the system, p;, for: = 1,...,n, in the dis-

crete-time model are related to the time constants of the corre-
sponding Voigt elements (in the continuous-time system model)
by the relationship

T
log(p:)

T = , fori=1,...,n 1)

where T is the sample time.

To ensure that the model remained stable and nonoscillatory
(a known property of the system), the parameter estimates were
transformed within the search routine using the expression

~ 1
=T “
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Fig. 6. Converged parameter estimates from 200 random initial values, corresponding to model orders from 1 to 5, where each row of histograms corresponds to

a single model structure.

where 6 € [0, 1] was the transformed parameter vector; note that
6 € [—o0, 00]. In practice, this formulation of the problem led
to improved numerical properties: the associated problem was
due to the presence of a long system time constant, which cor-
responded to a pole situated close to the edge of the unit circle.
This pole would occasionally go unstable during the estimation
procedure, probably because such a relatively long time con-
stant acted like a constant offset in the short term and therefore
growth or decay (that is, instability or stability) of the pole was
insignificant over the recording scale of the data.

2) Data Preprocessing: The resting position of the eye (in
each case lateral to the primary position) was estimated from
inspection of all the eye-position traces. Traces that were in-
terrupted within 400 ms of release by discontinuities of slope
(possibly corresponding to active components such as small sac-
cades that are often associated with ketamine anaesthesia) were
excluded from further analysis. Each remaining trace was fitted
from the time of its maximum velocity, rather than from the time
of release. In theory, these two times should coincide for a pure
viscoelastic system released instantaneously, that is, the accel-
eration time should be zero. However, in the actual traces, the
time from release to peak velocity ranged from 8 to 20 ms, re-
flecting an unknown combination of (small) globe inertia and
the release time of the forceps opening. Fitting from the time of
peak velocity was an attempt to avoid these complexities: The
full set of signals are shown in Fig. 5. Training and validation
data sets were formed by partitioning adjacent trials, resulting
in a training set of five trials and a validation set of five trials.

3) Modelling Results: The model structure detection
problem for a real system is complicated by the fact that the
optimal parameters for a given structure are unknown. The ap-
proach taken in this investigation was to assess the consistency
of the parameter estimates by starting the estimation algorithm
at different values. In practice this was accomplished by se-
lecting the initial poles randomly from a uniform distribution in

9 T . .
8 J
7 J
6 J
Y 5 :
T4 -
3 J
2 J
1 J
0 1 é (I3 4 5
Model Order
Fig. 7. RMSE corresponding to increasing model order.

the range (0, 1). This incorporated the known prior information
about the system poles, that is, stable and real-valued. The esti-
mation algorithm was run from 200 different starting estimates
for each model order.

Fig. 6 displays the parameter estimates in the form of his-
tograms for model orders n = 1 to n = 5 (where each row
of histograms corresponds to a single model structure). It is ap-
parent that there is a consistency in the estimates at each model
order n = 1ton = 4; at model order n = 5, the consis-
tency begins to degrade, which may be due to the relative high
order causing overfitting of the data, and hence redundancy in
the system description.

Structure detection focused on obtaining a parsimonious
model description consisting of a few real poles (each of which
corresponded to the time constant associated with a single Voigt
element). Four poles were found to be sufficient to describe the
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Fig. 8. Model prediction over validation data for the model of oculomotor plant dynamics.

system, evidence for which can be seen in Fig. 7, which shows
the root mean square error (RMSE) of prediction for increasing
model orders.

The model was validated in the time domain by verifying its
prediction accuracy on the reserved independent data set; the
model predicted output is shown in Fig. 8. The accuracy of the
prediction demonstrates that this model was a good descriptor
of the system.

The discrete-time state-space model was identified as

0.9139 0 0 0
0 0.9910 0 0
A= 0 0 0.9982 0 “3)
0 0 0 0.9999

This model description corresponds to continuous-time domain
time constants of 7y = 0.0111 s, 75 = 0.110 s, 73 = 0.543 s,
and 74, = 12.5s.

These modeling results correspond closely to those presented
in [6] in terms of both structure (4 visco-elastic units) and pa-
rameter estimates, where the time constants were reported to be
approximately 0.01 s, 0.1 s, 1 s, and 10 s. These results provide
some validation as to the success of the generic modeling algo-
rithm for multiple short-time-duration signals proposed here.

VII. CONCLUSION

An SLS parameter estimation method was derived that
is useful for identifying a system from multiple short-time-
duration signals. The proposed approach utilized an output
error model; such a description naturally leads to a correct
treatment of measurement noise, unlike the ARX model, which

was demonstrated to potentially lead to significant bias at
even high SNR levels. Most conceivable physiological signals
would contain measurement noise, hence the output error
approach would appear to be widely applicable. The passive
characteristics of the oculomotor plant were identified using
the SLS algorithm; the results were validated by reference to a
previous study. This demonstrated the utility of the proposed
method because the oculomotor plant is a demanding system to
identify, incorporating a wide range of time constants.
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