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Optimal Advertising Campaign Generation
for Multiple Brands Using MOGA

Peter J. Fleming and Maksim A. Pashkevich

Abstract—The paper proposes a new modified multiobjective
genetic algorithm (MOGA) for the problem of optimal television
(TV) advertising campaign generation for multiple brands. This
NP-hard combinatorial optimization problem with numerous con-
straints is one of the key issues for an advertising agency when
producing the optimal TV mediaplan. The classical approach to
the solution of this problem is the greedy heuristic, which relies
on the strength of the preceding commercial breaks when selecting
the next break to add to the campaign. While the greedy heuristic
is capable of generating only a group of solutions that are closely
related in the objective space, the proposed modified MOGA pro-
duces a Pareto-optimal set of chromosomes that: 1) outperform
the greedy heuristic and 2) let the mediaplanner choose from a va-
riety of uniformly distributed tradeoff solutions. To achieve these
results, the special problem-specific solution encoding, genetic op-
erators, and original local optimization routine were developed for
the algorithm. These techniques allow the algorithm to manipu-
late with only feasible individuals, thus, significantly improving its
performance that is complicated by the problem constraints. The
efficiency of the developed optimization method is verified using
the real data sets from the Canadian advertising industry.

Index Terms—Advertising, evolutionary computation, genetic
algorithm (GA), multiobjective optimization.

I. INTRODUCTION

EVERY year, an enormous amount of money is spent on ad-
vertising. In 2003, the total cost of advertising in the U.S.

was about 200 billion dollars, and about 50% of this money
was spent on television (TV) commercials. Since advertising
involves “big money,” the mediaplanners are responsible for
making the mediaplans as effective as possible, and increas-
ing the efficiency of the mediaplanning results in huge profits
for advertising agencies and television networks. For example,
Bollapragada et al. [1] describe the case where their effective
optimization of the sales processes for the U.S. National Broad-
casting Company (NBC) resulted in an increase of revenues by
over 15 million dollars annually.

TV mediaplanning involves two major participants that are
television networks (stations) and advertising agencies, and can
be briefly outlined as follows. After announcing program sched-
ules, the TV networks finalize their rating forecasts, estimate
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market demand, and set the rate cards for the available advertis-
ing breaks. The rate cards contain 1-s price and expected rating
of a spot in a particular TV show. Mediaplanning agencies buy
advertising time for each of their clients from the networks, and
then produce advertising campaigns (mediaplans) for the brands
of clients.

Both networks and agencies face a number of time-consuming
mathematical problems during this planning process. The net-
works, on one hand, have to develop optimal program schedule,
accurately predict the ratings of the programs, and expected
demand for the commercial breaks in the shows. Besides, they
are faced with a problem of finding optimal advertising breaks
distribution between the agencies subject to the agency require-
ment constraints and limited advertising inventory restrictions.
A simplified flow chart of the TV network planning process is
given in Fig. 1. In real life, advertising agencies can buy com-
mercial breaks by parts and negotiate with the network on the
percentage of the spots that will be aired in the first and last
positions of the break. This creates an additional cumbersome
problem of rescheduling commercials during the last week be-
fore they are broadcasted [2].

The advertising agencies, on the other hand, develop their
own buying strategies and intend to bring their customers the
most efficient mediaplans possible. They deal with a number
of clients, with each client having a set of brands to be adver-
tised subject to brand-specific restrictions. A simplified flow
chart of the advertising agency planning process is presented in
Fig. 2. The first important problem for the agency is efficient
purchasing of advertising time. Besides, since major advertisers
(such as Proctor and Gamble, for example) buy hundreds of
commercial breaks and decide on the actual distribution of the
breaks between the advertising brands later, the agency meets
the problem of optimally assigning breaks in the pool purchased
for a client to the client’s brands, subject to the budget, mini-
mum impact, and other constraints. This problem includes two
subproblems, both of them being quite nontrivial. The first diffi-
culty is to develop a model that would allow accurate forecasting
of impact efficiency for the future advertising campaigns. The
second issue (that is a subject of this paper) is generating op-
timal mediaplans (advertising schedules) for the client brands
that maximize the impact on the TV viewers while satisfying all
the required restrictions.

Forecasting the efficiency of future advertising campaigns is
a statistical problem that usually involves longitudinal (panel)
data analysis techniques. A number of papers were published
on this topic, a good review of the approaches proposed can be
found in [3]. Besides, Weber [4] published some encouraging
results on application of neural networks to forecasting of
viewing patterns based on German telemetric viewing data for

1094-6977/$25.00 © 2007 IEEE
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Fig. 1. Simplified flow chart of the mediaplanning process for a TV network.

Fig. 2. Simplified flow chart of the mediaplanning process for an advertising agency.

specific target audiences. Recently, Pashkevich and Kharin [5]
proposed a robust version of the beta-binomial model that was
successfully applied for increasing forecasting accuracy in case
when the past exposure data were available in binary form (a
real data set from the German advertising market).

Optimization of advertising campaign efficiency is an NP-
hard combinatorial multiobjective optimization problem that
involves a number of complicated constraints. A classical ap-
proach to the solution of this problem is the greedy heuristic
that relies on the strength of the preceding breaks when select-
ing the next break to add to the campaign. Literature review
presented in the Section II indicates that very little research was
done on this topic. Besides, the proposed optimization algo-
rithms were developed either for generating campaigns for one
advertising brand or were based on reducing the multiobjec-
tive optimization problem to a single objective by the weighted
sum approach (a common way to select weights is based on
the budgets of brands being advertised) [6]. This usually leads
to discriminating the brands with smaller budgets, that is un-
desirable from the mediaplanners point of view. Hence, there

is a need for a true multiobjective optimization algorithm that
would provide the planner with a set of Pareto-optimal solutions
and let him decide which one should be used as a final solution,
based on his expertise and experience.

In this paper, we propose to use the multiobjective genetic
approach [7] to generate a set of Pareto-optimal solutions for
the problem of the advertising campaign efficiency optimization.

II. RELATED WORKS

A majority of literature on using the optimization techniques
in mediaplanning deals with scheduling programs for television
networks in order to optimize audience ratings. The common
method is the “lead-in” strategy that relies on the strength of
the preceding programs to boost the ratings of a newly in-
troduced one. This approach was successfully applied in a
number of papers (for details, see [8]–[11]). Several publica-
tions, such as [12] and [13] deal with an individual’s television
viewing choice. A comprehensive review of the viewing choice
models can be found in [6] and [14]. Rust and Echambadi [15]
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developed a heuristic algorithm for scheduling a television net-
work’s program to maximize a network’s share of audiences.
Reddy et al. [16] developed an optimal prime time TV pro-
gram scheduler based on the mixed-integer near-network flow
model that was successfully tested using the 1990 data from a
U.S. cable TV network. Several authors dealt with advertising
scheduling strategies; a review of this approaches is presented in
[17]. Recently, Bollapragada et al. [1] developed an optimization
system for the sales processes of the NBC. They used integer
and mixed-integer programming techniques to automatically
develop the schedules of commercials that meet all the require-
ments [2], and to schedule the commercials evenly throughout
the advertising campaign [18].

Although the mediaplanning issues for the advertising agency
and the TV network have much in common, they essentially
differ in mathematical formulation that opposes using common
optimization tools, including those mentioned above. In contrast
to the network mediaplanning, the problem of optimal campaign
generation for the advertising agency received very little atten-
tion in scientific literature, although a number of papers were
published on audience perception forecasting [4], [19], [20].
Classical approach to the optimal advertising campaign gen-
eration utilizes greedy heuristic that selects the most promis-
ing admissible break (for a particular brand campaign, step-by-
step) [3]. The breaks are assigned to the brands one by one,
and can be ordered in different ways (randomly, depending on a
distance to goals, etc.). Within this approach, the multiobjective
problem reduces to a single objective one by the weighted sum
technique, and the weights are calculated as normalized brand
budgets [21]. Being very simple to implement, this approach is
not robust to the local dynamic restrictions, and usually uses
some kind of rollbacks to overcome the violated constraints.

Recently, Pashkevich and Kharin [22] proposed a multistage
technique based on the hybrid genetic algorithm (GA) for gen-
erating optimal advertising campaigns for multiple brands. Al-
though this approach proved to be successful in real-world appli-
cations, it still relies on the weighted sum technique to improve
the solution after all the goals are attained. To our knowledge, no
results were published on the application of the multiobjective
methodology to the problem of optimal advertising campaign
generation for multiple brands.

It should be noted that other advertising problems, which
involve newspaper advertising and web-page commercials,
were also considered by the optimization research commu-
nity. Merelo et al. [23] used the GA for optimal advertise-
ment placement in different media. Naik et al. [24] utilized
the GA for developing the optimal pulsing mediaplans. Van
Buer et al. [25] considered solving the medium newspaper pro-
duction/distribution problem by means of the GA. Collins and
Harris [26] proposed to use the evolutionary approach to opti-
mal generation of print and multimedia advertising campaigns.
Ohkura et al. [27] employed an extended GA for the Japanese
newspapers advertisement optimization. Carter and Ragsdale
[28] addressed the problem of scheduling the preprinted news-
paper advertising inserts using the GA. Dawande et al. [29] pro-
posed special heuristics for optimal advertisement scheduling on
a web page. A lot of this research was inspired by [30], which

advocated using the GAs paradigm for solving time-consuming
marketing problems.

As follows from the aforementioned literature review, the
single-objective GAs were efficiently used to solve various me-
diaplanning optimization problems. Since the theory of multi-
objective GAs (MOGAs) was efficiently evolving over the last
decade, and had shown to be very valuable for practical ap-
plications, the authors propose to rely on the multiobjective
evolutionary paradigm to solve the problem considered in this
paper.

III. PROBLEM DESCRIPTION

Before presenting a mathematical problem statement, let us
give its informal problem description focusing on some practical
details. When an advertising agency buys commercial breaks
for major advertisers like Proctor & Gamble, Coca-Cola, etc.,
it sums the budgets of all the brands that the client wants to
advertise, and purchases common advertising time from the
TV networks. Then, the corresponding set of commercial slots
bought, usually referred to as a pool, must be distributed between
the brands, taking into a count a number of specific constraints
and goals (as shown in Fig. 3).

The major constraints associated with the brand are the maxi-
mum budget allowed to spend, the minimum gross rating points
(GRP), and the effective reach to be gained from broadcasting.
There are also several minor constraints, which can be divided
into two types. The first of them, the search space constraints,
can be taken into account prior to the optimization by narrow-
ing the brand search space. Some common examples are the
genre of a TV show, its day part and weekday, and the com-
mercial break length (since a brand commercial length must
not exceed the break length). Besides, it is prohibited to ex-
pose competitive brand commercials in the same TV advertising
break. The second type, the solution space constraints, highly
depends on the mutual positions of the brand commercials in
the entire adverting campaign plan. They can be also subdi-
vided into local and global ones, depending on the relationship
between the brands. Examples of the first subtype include min-
imum time interval between the successive brand exposures,
and maximum number of the brand commercials in the same
TV show. The second subtype arises when separate advertising
campaigns (for single brands) are combined together. Relevant
examples comprise maximum sum of the brand commercial
lengths within the same TV break, and taboo on exposing com-
peting brand commercials in the same TV advertising break
(for instance, washing powders Ariel and Dash of Proctor and
Gamble).

For each brand, the efficiency of an advertising campaign is
measured by two performance indices: 1) GRP and 2) effec-
tive reach (Reach). These indices are computed for a particular
segment of the viewing audience (target group) defined by the
agency client. By definition [3], the GRP is the cumulative sum
of audience percentages that watched the brand commercial,
which was exposed several times. It is obvious that this index
may overestimate the commercial impact, since it duplicates
(triplicates, etc.) the percentage of regular viewers who were
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Fig. 3. Generating optimal advertising campaigns for multiple brands based on the purchased pool of the commercial breaks.

covered by all the exposures. In contrast, the Reach index mea-
sures the unduplicated audience, and is defined as the percentage
of the viewers that watched the brand commercial at least once
(twice, thrice, etc.). It should be noted that the Reach index
saturates up to 100% as the campaign size increases, while the
GRP index is additive and may exceed 100%. An example of
the client requirements for a brand can be given as follows:
1) target group “Men 35+,” i.e., males of age 35 years and
older; 2) contact class “2+,” i.e., only target group members
who watched the commercial at least twice are included; 3)
minimum Reach 65%; and 4) minimum GRP 240%.

The primary goals of the advertising campaigns optimization
are achieving the best GRP and Reach for each separate brand,
while satisfying the lower bounds on both of them, as defined by
the client. Usually, mediaplanners optimize only one of these
criteria (Reach or GRP), and use the second one as a lower
bound constraint. Nevertheless, this leads to multiobjective set-
ting with highly competing objectives for different brands and
numerous constraints. It should be noted that when assessing
the efficiency of the mediaplan, the mediaplanners often rely
on additional criteria that can not be formalized and, therefore,
embedded into the optimization algorithm in full scale. This
may be caused by rapid changes on the advertising market or
some short-term strategical issues that make the planers partially
rely on their intuition. For this reason, we consider prudent to
propose to the decision maker a set of Pareto-optimal solutions
satisfying the formal goals and constraints, and let him make
final decision relying on his expertise, experience, and intuition.
This motivates application of the MOGAs, which are capable
of undertaking such a problem.

IV. PROBLEM FORMULATION

A. Basic Notation

We use the following notation to formally introduce the
problem:

B the set of commercial breaks, B={b1, b2, . . . , bm};
m the number of commercial breaks;
i an index of a commercial break;
Ti the length of the commercial break bi , in seconds;
P the set of brands being advertised,

P = {p1, p2, . . . , pn};
n the number of brands being advertised;
j an index of an advertising brand;
qj the number of commercials for the brand pj ;
tj the set of commercials for the brand pj , tj =

{tj1, tj2, . . . , tjqj
} sorted in ascending order;

tjv the length of the commercial v for the brand pj ;
Mj the advertising budget of the brand pj ;
hjv the budget share of the commercial v for the brand

pj ,
∑qj

c=1 hjv = 1;
∆j the minimum time length between two consecu-

tive commercials for the brand pj ;
kj the maximum number of commercials in one

show for the brand pj ;
Gj the GRP goal for the brand pj ;
Rj the Reach goal for the brand pj ;
cij the advertising price of one second in the break

bi for the brand pj ;
X the m × n matrix of the decision variables, X =

{xij};
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xij the commercial length if the brand pj is advertised
in the break bi , and 0 otherwise;

Xj the advertising campaign for the brand pj ,Xj =
{x1j , x2j , . . . , xnj};

Dj the admissible breaks for the brand pj after
applying the search space constraints;

dij 1 if the brand pj can be advertised in the break bi ,
0 otherwise, Dj = (d1j , d2j , . . . , dmj );

R(Xj ) the Reach of the campaign Xj for the brand pj ;
G(Xj ) the GRP of the campaign Xj for the brand pj ;
S the set of commercial breaks grouped by TV

shows, S = {s1, s2, . . . , sk},Σqj

c=1hjv = 1;
k the number of distinct TV shows;
l an index of a TV show;
F the n×n binary symmetric matrix of competing

brands constraints, F = {fj1j2};
fj1j2 1 if the brands j1 and j2 compete, and 0 otherwise;
t(bi) the absolute airing time of the break bi .

B. Problem Statement

Using the notation above, we present the mathematical prob-
lem formulation as follows.

Optimize Reach for each brand

R(Xj ) → max
I (Xj ) ∈ Dj

, j = 1, 2, . . . , n (1)

subject to the

� budget constraints

m∑
i=1

Itj v
(xij )xij cij ≤ hjvMj , j = 1, . . . , n,

v = 1, . . . , qj (2)

� goal attainment constraints

R(Xj ) ≥ Rj , G(Xj ) ≥ Gj , j = 1, 2, . . . , n (3)

� commercial-break length constraints

n∑
j=1

xij ≤ Ti, i = 1, 2, . . . ,m (4)

� minimum time length between two consecutive commer-
cials constraints

|t(bi1) − t(bi2)| · I(xi1j xi2j ) ≤ ∆j , i1, i2 = 1, . . . ,m,

i1 �= i2 (5)

� maximum number of commercials in one TV show
constraints∑
bi ∈sl

I(xij ) ≤ kj , l = 1, 2, . . . , k, j = 1, 2, . . . , n

(6)
� competing brands constraints

m∑
i=1

n∑
j1=1

n∑
j2=1

xij1
xij2

fj1j2 = 0 (7)

where I(x) = {1 if x > 0, and 0 otherwise}, Iy (x) = {1 if
x = y, and 0 otherwise}, and the functions are applied com-
ponentwise in case x and y are vectors.

The objective function (1) simultaneously maximizes the
Reach index for all advertising brands {p1, p2, . . . , pn} that
compete over the pool of commercial breaks {b1, b2, . . . , bm}.
Each brand pj has qj different commercials {tj1, tj2, . . . , tjq j

}
available for it, and each commercial tjv has a budget share
assigned (meaning that the subbudget of this commercial is
hjvMj ). Hence, the budget constraints (2) for every brand are
formulated as a set of inequalities (one for each of the brand
commercials). Please note that in the general case, the 1-s ad-
vertising price cij in the break bi depends on the product pj

being advertised due to the specific agreements between the
advertising agency and the TV network. The goal attainment
constraints (3) ensure that in the generated set of Pareto-optimal
solutions, every brand gains at least a minimum value of Reach
and GRP indexes. The commercial break length constraints (4)
guarantee that the total length of the commercials placed into a
break does not exceed its length. Equation (5) describes the con-
straints for the minimum time length between two consecutive
commercials for the same brand, while (6) limits the number of
commercials of one brand placed in the same break. Competing
brand constraints (7) make sure that only one of the competing
brands can be placed in the same commercial break.

In addition to the aforementioned hard constraints, there are
additional soft problem constraints that are not mandatory but
are desired to be accomplished. The budget for each commercial
length of every advertising brand should be spent as completely
as possible. This requirement arises from the practical aspects
of the problem, since the profit of the mediaplanning agency
depends on the advertising budgets of their clients.

The formulated mathematical problem is an NP-hard multi-
objective optimization problem of high dimension (usual values
for n and m are 1500–125000 breaks and 30–75 brands for one
month optimization depending on a county). Hence, applying
the branch-and-bound or other exact technique does not seem
prudent, and the problem is solved by means of metaheuris-
tics. In this paper, we apply a specially designed version of the
MOGA of Fonseca and Fleming [7] to solve the problem (1).

V. MULTIOBJECTIVE EVOLUTIONARY APPROACH

The evolutionary computation employs biology concepts of
natural selection and population genetics to solve optimization
problems that are hard or impossible to solve using traditional
optimization techniques [31]. The major difference of the evo-
lutionary algorithms (EAs) and other heuristical methods is that
the EAs rely on a population of solutions, rather than on a single
individual in the decision variable space. This research direction
was started by the pioneer work of Rechenberg [32] who pro-
posed the evolutionary strategies to solve complex optimization
problems, and was followed by Fogel [33] with the evolution-
ary programming, and Holland [34] with the GAs. The theoret-
ical results for the GA obtained by Goldberg [35], such as the
Schema Theorem, made them very popular search techniques
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that resulted in numerous applications and enhancements of this
optimization paradigm [36].

The GAs maintain a population of individuals that compete
with each other for survival. After evaluation, individuals are
given a probability of recombination that depends on their fit-
ness. Offsprings are produced via crossover, where they in-
herit some features from the ancestors, and via mutation, where
some innovative features can appear. At the next iteration, the
offsprings compete with each other (and possibly also with
their parents). Population improvement happens due to the re-
peated selection of the best parents, which are likely to produce
better offsprings, and elimination of solutions that have low
performance.

The MOGAs use the GA ideas to solve the multicriteria
optimization problems. Historically, the population-based non-
Pareto approaches were used to deal with this problem to start
with. The first version of this technique was proposed by Schaf-
fer [37], whose vector evaluated GA (VEGA) had modified
selection procedure so that, at each generation, a number of
subpopulations are generated according to each objective. Four-
man [38] proposed to use the selection scheme based on the
lexicographical ordering of the objectives according to the user
priorities. Another version of the Fourman’s algorithm consisted
of randomly selecting the objective to be used for comparison
of individuals in the tournament selection. Kursawe [39] pro-
posed a multiobjective version of the evolutionary strategies,
with each objective used to delete an appropriate fraction of
the population during selection. Hajela and Lin [40] combined
the GA with the weighted sum approach by explicitly includ-
ing the weights into the chromosome, and using the fitness
sharing to promote their diversity.

The Pareto-based MOGAs use the concept of Pareto optimal-
ity to rank the individuals in the population. The first version
of the Pareto ranking was proposed by Goldberg [35], and was
based on the consecutive computing of the dominating subpopu-
lations, thus, assigning the ranks to the individuals according to
the subpopulation index. Fonseca and Fleming [7] proposed an
extension of this approach, where a solution’s rank corresponds
to the number of individuals in the current population by which
it is dominated. Therefore, the nondominating individuals are
all assigned the same rank, while the dominated ones are pe-
nalized according to the density of the population around them.
The calculated ranks are then sorted and mapped into fitness,
and the stochastic universal sampling (SUS) is used to perform
the selection [41]. Besides, Horn and Nafpliotis [42] proposed
a modification of the tournament selection based on the Pareto
dominance. Cieniawski [43] and Ritzel et al. [44] used the tour-
nament selection that relied on the Goldberg’s Pareto-optimal
ranking scheme.

The MOGA of Fonseca and Fleming [7] was the first Pareto-
based evolutionary technique proposed for the multicriteria op-
timization problems. In addition to the aforementioned special
ranking procedure, it relies on the niche-formation methods to
distribute the solutions uniformly over the Pareto-optimal re-
gion, with the fitness sharing performed in the objective func-
tion space, and special method for the niche size calculation.
Besides, the decision maker (DM) can incorporate the goal at-

tainment information into the ranking procedure. The algorithm
extensions proposed in [45] also allow the inclusion of the DM
preferences for the objectives into the ranking. The MOGA was
successfully used to solve a number of applied problems, e.g.,
design of a multivariable control system for a gas turbine en-
gine [46], multiobjective optimization of ULTIC controller [47],
design of a coal burning gasification plant [48], and other
applications.

Other well-known versions of the evolutionary multiobjec-
tive algorithms include the niched Pareto GA (NPGA) of Horn
and Nafpliotis [42], and the nondominated sorting GA (NSGA)
of Srinivas and Deb [49]. In the late 1990s, a number of new
methods for the considered problem were developed, which fo-
cused on improving the selection-for-survival aspect, including
the techniques for population density estimation. The developed
techniques include the strength Pareto evolutionary algorithm
(SPEA) of Zitzler and Thiele [50], the Pareto envelope-based
selection algorithm (PESA) of Corne et al. [51], and the eli-
tist nondominated sorting GA (NSGA-II) of Deb et al. [52]. It
should be noted that a more detailed review of the evolution-
ary approaches to multiobjective optimization problems can be
found in [53]–[55].

This paper proposes an application-specific modification of
the MOGA for the aforementioned mediaplanning optimization
problem. The developed algorithm uses the original MOGA
framework, but employs the specially developed encoding pro-
cedure and genetic operators, as well as the original local opti-
mization routine. These modifications allow manipulating only
with feasible solutions on each algorithm iteration. We verify
the efficiency of the developed optimization technique using the
real data sets from the Canadian advertising industry.

VI. DEVELOPED MODIFIED MOGA

The major challenge in developing the efficient MOGA for
the problem of optimal advertising campaign generation for
multiple brands is effective constraints handling. We propose to
use a modification of the MOGA of Fonseca and Fleming [7],
which takes into account the problem specificity by using spe-
cially developed solution encoding scheme and related genetic
operators. Another innovation deals with the local optimization
routine, which employs an original approximation procedure for
the problem objective functions.

To handle the constraints (2)–(7), we divide them into four
groups, which are processed in the following ways.

1) The search space constraints {Dj}, i.e., the commercial
break length constraints (4), and the competing brands
constraints (7) are taken into account by the solution
encoding.

2) The solution space constraints, i.e., the budget constraints
(2), the minimum time length between two consecutive
commercials constraints (5), and the maximum number of
commercials in one TV show constraints are taken into
consideration via the genetic operators.

3) The goal attainment constraints are handled via special
ranking procedure that is used to calculate the solution
fitness.
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4) The soft budget constraints are accomplished by reject-
ing the solutions that have commercials with the budget
surpluses of more than a user-defined threshold.

The authors believe that the “death penalty” approach used in
4) is suitable here, since the large budget surplus in a solution
usually means ineffective handling of the commercial break
length constraints, and thus, it is not expected to contribute to
the tradeoff surface.

The following sections describe the proposed solution en-
coding, initial population generation, genetic operators, local
optimization routine, as well as the fitness and population man-
agement used in the developed algorithm.

A. Encoding and Decoding

To encode the problem solution, let us introduce the following
notation.

G the chromosome (solution, individual) of the algorithm,
G = {g1, g2, . . . , gm};

gi the gene that corresponds to the commercial break
bi, gi ∈ {0, 1, . . . , ri};

ri the number of possible states for the gene gi ;
Wi the set of possible states for the gene gi, |Wi | =

ri,Wi = {wz
i |z = 0, 1, . . . , ri};

z the break state index;
wz

i the state number z for the gene gi, w
z
i =

{vz
i1, v

z
i2, . . . , v

z
in};

vz
ij = 0 if the state z of the gene gi does not include the

brand pj , else index of a commercial.
The notation implies that the advertisements for the break bi

are coded in the gene gi by a break-state index z, and there is
a bijective mapping between this index and the actual commer-
cials that are aired in the break. The set of possible states Wi

for the gene gi is defined as

wz
i ={vz

i1, v
z
i2, . . . , v

z
in} ∈ Wi

⇒




vz
ij > 0⇒ dij = 1∑n

j=1 I(vz
ij ) · tjv z

i j
≤ Ti ;

vz
ij1

> 0, vz
ij2

> 0⇒ fj1j2 = 0
(8)

and the states are numbered from 0 to ri for implementation
convenience. For example, assuming the states lexicographical
ordering and two brands with all the commercial lengths admis-
sible for a break, the zero break state means that the break is
empty, the states z = 1, . . . , q1 correspond to airing the com-
mercials t1v , v = 1, . . . , q1, in the break, while the states z >
q1 + q2 stand for airing a mix of commercials for both brands
in the break.

As mentioned earlier, the proposed encoding takes into ac-
count the search space constraints, the commercial break length
constraints (4), and the competing brands constraints (7), thus,
minimizing the restrictions to be handled during the algorithm
run. Another advantage of the proposed encoding approach is
the ability to quickly code and decode solutions, since the sets
of the possible states {Wi} have to be computed only once be-
fore the GA iterations start. Having a set of tables of this kind

for each break enables fast coding and decoding of the solutions
during the algorithm run.

B. Initial Population

To generate the initial population, we use the classical greedy
heuristic. In the case when the heuristic is not able to generate a
defined number of distinct solutions, we use multiple mutations
of the obtained individuals to fill the gap. This approach has
shown to be substantially more efficient when compared to var-
ious random initial population generation techniques, while still
being able to develop an even distribution of the Pareto-optimal
solutions along the tradeoff surface.

The idea of the greedy heuristic is to assign the values to the
decision variable one by one, making the best available decision
at every step [31]. In the case of the problem considered in this
paper, at each greedy algorithm step, the current advertising
brand picks an admissible commercial break that ensures the
minimum cost per incremental Reach point, and adds it to the
campaign. The order in which the brands are scheduled to select
the breaks is defined by a random permutation at each algorithm
round, and thus, the heuristic can produce different solutions in
different runs.

It should be noted that other versions of the greedy heuristic
for the considered optimization problem exist. For example,
each brand can be allowed to spend a defined share of the
budget (5%, for instance) on each algorithm round. For the
case studies considered in this paper, the described version of
the algorithm has showed to be the most efficient one. However,
we implemented both versions, and performed the preliminary
analysis of their efficiency before each computational study.

The mutation procedure that we have used to complete the
initial “greedy” population is described in Section VI-C. We
employ it only if the classical heuristic fails to generate a defined
number of distinct individuals. This may lead to the undesired
lack of population diversity during the first iterations of the
algorithm; thus, adaptive tuning of crossover and mutation rates
might be needed to overcome this difficulty.

C. Mutation

We perform the mutation of a solution G = {g1, g2, . . . , gm}
on componentwise basis, with all the genes having a small fixed
probability to be modified. If the gene gi is selected for the
mutation, we randomly change its value to that of one of the
equiprobable states {0, 1, 2, . . . , ri}. In the phenotype terms, it
means that different brands and commercials that satisfy the
break length, search space, and competitive brands constraints,
are assigned to the break bi instead of the old ones. After the
genes modifications, there exists a possibility of the budget,
minimum time interval, and maximum number of commercials
constraints violation such that the obtained solution may be
infeasible. To overcome this problem, we utilize the approach
of “repairing” the infeasible individuals by the mutation op-
erator. The repairing is performed by withdrawing some com-
mercials from the breaks, while selecting the ones that lead to
the minimum objective function decrease per unit cost. Besides,
some brands can have their budgets under-spent after the genes
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Fig. 4. Mutation and crossover operators (before “repairing”).

modifications, and it is intuitively appealing that spending the
rest of the budget will make the solution more feasible. Hence,
we use a special version of the greedy heuristic to optimally
distribute the budget surpluses [62].

D. Crossover

We perform the crossover of solutions G1 =
{g1

1 , g1
2 , . . . , g1

m} and G2 = {g2
1 , g2

2 , . . . , g2
m} by: 1) copy-

ing the equal genes of the individuals G1 and G2 to the new
chromosome and 2) optimally distributing the rest of the budget
for the offspring solution by means of the greedy heuristic.

Fig. 4 illustrates the ideas of the proposed mutation and
crossover operators before the resulted solutions are repaired
with respect to violated constraints.

To optimally distribute the budget surpluses for the offspring
chromosome, we apply a modification of the greedy heuristic.
To handle the soft budget constraints of the problem, we give
priority to longer commercials when purchasing the advertising
time; thus, the algorithm starts from distributing the rest of the
budget for the longest commercial, and proceeds step by step to
the shortest.

To avoid lethal offsprings, we introduced mating restrictions
to the crossover process. The similarity measure between two
chromosomes was defined as

D(G1, G2) = m−1
m∑

i=1

Ig1
i
(g2

i ) (9)

and we allowed the individuals to mate only if their similarity
measure was above a defined threshold. The empirically defined
value of the threshold for both case studies was 0.9.

The developed genetic operators and the solution encod-
ing technique allow having feasible solutions at each itera-
tion of the developed MOGA (for hard problem constraints).
The soft problem constraints are taken care of by the “death
penalty” approach. In Section VI-E, we present a local opti-
mization routine that is used to speed-up the performance of the
algorithm.

E. Local Optimization Routine

To improve the performance of the algorithm, we hybridize
it with a specially developed local optimization routine. The
basic idea of the proposed technique is to generate a set of
close promising feasible solutions for the individual, which can
be then used to develop a part of the tradeoff surface in the

neighbourhood of this individual. Thus, the developed local op-
timization procedure was subject to the following requirements.

1) The generation of the neighbourhood solutions process
must not be time consuming.

2) Each solution in the generated set must be feasible.
3) From all the solutions close to the individual, the promis-

ing ones must be favored.
4) The technique must not be limited to the greedy heuristic

philosophy.
The first requirement is to enable the algorithm to apply the

local optimization search to all new individuals generated by
the genetic operators (memetic approach). The last require-
ment is meant to overcome the limitation of the mutation
and crossover operators that both rely on the greedy heuristic
ideas.

We propose the following approach that takes into account
all the aforementioned properties. First, we unload a defined
small share of the budget (5% was used for the case studies)
for each brand, using the same approach as for the mutation
operator. Then, we calculate Reach per cost (RpCijv ) for each
brand pj , the commercial tjv , and the admissible break bi (or we
set it to zero if this combination is not admissible). This value
is considered to measure the validity of adding the break bi to
the campaign of the brand pj using the commercial tjv . Then,
we transfer Reach per cost to the “attractiveness” probability for
every brand using

PA (i, j, v) = f(i, j, v)/
∑m

i1=l

∑qj

v1=1
f(i1, j, v1)

f(i, j, v) =
(

RpC(i, j, v)/min
i1,v1

RpC(i1, j, v1)
)α

(10)

where α ≥ 1 defines the importance that is assigned to the
breaks with higher Reach per cost (α = 2 was used for the case
studies). Finally, at each procedure step, the brands randomly
select breaks from the corresponding distributions (10); with
brands order also being defined randomly on each step.

The developed local optimization technique contributes both
to the improvement of the objective function values, and to the
uniform distribution of the solutions in the Pareto-Optimal set.
Fig. 5 illustrates the key ideas that make this additional genetic
operator useful for the considered problem. We apply the local
optimization to all new solutions that were generated by the
crossover and mutation [Fig. 5(a)]. For each of these solutions,
we produce a neighbourhood of promising individuals, which
results in the new Pareto-optimal chromosomes being added to
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Fig. 5. Contribution of the local optimization operator to the developed modified MOGA.

the archive [Fig. 5(b)]. Besides, these Pareto-optimal individuals
are uniformly distributed around the solution that was used for
local optimization, thus, increasing the result of the classical
genetic operators (since instead of getting a single point for
each new solution, there is also a sub-Pareto-optimal surface
piece for this individual). Finally, after applying the selection
with the fitness sharing and SUS, the new generation contains
the solutions that tend to distribute evenly along the developed
tradeoff set [Fig. 5(c)].

F. Fitness and Population Management

Following the comparison results reported in [55], we use the
combination of the adaptive fitness sharing [7] and the elitist
selection [57] to manage the population. The simulation results
have supported this approach, with the adaptive fitness shar-
ing ensuring better individuals distribution along the tradeoff
surface, and the elitist selection speeding up the algorithm con-
vergence. Besides, we use the modified multiobjective ranking
procedure, which allows including the goal attainment informa-
tion when ranking the individuals. We present an overview of
the employed techniques in the following.

In the multiobjective ranking of Fonseca and Fleming [7], an
individual is assigned a rank based on the number of solutions in
the population that dominate it. Consider a chromosome Gi of
the generation t that is dominated by p

(t)
i solutions in the current

population. Then, the rank of the individual Gi is defined as

rank(Gi, t) = 1 + p
(t)
i .

Hence, all the nondominated individuals will be assigned rank
1, while the dominated ones will be penalized according to the
population density of the corresponding region of the trade-
off surface. Besides, this ranking technique is extended to the
case when each objective is assigned a goal and priority. For
example, a dominated solution that satisfies all the goals may
be considered more preferable to the nondominated solution
that does not meet all the objectives. In this paper, we use the
described ranking procedure to take into account the goal at-
tainment constraints (3). Subsequently, the exponential rank-to-
fitness mapping with the selective pressure e is used to calculate
the fitness.

The fitness sharing in the MOGA is aimed at providing the
uniform sampling of the solutions in the Pareto-optimal set [56].
During the GA iterations, the diversity of the population can be
lost due to the effect of the random genetic drift [35], where the
solutions tend to converge to a single point that represents the op-
timum solution. While being acceptable for the single-objective
unimodal optimization problem, this phenomenon can lead to
identifying only a small region of the tradeoff surface for the
multicriteria setting. To overcome this difficulty, niche induc-
tion techniques were introduced to improve the diversity in the
population [57]. According to this approach, the solutions tend
to distribute themselves around the multiple optima and form
regions that are referred to as niches. Fitness sharing is one of
the niching techniques that lowers each individual’s fitness by
an amount that depends on the number of “similar” individuals
according to some measure [58]. For the multiobjective opti-
mization problems, the similarity measure is usually introduced
in the objective function space, since the goal is to achieve
an even distribution of the Pareto-optimal solutions along the
tradeoff surface [45].

In the fitness sharing approach, the shared fitness of the in-
dividual l is defined as f ′

l = fl/ml where the niche count ml

measures the approximate number of individuals with whom
the fitness fl is shared

ml =
∑N

t=1
sh(dlt).

Here, N is the population size, dlt is a distance between the
individuals l and t, and sh(.) is the function that measures the
individuals similarity

sh(dlt) =
{

1 − (dlt/σs)α , if dlt < σs

0, otherwise.

The parameter α regulates the shape of the sharing function
and is commonly set to one, with the resulting sharing function
referred to as the triangular function [35].

The algorithm developed in this paper relies on the phenotypic
sharing that measures the distance dlt in the objective function
space. The Euclidian measure is employed to compute dlt , and
the estimation of the niche size parameter σs is performed by
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Fig. 6. Flow chart of the developed modified MOGA.

solving

Nσn−1
s −

∏n
j=1 (Mj − mj + σs) −

∏n
i=1 (Mj − mj )

σs
= 0

where Mj and mj are the maximum and minimum of each
objective, respectively.

Elitism can be summarized as preserving the high-
performance solutions from one generation to the next. This
approach has proved to be a powerful tool for improving the
efficiency of the evolutionary algorithms [59], [60]. The con-
ducted simulation study has shown that this fact also holds
for the optimization problem considered in this paper; hence,
we always kept one individual with the highest fitness in the
population.

Fig. 6 summarizes the work-flow of the developed modified
MOGA. Using the classification employed in [61], the pro-
posed routine is based on the generic framework when the local
search is applied to all new solutions generated by the multi-
objective evolutionary algorithm. Implementation details of the
procedures described in Section VI can be found in [62]. In
Section VII, we present the application example that confirms
the efficiency of the proposed technique.

VII. COMPUTATIONAL RESULTS

We tested the developed modified MOGA using real data
from the Canadian advertising market. We used a mediaplan
for September 2004, which was generated by an advertising
agency for one of the major advertisers in Canada. To develop
the advertising campaigns, the agency used the greedy heuristic
described earlier. We demonstrate the efficiency of our algorithm
by improving the advertising effectiveness for subsets of brands
from the original campaign, thus, increasing the overall impact
of the mediaplan. It is to be noted that exact methods for the
solution of the problem considered in the paper are not available,
and the problem sizes considered in the case studies are already
too high for straightforward techniques like the branch-and-
bound method.

In case study, we selected two low-budget noncompeting
brands p1 and p2, and generated the pool of commercial breaks
as all the advertising time that was assigned to these two brands
by the agency in the original mediaplan. Then, we distributed
this pool between the brands: 1) by means of the greedy heuristic
and 2) by using the developed modified MOGA.

Finally, we compared the tradeoff surface generated by the
developed modified MOGA to the “greedy” solution. We would

Fig. 7. Classical greedy heuristic versus the developed modified MOGA.

like to note that in this case, the multiple runs of the greedy
heuristic produced very similar individuals that resulted in low
diversity during the first algorithm iterations.

The selected brands p1 and p2 had the budgets of $3740 and
$7332, respectively, and were aimed at the heavily intersecting
target groups “Women 18–34” and “Women 18–49 with kids
under 12.” The first brand p1 had commercials of length 15 and
30 s with the corresponding budget shares of 20% and 80%,
respectively, while the second brand p2 had commercials of
length 15 s. The minimum Reach constraints were set at 10%
and 13%, respectively, while the GRP goals for these brands
were, respectively, defined as 15% and 40%. The pool consisted
of 112 commercial breaks—about 73% of them being 15s long,
and 27% being 30s long.

We present the results of the study in Fig. 7. As follows from
the figure, the solution of the classical greedy heuristic is essen-
tially improved and dominated by the Pareto-optimal solutions
generated by the developed modified MOGA. An aggregated
improvement of the MOGA versus the classical approach can be
roughly estimated as $1000 versus about $11 000 total budget of
the brand, that is a very significant increase. We calculated this
figure based on the cost per gained Reach point of the greedy
solution, so that it can be interpreted as to how much money
the agency would have to spend to achieve the results of the de-
veloped technique while using the greedy heuristic to solve the
problem. A more detailed analysis of the presented case study,
as well as further application examples can be found in [62].
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VIII. CONCLUSION

We proposed a multiobjective algorithm approach for the
problem of optimal TV advertising campaign generation for
multiple brands. The advertising agencies use the greedy
heuristic to solve this NP-hard combinatorial optimization prob-
lem with numerous constraints. While this traditional approach
is limited to the solutions that are closely related in the objec-
tive space, the developed modified MOGA produces a Pareto-
optimal set of solutions that: 1) outperforms the greedy heuristic
and 2) allows the decision-maker to choose from a variety of
optimal tradeoff alternatives.

To achieve high performance, we developed the problem-
specific solution encoding, genetic operators, and original local
optimization routine for the algorithm. These techniques allow
the algorithm manipulating with only feasible individuals, thus,
significantly improving its convergence that is complicated by
the problem constraints. The efficiency of the developed mod-
ified MOGA is verified using the case studies for the real data
sets from the Canadian advertising market.

Future work will deal with improving the algorithm operators
to let them take into account additional constraints that may arise
in the considered problem. Besides, an additional study needs to
be performed to allow choosing the best algorithm parameters
in different application settings. Another challenge will be to
include additional optimization objectives to the problem for
each of the brands.
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