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A Canonical Space-Time State Space Model: State
and Parameter Estimation

Michael Dewar and Visakan Kadirkamanathan, Member, IEEE

Abstract—The maximum likelihood estimation of a dynamic
spatiotemporal model is introduced, centred around the inclusion
of a prior arbitrary spatiotemporal neighborhood description.
The neighborhood description defines a specific parameteriza-
tion of the state transition matrix, chosen on the basis of prior
knowledge about the system. The model used is inspired by the
spatiotemporal ARMA (STARMA) model, but the representation
used is based on the standard state-space model. The inclusion of
the neighborhood into an expectation-maximization based joint
state and parameter estimation algorithm allows for accurate
characterization of the spatiotemporal model. The process of
including the neighborhood, and the effect it has on the maximum
likelihood parameter estimate is described and demonstrated in
this paper.

Index Terms—Dynamic spatiotemporal modeling, expectation-
maximization (EM) algorithm, maximum likelihood parameter es-
timation, state-space.

I. INTRODUCTION

D
YNAMIC spatiotemporal systems can be represented

using models which describe the correlation information

found in observations of the system. A typical assumption is

that this correlation is local in nature, with the implication that

global behavior in the observations is an emergent property of

local interactions.

A popular technique to describe local correlations is to define

a neighborhood which limits the modeled correlation to a local

spatio–temporal region. Lattice based spatio–temporal models

such as cellular automata [1] and coupled map lattices [2] use

this technique, where the neighborhood is defined in terms of a

spatio–temporal translation operator [3]. However, these models

are restricted to data sets with a regular lattice structure [4].

The spatio–temporal autoregressive moving average

(STARMA) model [5]–[7] avoids the restriction of lattice

based models whilst maintaining the neighborhood structure.

This motivates their use for real-world system identification

[8], where spatially correlated signals are often gathered which,

whilst being regularly sampled in time, are irregular in space

[9].

STARMA models represent the spatio–temporal process

using a set of correlated time series, an approach which lends
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itself to systems which are observed at a reasonably small

number of observation locations but which are heavily sampled

in time. For example, in oesophageal station manometry [10], a

small number of pressure sensors are placed in the oesophagus

in order to record the pressure across time at several locations

during peristalsis. Similarly, although on a different spatial

scale, multielectrode probes make ensemble recordings of

neural activity at a number of different spatial locations over

time [11]. A third example is given by [12] wherein measure-

ments of truck flows were made monthly at eight locations on

the Mexico-Texas border over a period of three years. In each

of these cases, STARMA models are applicable as models of

the underlying processes.

This paper’s aim is to introduce the idea of a neighborhood

description to the dynamic state space framework to model spa-

tially correlated time series. The estimation of the state space

model consists of using the observed field to estimate the hidden

field and model parameters, both of which are constrained by the

neighborhood description. From the point of view of estimation

these unknown quantities are conditionally dependent, so an it-

erative technique is used to solve the joint estimation problem.

In a maximum likelihood framework, the natural solution

to such a problem is to use the well-known expectation-max-

imization (EM) algorithm. The application of the EM algorithm

to linear dynamic systems [13] has potential advantages over

the more popular subspace methods [14], [15]. Importantly, the

maximum-likelihood construction allows direct inclusion of a

neighborhood-based parameterization of the state-space model

which can subsequently be used to estimate the hidden field. In

this context, the algorithm utilizes the Kalman Smoother [16]

to perform expectation with respect to the hidden field, before

analytically maximizing the resulting likelihood function.

This paper introduces a principled method of including this

neighborhood information using a neighborhood-based pa-

rameterization mapping, and describes the resulting estimation

algorithm within the EM framework. Section II describes the

spatio–temporal model, the neighborhood definition and an

algorithm to generate the necessary parameterization mapping.

Section III describes the EM-based algorithm for estimation

of the spatio–temporal model. Section IV illustrates the devel-

oped techniques using a selection of synthetic models. Finally,

Section V concludes.

II. SPATIO–TEMPORAL MODEL

The spatio–temporal process to be modeled exists in the space

formed by where is the spatial domain of interest and

is the temporal domain. The temporal domain is always as-

sumed to be one dimensional and the process is assumed to be

causal. The spatial domain can be up to three dimensions with

1053-587X/$25.00 © 2007 IEEE
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no inherent causality. These fundamental properties give struc-

ture to the spatio–temporal problem, leading to much discussion

about symmetry and separability of representation [17].

The spatio–temporal system is observed as a set of spatially

arranged and correlated time series. This motivates the use of

a spatio–temoprally indexed hidden variable, such that the cur-

rent hidden field is comprised of current and past filtered values

of the time series, where the number of included past values de-

pends on the maximum autoregressive order of the spatio–tem-

poral process. Let denote the maximum temporal autoregres-

sive order of the process and let be a hidden variable at

a specific spatio–temporal location .

Assumption 1: The dynamics of the hidden field are repre-

sented by

(1)

where denotes the state vector

where is the number of observation locations and where the

superscript T symbol denotes the transpose operator. The state

matrix is arranged in the following canonical form

(2)

where contains parameters and and denote the

identity and zero matrices respectively, such that .

The by matrix maps the state disturbance

onto the next state. The disturbance on the state is

modeled using Gaussian white noise where

and denotes a Gaussian distribution

with mean and covariance . The collection of states up to

time is defined as .

Assumption 2: The mapping between elements of the hidden

field and the observed field is given by

(3)

where denotes discrete-time. The by observa-

tion matrix is constructed so that the current output

is a noise corrupted version of the hidden variables . The ob-

servation vector is formed from the current value of

the time series associated with each observation location

where is a spatial location and is the number

of spatial dimension. The observation disturbance is denoted

and is modeled by Gaussian white noise with dis-

tribution where . The collection

of observations up to time is defined as and

the collection of both the states and the observations is denoted

.

Assumption 3: The system is assumed to be stationary in

time.

The above assumptions define the model of the spatio–tem-

poral system and have a number of implications. The construc-

tion of in Assumption 1 implies that state disturbance

is only associated with the current value of the filtered time se-

ries and not with the past time series values

which together construct the hidden field at time . This is due

to the canonical structure of the model. Assumption 3 implies

that the parameters of the model are time invariant. Note that

this does not imply that the field to be modeled is completely

homogeneous. Rather, each hidden variable dynamical process

has spatial-location specific parameters, but these parameters re-

main invariant over time.

By partitioning the state vector into current and past hidden

variables

where the partition

and the remainder of the state vector is denoted allows the

model be written

(4)

(5)

(6)

This structured form of the model is observable and unique [18].

A. Neighborhood

Definition 1: The neighborhood associated with a hidden

variable at spatio–temporal location is a known

subregion of . Hidden variables which fall within the

neighborhood of are known as neighbors of the variable

at . The set of neighbors associated with the hidden vari-

able is denoted .

As an example neighborhood, consider the oesophageal peri-

stalsis example mentioned in Section I. Station manometry al-

lows the collection of time series at locations along the length of

the oesophagus, as shown in Fig. 1. As a patient swallows, sen-

sors measure the pressure as the peristaltic wave travels down

the oesophagus. Due to this downward direction of the peri-

staltic wave, a reasonable assumption is to choose a neighbor-

hood that describes the hidden variable at a particular location

in relation to those above it. If the spatial location is measured

as the distance from the top of the oesophagus, such a neighbor-

hood could be described using

(7)

where, at each lag , a spatial area above with upper bound

defines the neighborhood of .

Assumption 4: A hidden variable is conditionally indepen-

dent of all variables outside its neighborhood, such that

(8)

where and .
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Fig. 1. Neighborhood construction to model the oesophagus from station
manometry observations. Each circle represents a hidden variable at a specific
space and time. The shaded area is the neighborhood of the hidden variable at
(s ; t).

TABLE I
CONSTRUCTION OF THE NEIGHBORHOOD MAPPING MATRIX

B. Structure in

The neighborhood definition introduces extra structure into

the parameter matrix where, following Assumption 4, param-

eters representing relationships between non-neighboring states

are known to be zero-valued. A mapping from the (known and

unknown) parameter space defined by to the unknown param-

eter space is developed.

Let denote the number of unknown parameters in and

let the unknown parameter vector be denoted such

that with equality when the neighborhood does not

introduce structure to the matrix.

Definition 2: Given an arbitrary neighborhood the corre-

sponding mapping between the unknown

parameter vector and the matrix is defined by

(9)

Let be drawn from the usual -dimensional Euclidean

basis, such that the th element of is equal to 1 and zero

otherwise. Then can be constructed using the algorithm given

in Table I.

To further extend the oesophageal example, consider the sce-

nario depicted in Fig. 1. Pressure measurements are taken at

four locations within the oesophageal body. The system is con-

sidered to be homogenous, therefore, the neighborhood is the

same shape for each hidden variable; shown on the diagram is

the neighborhood of . Any variable outside the neigh-

borhood implies a zero-valued element on the third row of .

The neighborhood shown in Fig. 1 would generate

were would be constructed via the algorithm given in Table I

as

III. ESTIMATION

The EM algorithm provides a well-known framework for ap-

proaching the joint state and parameter estimation problem for

the general, linear state-space model. Introduced by Shumway

and Stoffer [13] and recently revisited by Gibson and Nin-

ness [19], it presents an alternative to subspace-based, dual

filtering, and gradient descent techniques. In the context of

the spatio–temporal model outlined earlier, the construction

of the likelihood for the EM algorithm’s M-step presents an

opportunity to include the neighborhood information into the

estimation procedure, without losing the beneficial properties

of the estimator as described by Gibson and Ninness. This

section describes the inclusion of the canonical form and

spatio–temporal neighborhood based parameterization into the

estimator and presents an algorithm to estimate the states and

parameters of the spatio–temporal model described earlier.

A. The Likelihood Function

Maximum likelihood estimation seeks to find parameters

The EM algorithm approximates with respect to a

prior parameter estimate and, once approximated, a closed form

solution to can be found. By ex-

ploiting the relationship between and it is

possible to generate a sequence of parameter estimates that con-

verges on the maximum likelihood parameter estimate [19]. The

complete-data log-likelihood is defined as

which can be written in terms of the model’s component densi-

ties by repeated application of Bayes’ rule

(10)
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noting that and are conditionally independent and where

the component densities are written

where denotes the Dirac delta function . Note that

only is a function of .

B. The M-Step

The problem of concurrently estimating both the parameter

set and the state sequence is solved by the EM algorithm through

taking expectations of with respect to an estimate of ,

conditional on the current parameter set .

Definition 3: The so-called -function is given by

(11)

where the expectation is taken with respect to the distribution

.

After evaluating the expectation, the -function becomes a

deterministic function of , which can be maximized. To intro-

duce the neighborhood structure into the parameter estimation

problem, the -function is expressed in terms of the parameter

vector and the known neighborhood mapping .

Lemma 1: The -function in Definition 3 for the spatio–tem-

poral system (4–6) can be written in the following form

(12)

where denotes the Kronecker product, denote

and respectively and

denotes a constant conditionally independent of .

Proof: The component densities are substituted into (11)

to give

where the constant term collects together all the quantities not

dependent on the unknown parameters. Using properties of the

trace operator, the above equation can be expanded and rear-

ranged to produce

(13)

Note that the constant term is extended to include the term

which is conditionally independent of . Further

properties of the Kronecker product, vectorize and trace opera-

tors [20] are used to manipulate (13) to produce the given result.

With and

the first component of (13) can be written

(14)

Similarly, the second component of (13) can be written as

(15)

The result of Lemma 1 follows by substituting (14) and (15) into

(13).

Given the -function in terms of , the inclusion of

the spatio–temporal neighborhood can be made using the result

from Definition 2, allowing the estimation of . The following

Lemma shows that the necessary inversion can be performed,

followed by the main result.

Lemma 2: The matrix is invertible.

Proof: Let and let

. The sum of dyads is, by definition, positive semidefi-

nite and becomes positive definite under the persistent excitation

condition, which is guaranteed by the disturbance . By [20]

the Kronecker product of two positive definite matrices is also

positive definite therefore is a positive definite matrix.

By definition, is positive definite if and only if

for any nonzero vector , where denotes the inner

product. Substituting for in the inner product gives

since is positive definite, where . The inequality holds

only for nonzero , which is guaranteed as long as

. By Definition 2, , hence is posi-

tive definite, and thus invertible, completing the proof.

Theorem 1: The estimate of the unknown parameters that

locally maximizes the -function of the spatio–temporal model

described by (4–6), (9) is given by

(16)

Proof: The -function expresses the expectation of the

log-likelihood of the state and observation sequences given a

candidate parameter set, conditional on the observations and

current parameter set

Following Lemma 1 the -function can be written in terms of

the vectorized matrix
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The vectorized matrix can be written in terms of the unknown

parameter vector and the known mapping , by substituting (9)

into (12), thereby enforcing the neighborhood definition

Differentiating the -function with respect to gives

Equating the above to zero and rearranging gives

The result follows by premultiplying both sides by

. The second derivative of the -function is given by

which, by Lemma 2, is negative definite and, therefore, the de-

rived estimate is located at a local maximum of the -function.

There are three special cases which remove the dependence

of the estimate of on , given in the following corollaries.

Corollary 1: If each hidden variable is subject to uncorrelated

disturbance from the same distribution, then the parameter esti-

mate that maximizes the -function is given by

(17)

Corollary 2: If no spatial neighborhood structure is defined

the maximum likelihood estimate of the unknown parameters is

given by

Corollary 3: If the neighborhood transformation matrix is

restricted to where is constructed

from the -dimensional Euclidean basis, then the parameter

estimate reduces to

The proofs of the above corollaries follow from direct sub-

stitution and algebraic manipulation. The use of in Corollary

3 implies a restricted neighborhood which introduces vertical

bands of parameters in . This implies that the same subset of

variables in the hidden field at time affects each hidden

variable in . As an example, consider a process which is mon-

itored over time at a large number of observation locations, and

suppose that the majority of the dynamic process behavior can

be explained by the observations at a subset of those locations.

Then a neighborhood constructed as in Corollary 3 can be used

to create a model of the process that only depends on the subset

of informative observation locations, while still allowing the

state of the process at all the observation locations to be esti-

mated.

C. The E-Step

The expectation step consists of evaluating the -function,

given the current parameter set and the observed field.

Practically, this involves calculating the expectations in and

, given in the following Lemma.

Lemma 3: Conditional on the current parameter set

and the hidden field , the values of and are given by

where denotes the expected value of the covariance of

and denotes the first rows of the covariance matrix of

and .

Proof: The proof follows that of [19]. Recall that

Using the definition of covariance and linearity of the expecta-

tion operator it is straightforward to show that

The result follows by partitioning such that

Given the model and observed field, the expected value of the

state at a given time can be calculated using the standard Kalman

Smoother, with an extra recursion to calculate the covariance

[21]. This algorithm is given in Table II, where the notation

denotes the expected value of given information up to

time .

D. The Estimation Algorithm

The E- and M-steps of Sections III-C and B are iterated until

convergence. The algorithm requires a method to initialize ei-

ther an initial parameter set or an initial state sequence. Typi-

cally, a mean-squared error parameter estimation technique is

employed to generate an initial parameter set, however here the

structure of the -matrix can be exploited to populate a state

sequence using the observed values of . This is then used in

an M-step to generate an initial parameter set. Following [22],

the change in a function of parameter values is used to generate

stopping criteria. The algorithm will halt when

(18)
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TABLE II
E-STEP: THE KALMAN SMOOTHER

TABLE III
MAXIMUM LIKELIHOOD STATE AND PARAMETER ESTIMATION FOR

SPATIO–TEMPORAL STATE-SPACE MODELS

where is a threshold and and are the maximum

eigenvalue of the previous and the updated matrices, re-

spectively.

Theorem 2: The algorithm given in Table III generates a se-

quence of parameter estimates such that

with equality if and only if and which converges

to a local maximum .

Proof: The expected incomplete-data log-likelihood func-

tion is given by

The change in over each iteration of the algorithm in

Table III is given by

which is always nonnegative as

following the standard applica-

tion of Jensen’s inequality [23] and

by Theorem 1, hence, is an in-

creasing function of .

By Theorem 1 and Definition 3 is continuous

in both arguments, satisfying the condition of [24, Theorem 2],

application of which demonstrates convergence of the sequence

to a local maximum .

The equality is clearly true if

; the “only if” condition is demonstrated for a general dy-

namic state space model in [19, Corollary 5.1], and, hence, for

the parameterized model (1), (3) completing the proof.

IV. SIMULATION EXAMPLES

This section illustrates the above approach to modeling

spatio–temporal systems via a set of simulated examples.

First, a simple, homogeneous 2-D, four-state system is shown,

followed by a homogeneous 2-D, 12-state system and a het-

erogeneous 3-D, eight-state system. All the examples use

500 simulated time points and a convergence threshold of

. As a measure of parameter bias, the same norm

used in the convergence criteria is used and is referred to as the

-value, that is . The reported bias is the

percentage error in the -value, namely where

and are the estimated and true -values respectively.

A. Estimation of A 2-D, Homogeneous, Four-State System

Initially a simple spatio–temporal model with two obser-

vation locations and four states is used. Fig. 2 represents this

graphically where the shaded area describes the neighborhood

of . The neighborhood of only contains

and -a result of translating the neighborhood down by the

spatial distance between and . Following the algorithm

given in Table I, this neighborhood generates a transformation

matrix

and parameter values are chosen as

The disturbance and noise covariances are chosen to be

and .

To demonstrate consistent behavior, the algorithm was run

until convergence 10 times with different noise realizations each

time. Fig. 3 shows the parameter bias at each iteration for each

run. The algorithm converges in an average of 26 iterations.
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Fig. 2. Example neighborhood for Section IV-A. Part of the hidden field is
shown for time t + 1, and the whole hidden field is shown for time t. The
neighborhood of x (t + 1) is shown by the shaded region.

Fig. 3. Ten runs of the algorithm using different noise realizations. The figure
shows the parameter bias as a percentage of the true �-value.

TABLE IV
TRUE AND ESTIMATED PARAMETERS CORRESPONDING TO

THREE CASES SHOWN IN FIG. 3

Table IV presents the best, median and the worst parameter es-

timates of the 10 runs of the algorithm shown in Fig. 3.

Fig. 4 displays the sensitivity of the parameter estimate to

changes in used in the estimator. Here, 100 random

matrices were generated by choosing a random matrix via

Matlab’s function then setting to en-

sure a positive definite covariance matrix. Using the same state

sequence, each randomly chosen was presented to the maxi-

mization routine (16). This figure demonstrates the insensitivity

Fig. 4. Behavior of the maximize routine when presented with randomly
chosen covariance matrices but the same data set.

Fig. 5. Example neighborhood for Section IV-B. The neighborhood of x (t+
1) is shown by the shaded region.

of the algorithm to errors in the state disturbance covariance ma-

trix. This is an important numerical property of the estimator, as

may not be well characterized in practice.

B. Estimation of a 2-D, Homogeneous, 12-State System

In order to emphasize the benefits of the neighborhood defini-

tion, Table V presents a comparison of the estimation of a stan-

dard vector-AR (VAR) model using least-squares with the result

using the algorithm of Table III. The system has states,

observations locations and a neighborhood definition as

shown in Fig. 5. The neighborhood shape is the same for each

hidden variable in . The disturbances are the same as for the

previous example where and .

Shown in the table are only the nonzero parameters and their

estimates. Here, an estimate for the parameter vector of the

VAR model is found using least squares on the original data set

without the neighborhood definition and is displayed next to the

result using the algorithm given in Table III.

The combination of the filtering inherent in the Kalman

smoother and the dimension reduction in the parameter esti-

mation problem due to the neighborhood definitions produces

the overall increase in accuracy. Table V also indicates that
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Fig. 6. A heterogenous 3-D example. The neighborhood of x to x is shown left-to-right by the shaded states.

TABLE V
PARAMETER ESTIMATES FOR A VAR MODEL COMPARED WITH THE

SPATIO–TEMPORAL MODEL (�)

automatic neighborhood detection is infeasible by naïvely

inferring from zero-or small-valued parameter estimates

from a nonparameterized system identification procedure.

To demonstrate the effect of the neighborhood mapping on

the algorithm, note that the least-squares step applied above is

of order and one M-step of Theorem 1 is of

order , noting that the product as-

sociated with the neighborhood mappings can be considered a

sorting operation. The order of the least-squares computation is

typically lower, depending on the neighborhood parameteriza-

tion. The E-step is typically less complex than the M-step (un-

less number of model parameters is significantly reduced by

and the observation sequence is either very long or consists of

only a small number of observation locations). The complexity

of the algorithm increases linearly with the number of iterations.

For the example given above, a G4 PowerPC takes s each for

the E-step and the M-step, and s for the least squares com-

putation.

C. Estimation of a 3-D, Heterogeneous, Eight-State System

A 3-D example is shown in Fig. 6. Here

and the parameters of are given in Table VI. Again, the noise

covariances and . The neighbor-

hood for each hidden variable in is defined separately, rather

TABLE VI
TRUE AND ESTIMATED VAR AND SPATIO–TEMPORAL MODEL (�)

PARAMETERS FOR THE HETEROGENEOUS 3-D EXAMPLE

than being translated versions of one another, creating a hetero-

geneous system whose behavior is dependent on the absolute

spatial location. Using the algorithm given in Table I, this neigh-

borhood generates a transformation matrix

leaving 18 unknown parameters to be estimated. The algorithm

converges in 27 iterations.

The parameter estimates generated are shown in Table VI,

compared with the estimated parameters of the VAR model. In

this example, the VAR model parameters are estimated using

a state sequence that has been smoothed using the true param-

eter values. The VAR parameter estimates still suffer due to the

much larger space from which to select the parameter vector.

This demonstrates the clear benefit of the model structure via

incorporation of the neighborhood definition.

V. CONCLUSION

This paper has presented a framework to estimate the states
and parameters of a spatio–temporal state space system. The
emphasis has been on the neighborhood definition, how this
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neighborhood effects the maximum likelihood parameter esti-
mation problem and how it improves the modeling accuracy.

The class of model put forward can be considered nonsta-
tionary-in-space and stationary-in-time. Both the neighborhood
and the associated parameters can be different at different points
in the field at a given time, i.e., the homogeneity assumption
can be broken without affecting the linearity or Gaussian as-
sumptions and, therefore, without affecting the accuracy of the
estimator. This class of model is also suitable for modeling pro-
cesses observed at locations which are distributed irregularly
across space.

The price paid for this flexibility is the potential loss of par-
simony and an increase in computational complexity over stan-
dard techniques. In applications with a high number of obser-
vation locations a different mapping between the observed and
hidden fields is required. However, for applications which use a
low number of observation locations but which are detailed in
time, the neighborhood based spatial time-series model provides
a conceptually clear and easily implementable framework. The
increase in complexity introduced by the neighborhood map-
ping is mitigated by the accuracy of the parameter estimates.

A number of extensions to the presented framework can be
considered. A fully heterogeneous system could be modeled by
considering nonstationary parameters, which would incorporate
the standard Kalman smoother. Attention could also be paid to
the parsimony issue; techniques such as making simplifying as-
sumptions on the space to be modeled could allow for a greater
number of observation locations to be dealt with before having
to make the compromise for a more complex model. Finally, as
in the coupled map lattice literature [25], the need for a system-
atic neighborhood detection scheme is clear, meaning that the
neighborhood need not be treated as prior information.
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