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, Klapper, G., Sandberg, C.A., 1985. Devonian eustatic fluctuations in Euramerica.
Geological Society of America Bulletin 96, 567–587) proposed one of the first explicit links between marine
anoxia, transgression and mass extinction for the Frasnian–Famennian (F–F, Late Devonian) mass extinction.
This cause-and-effect nexus has been accepted by many but others prefer sea-level fall and cooling as an
extinction mechanism. New facies analysis of sections in the USA and Europe (France, Germany, Poland), and
comparison with sections known from the literature in Canada, Australia and China reveal several high-
frequency relative sea-level changes in the late Frasnian to earliest Famennian extinction interval. A clear
signal of major transgression is seen within the Early rhenana Zone (e.g. drowning of the carbonate platform
in the western United States). This is the base of transgressive–regressive Cycle IId of the Johnson et al.
(Johnson, J.G., Klapper, G., Sandberg, C.A., 1985. Devonian eustatic fluctuations in Euramerica. Geological
Society of America Bulletin 96, 567–587) eustatic curve. This was curtailed by regression and sequence
boundary generation within the early linguiformis Zone, recorded by hardground and karstification surfaces
in sections from Canada to Australia. This major eustatic fall probably terminated platform carbonate
deposition over wide areas, especially in western North America. The subsequent transgression in the later
linguiformis Zone, recorded by the widespread development of organic-rich shale facies, is also significant
because it is associated with the expansion of anoxic deposition, known as the Upper Kellwasser Event.
Johnson et al.'s (Johnson, J.G., Klapper, G., Sandberg, C.A., 1985. Devonian eustatic fluctuations in Euramerica.
Geological Society of America Bulletin 96, 567–587) original transgression-anoxia–extinction link is thus
supported, although some extinction losses of platform carbonate biota during the preceeding regression
cannot be ruled out. Conodont faunas suffered major losses during the Upper Kellwasser Event, with deep-
water taxa notably affected. This renders unreliable any eustatic analyses utilising changes in conodont
biofacies. Claims for a latest Frasnian regression are not supported, and probably reflect poor biostratigraphic
dating of the early linguiformis Zone sequence boundary.

© 2008 Published by Elsevier B.V.
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RThe Frasnian–Famennian mass extinction (F–F, Late Devonian) is
one of the “big 5” faunal crises of the Phanerozoic with taxa being lost
from a broad range of marine habitats (Hallam andWignall, 1997). The
precise timing of the extinctions is debated, and probably varied from
group to group, but severe losses undoubtedly occurred within the
latest Frasnian linguiformis Zone (e.g. Casier and Devleeschouwer,
1995; Casier et al., 1996; Bond, 2006), although many reef taxa may
have disappeared earlier, in the rhenana Zones (Copper, 2002).
Extinction losses of groups such as the ostracods, conodonts, and
tentaculitoids are contemporaneous with the widespread deposition
of the anoxic facies, most notably the Upper Kellwasser Horizon of
Germany (Fig. 1), and many workers have attributed the extinction
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event to this phenomenon (e.g. Joachimski and Buggisch,1993; Becker
and House, 1994; Levman and von Bitter, 2002; Bond et al., 2004).

The relationship between sea-level, the Upper Kellwasser anoxic
event and the contemporaneous mass extinction is a subject of
conflicting opinions (e.g. Hallam and Wignall, 1999 versus Sandberg
et al., 2002). Thus, sea-level change features in the scenarios of Buggisch
(1991), Joachimski and Buggisch (1993) and Becker and House (1994),
but it is not implicated as the primary kill mechanism. In contrast,
others directly attribute the extinctions to sea-level change (e.g. Newell,
1967; Johnson, 1974; Johnson et al., 1985; Sandberg et al., 1988, 2002).
For example, Johnson (1974) suggested that a rapid regressive–
transgressive pulse occurred during the late Frasnian, eliminating
“perched” faunas, which had colonised widespread shelf areas during a
period of high sea-level. Johnson and colleagues subsequently produced
a eustatic sea-level curve for the Devonian which has become widely
accepted as a “standard” for the interval. Nonetheless, the relationship
of this curve to the contemporary anoxic events and F–F mass
extinction has been the subject of widely varying interpretations. This
hange and marine anoxia in the Frasnian–Famennian (Late Devonian)
8), doi:10.1016/j.palaeo.2008.02.015
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Fig. 1. The Late Devonian standard conodont zonation (after Ziegler and Sandberg,
1990). Previous zonal names are indicated where relevant. The position of the two
Kellwasser Horizons (Lower and Upper) in Germany is shown by “LKH” and “UKH”
respectively.
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paper aims to re-examine the validity of the F–F boundary portion of
this curve using facies analyses of sections studied by the authors
(Section 3) and recently-published data from the literature in order to
critically assess the role (if any) of sea-level change during the mass
extinction and its relationship with contemporary redox changes.

2. TheDevonian Euramerican sea-level curve of Johnson et al. (1985)

The Johnson et al. (1985) eustatic sea-level curve was based on a
study of sections in the western United States, western Canada, New
York State, Belgium, and Germany, using a combination of facies
analysis and a conodont biostratigraphic scheme for correlation.
Deepening events were identified from a range of lithofacies
responses including the onset of black shale deposition, the inception
of reef growth, inundation of muds following drowning of the
carbonate platform, and onlap onto unconformities (Johnson et al.,
UN
CO

RR

Fig. 2. The eustatic sea-level curve of Johnson et al. (1985), on the left as reproduced in th
Uppermost (Um) gigas Zones are now replaced by Early and Late rhenana and linguiformis Zo
correctly termed Early, Middle, and Late triangularis Zones.
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81985, p. 570). Two major “depophases” (termed I and II) were
8identified within the Devonian, each consisting of 6 transgressive–
8regressive (T–R) cycles labelled a to f. The base of depophase I is
8marked by the Lochkovian/Pragian sequence boundary, whilst the
8base of depophases II lies within the Givetian, at the Taghanic
8sequence boundary. Overall the Pragian to Frasnian was a time of
8rising sea-level, with the late Frasnian being a period of second-order
8highstand, before sea-level began to fall in the Famennian.
8The T–R Cycle IId is of relevance here, because this cycle begins in
9the Frasnian Lower gigas Zone and continues to the base of the Middle
9triangularis Zone, and thus straddles the F–F mass extinction interval.
9Johnson et al. (1985, p. 578) considered the sea-level rise component
9of cycle IId to be:

9“the greatestof Devonian transgressions... (because it) coincideswith
9the West Falls Group of New York and encompasses the Kellwasser
9Limestone of Germany and the Matagne Shale of Belgium... (and)
9comprises a pair of widely recognised transgressions”.
9

9The two transgressions were separated by “a small-scale drop in
1sea level” (Johnson et al., 1985, p. 584) and were followed by a major
1regression in the Middle triangularis Zone. The first of the transgres-
1sions occurred within the Lower gigas Zone and is thus contempora-
1neous with the development of the Lower Kellwasser Horizon in
1Germany. Unfortunately, Johnson et al. (1985) provided conflicting
1ages for the second transgression and thus sowed the seeds of
1confusion in much of the subsequent literature. In their Fig. 12 the
1second transgressionwas shown as beginning at the base of the Lower
1triangularis Zone, but they state in their text that this transgression
1correlates with the Upper Kellwasser Horizon. This began in the
1Uppermost gigas Zone as correctly shown in their time-rock chart
1(Johnson et al., 1985, Fig. 2). We therefore assume that their Fig.12was
1poorly drafted and that the second transgression of T–R Cycle IId
1coincides with the development of the Upper Kellwasser Horizon in
1the Uppermost gigas Zone. This is the interval of the F–F mass
1extinction and so it is clearly important to clarify their ideas about sea-
1level at this time. Thus, Johnson et al. (1985, p. 581) noted that, in
1Europe at least, the extinctions had already occurred before regression
1at the top of T–R cycle IId and clearly stated that “the Frasnian–early
1Famennian transgressive history supports an interpretation that a
1succession of three rapid deepening events within and above IId, not
1regression, caused many of the Frasnian extinctions”.
1Before examining the Johnson et al. (1985) curve in the light of
1more recent work it is important to note some significant changes in
eir Fig. 12, and on the right as described in their text. Note Lower (L), Upper (U), and
nes respectively. Lower (L), Middle (M) and Upper (U) triangularis Zones are now more

hange and marine anoxia in the Frasnian–Famennian (Late Devonian)
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the Late Devonian conodont zonation scheme that have occurred
since 1985. Thus, the Lower to Upper gigas interval is now
approximated by the Early to Late rhenana Zones, whilst the Upper-
most gigas Zone has become the linguiformis Zone (Ziegler and
Sandberg, 1990). The F–F boundary has also been redefined (Sandberg
et al., 1988). In 1985 it was placed at the Lower/Middle triangularis
zonal boundary but it is now placed at the base of the Lower (now
more correctly called Early) triangularis Zone. Thus, the second major
transgression of the Johnson et al. (1985) T–R cycle IId now begins
within the linguiformis Zone and the major regression at the top of the
cycle is well within the Famennian rather than at the old F–F boundary
(Fig. 2).

3. F–F boundary facies changes in the United States and Europe

Boundary sections in the western and eastern United States, and in
France, Germany, and Poland, were studied by the authors for their
geochemistry, faunal content, and sedimentology. The key sections of
the original Johnson et al. (1985) study have been revisited and re-
evaluated here. Aspects of the redox history in these sections,
specifically pyrite framboid and trace metal content, has been
discussed previously by Bond and Zaton (2003), Bond et al. (2004),
and Bond and Wignall (2005), who presented evidence for marine
anoxia during the crisis interval. The extinction record has also been
assessed, and it is clear that losses culminated during the latest part of
the linguiformis Zone (e.g. Casier et al., 1996; Bond, 2006).

3.1. Western United States

The Great Basin sections of the western United States provided a
key component of Johnson et al.'s (1985) study, although as they were
UN
CO

RR
EC

Fig. 3. Correlation panel of Upper Devonian sections from the Great Basin, western USA. Loc
et al. (1988, 1997) and Morrow (2000).
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developed adjacent to a tectonically-active foreland basin (Sandberg
et al., 2003), the region clearly has the potential for tectonic events to
overprint a eustatic signature. The Upper Devonian succession has
been studied by the authors in four sections in Nevada and Utah
(Fig. 3). These record deposition within two basins, the Pilot and the
Woodruff basins, that were separated by the proto-Antler forebulge.
Deepest water sedimentation in the Late Devonian of the Woodruff
basin is recorded by the Woodruff Formation, a unit dominated by
laminated shales and cherts. At Whiterock Canyon, the most westerly
and distal location studied, the entire section belongs to theWoodruff
Formation, and pyritic, laminated siltstones and lesser shales and
cherts are the only lithologies. The only signal of eustasy in such a
deep-water setting may come from the grain-size fluctuations
between clay and silt. Thus, the finest-grained strata are found in
the early Late rhenana Zone and the linguiformis Zone (Fig. 3).

To the east of the Whiterock Canyon section an extensive series of
exposures in eastern Nevada provides sections through the west-facing
slope sediments of the proto-Antler forebulge. Two sections, with
distinctly different slope facies, have been studied in the Northern
Antelope Range and at the Devils Gate road cut (Fig. 3). The latter
location is the type location for the Devils Gate Limestone Formation.
This consists of two principal facies types: hemipelagic carbonates (and
minor cherts) and allodapic limestones. At the base of the section, in the
later part of the Early rhenana Zone, there is a sharp transition from
fossiliferous, bioturbated micrites to finely laminated micrites. This is
clearly a deepening event and it has been called the ‘semichatovae
transgression’ (Sandberg et al., 1997). Allodapic limestones (matrix-
supported, conglomerates with a diverse shelf fauna) appear in the Late
rhenana Zone and this, together with the development of small-scale
slump features in the finer-grained strata, is clear evidence for slope
progradation. There is a temporary abatement in major slope failure
TE
D

ality details are given in Bond and Wignall (2005). Conodont zonation is from Sandberg

hange and marine anoxia in the Frasnian–Famennian (Late Devonian)
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during the late part of the linguiformis Zone coinciding with the
development of intensely anoxic conditions (Bond and Wignall, 2005),
probably a consequence of sea-level rise.

The Northern Antelope Range section also provides a record of
slope deposition and, like the Devils Gate section, this began in the
Late rhenana Zone with the development of an expanded section of
sandy, calcarenites that rest on fine-grained strata of the Woodruff
Formation (Fig. 3). This is the upper tongue of the FenstermakerWash
Formation and Sandberg et al. (2003) attribute its onset to the
migration of the forebulge. Within the linguiformis portion of the
calcarenites there is a gradual loss of the quartz sand component
(Bond and Wignall, 2005) that possibly constitutes a signal of
transgression causing the supply of terrigenous material to become
more distal from this slope setting. The decline in terrigenous supply
may alternatively be explained by switching supply directions and
thus deciphering any sea-level signal in this expanded slope sections
is difficult.

Much clearer depth changes are seen in the Coyote Knolls section
of western Utah. This is from the Pilot Basin and provides an example
of a coarsening and shallowing-up cycle in the late Frasnian–earliest
Famennian interval (Fig. 3). Initial flooding occurred late in the Early
rhenana Zone when the thoroughly bioturbated and highly fossilifer-
ous limestones of the Guilmette Formation were replaced by the
laminated shales of the Pilot Shale Formation. In its lower part the
Pilot Shale contains a few, thin siltstone turbidites but, by the late
linguiformis Zone persistent siltstone deposition was established.
These coarsen-up into sandstones in the late Early triangularis Zone
(Fig. 3). The Famennian portion of this section is also characterised by
calcirudites often composed of flat pebbles.

In summary, the best potential eustatic sea-level signal in the Great
Basin record is the ‘semichatovae transgression’ in the later part of the
Early rhenana Zone. This is the regional expression of the flooding at
the base of cycle IId in the Johnson et al. (1985) eustatic curve. The
“small-scale drop in sea level” (Johnson et al., 1985, p. 584) in the early
linguiformis Zone is only weakly manifest in this region although, as
shown below, it is a much more significant event elsewhere. The
second transgression of cycle IId is displayed as a decreased clastic
input in the linguiformis Zone of the Woodruff Basin and an
intensification of basinal anoxia, the regional manifestation of the
Upper Kellwasser Event (Bond andWignall, 2005). This is seen in both
the basinal White Rock Canyon section and the Northern Antelope
Range slope section. At Devils Gate the later part of the linguiformis
Zone records a temporary cessation of slope failure and the
development of anoxia, both evidence of sea-level rise. In contrast,
the Pilot Basin record of Coyote Knolls shows no evidence for base-
level rise at this time, rather the F–F interval is a single progradational
cycle following the semichatovae transgression.

3.2. Eastern United States

Late Devonian sediments are well known from the Appalachian
Basin of Virginia, West Virginia, Ohio, Pennsylvania, and New York
(e.g. Rickard, 1975; Filer, 2002), and record a series of five
transgressive–regressive cycles during this interval (Filer, 2002). The
sections have been the focus of both conodont and platinum group
element studies (e.g. Over, 1997, 2002), and the F–F boundary has now
been placed accurately at Beaver Meadow Creek, a base-of-slope
section, which has been visited for this study. The most notable
lithological change occurs in the upper part of the Early rhenana Zone
(MN Zone 12 of Over, 1997) when the pale, coarse, siltstones of the
Nunda Sandstone (of the Nunda Formation) are sharply overlain by
black, finely laminated, silty shales of the Pipe Creek Shale Member of
the Java Formation (Fig. 4). The Pipe Creek Shale continues up to the
base of the Late rhenana Zone, which marks the base of the Hanover
Shale. This comprises shales and siltstones which continue across the
F–F boundary. The shales vary in their colour, from green to black, and
Please cite this article as: Bond, D.P.G., Wignall, P.B., The role of sea-level c
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2degree of bioturbation, reflecting varying oxygen levels during the
2Late rhenana to linguiformis Zones. The lower part of the linguiformis
2Zone records more siltstone beds and fewer black shales suggestive of
2a slight shallowing event. The upper part of the linguiformis Zone is
2characterised by numerous finely laminated black shales, including a
20.8 thick example, which extends across the F–F boundary and into
2the Early triangularis Zone (Over, 1997). Filer's (2002) study of
2subsurface data in the northeast USA reveals a contemporaneous
2significant increase in gamma-ray values throughout Ohio and West
2Virginia, which reflects onlap onto the basin margin, and widespread
2shale deposition, and provides evidence for significant deepening.
2Above this, a 2.5 thick pale grey, bioturbated siltstone is overlain by
2further organic-rich shales and siltstones of the Dunkirk Formation.
2As in thewestern United States, themost obvious potential eustatic
2sea-level signal in the New York record occurs in the later part of the
2Early rhenana Zone, at the boundary between the Nunda Sandstone
2and the Pipe Creek Shale (Fig. 4). This is clearly the regional expression
2of the flooding at the base of cycle IId in the Johnson et al. (1985)
2eustatic curve. Furthermore, there is potential evidence for regression
2and subsequent transgression during the linguiformis Zone but there
2is no evidence for regression at the F–F boundary. Over (1997, p. 165)
2states, “if significant sea-level drop occurred, it did not interrupt black
2shale deposition [across the F–F boundary]”. The development of pale
2grey siltstones in the Early triangularis Zone may be evidence for
2regression at the top of T–R cycle IId. Over (1997) interprets the
2transgressive base of the Dunkirk Shale, in the Early triangularis Zone
2as the base of T–R Cycle IIe.
2Based on detailed isopach and lithofacies maps (derived from
2gamma-ray logs) from a wider study of the Appalachian basin
2sections, Filer (2002) recognised 11 fourth-order progradational–
2retrogradational cycles from the late Frasnian. The two cycles of
2greatest amplitude correlate with the base of the Pipe Creek Shale
2(Filer's cycle 7), and the upper part of the Hanover Shale (late lingui-
2formis Zone, Filer's cycle 11, see Fig. 4). Filer (2002) interprets this later
2retrogradation as the onset of a major third-order transgression,
2which begins in the latest Frasnian and ultimately results in
2deposition of the Dunkirk Shale in the Famennian. This major
2transgression across the boundary could thus be correlated with the
2upper transgression in Johnson et al.'s (1985) cycle IId. Unfortunately,
2Filer's (2002) Fig. 8 reproduced the poorly drafted Fig. 12 of Johnson et
2al. (1985, see above) with the result that there is no apparent
2correlation of the twomajor sea-level rises in the Johnson et al. (1985)
2study. However, the sea-level history discussed in the text of Johnson
2et al. (1985) shows a somewhat better correlation (Figs. 2 and 4), but
2the sharp, Early triangularis Zone regression is not seen in the Filer
2(2002) curve.

23.3. France

2The Montagne Noire region of southern France exposes several Late
2Devonian sequences, including the stratotypes for the F–F boundary at
2Coumiac (Klapper et al., 1993) and the Devonian–Carboniferous
2boundaryat LaSerre (Paproth et al.,1991). Both are condensed limestone
2sections, considered tohave formedon intrabasinal submarine rises (e.g.
2Schindler,1990; Becker andHouse,1994). The Coumiac section is almost
2entirely comprised of massive, pink micrites of the Upper Coumiac
3Formation. These are interbedded with two discrete dark grey beds —
3the first is an 18 cm-thick finely laminated micrite in the lower part of
3the Late rhenana Zone, and the second is a 7 cm-thick homoctenid-
3ostracod packstone, deposited during the latest linguiformis Zone
3(Fig. 5). Pyrite framboid and trace metal data reveal these beds,
3particularly the latter, to be discrete anoxic events within an otherwise
3well-oxygenated sequence (Bond et al., 2004). The top surface of the
3CoumiacFormation is ahardground,withnumerous borings. Thebaseof
3the succeeding Lower Griotte Formation lies within the Late triangularis
3Zone, and records a distinct change in facies to bright red, nodular
hange and marine anoxia in the Frasnian–Famennian (Late Devonian)
8), doi:10.1016/j.palaeo.2008.02.015
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Fig. 4. Log of Beaver Meadow Creek, New York State. Conodont zonation is from Over (1997). NS = Nunda Sandstone. Lower and Upper Kellwasser equivalents are shown as shaded
beds. The inferred sea-level history is shown (left) together with that of Filer (2002) for the northeastern United States. The numbers on Filer's (2002) curve refer to the base of his
cycles. Note that the Filer (2002) curve has been adjusted to fit the thickness of this section.
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Fig. 5. Logs of Coumiac and La Serre sections, France, with inferred sea-level history. Conodont zonation is from Schindler (1990) and Becker and House (1994). Position of the Lower
Kellwasser (LK) and Upper Kellwasser (UK) equivalents is shown by shaded bands. Lithologic key as in Fig. 4. Note that shaded lithologies represent dark grey to black limestones/
shales. m = mudstone, w = wackestone, p = packstone.
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limestones. Anoxic facies are highly characteristic of transgressions (e.g.
Wignall, 1991, 1994), and thus the two pulses of anoxia recorded in this
otherwise lithologically monotonous sequence may reflect deepening
events.

The F–F section at La Serre presents clear evidence for sea-level
change. The base of the sequence comprises massive, pink and grey
sparites of the Lower Serre Formation. Within the upper part of the
Early rhenana Zone, there is a transition to medium grey to black
micrites and marly micrites, some of which are finely laminated (Fig.
5). This transition is suggestive of deepening at the time of
transgression at the base of T–R cycle IId of Johnson et al. (1985).
Above these dark beds, pale pink micrites extend to the top of the
Lower Serre Formation, in the Late rhenana Zone. Further deepening is
evident at the base of the Upper Serre Formation in the upper part of
the Late rhenana Zone, which is marked by a distinct facies change to
black, finely laminated shales, interbedded with black, argillaceous
limestones. This may be the regional manifestation of the upper
transgression of T–R cycle IId, although if so, the transgression began
slightly earlier in France. The late Frasnian anoxic facies continues well
up into the Famennian crepida Zone and records no evidence for
regression. According to Becker (1993), the Upper Serre Formation is
overlain by the grey, nodular limestones of the Griotte Limestone
Formation, beginning in the earliest rhomboidea Zone.
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33.4. Germany

3Late Devonian sequences in the Rhine Slate Mountains and Harz
3Mountains of Germany record the drowning of carbonate platforms
3and the development of a basin-and-rise topography (Buggisch,1972).
3F–F boundary sections are characterised by the widespread develop-
3ment of twowell-known black, argillaceous limestone beds, known as
3the “Kellwasser Horizons”, the term used in the eponymous section,
3but widely applied to similar facies of (approximately) the same age
3observed in many parts of the world (see Bond et al., 2004). The
3Steinbruch Benner section is remarkably similar to that at Coumiac. It
3is a condensed sequence, largely composed of pale grey micrites and
3microsparites, with notable exceptions. At the base of the Late rhe-
3nana Zone, finely laminated, organic-rich, black limestones and shales
3develop, which extend into the middle part of this zone. These beds
3are overlain by pale greymicrites and sparites which extend to the top
3of the Late rhenana Zone. During the middle part of the linguiformis
3Zone, anoxic facies develop again, with finely laminated, black shale
3and micrite extending to the top of the Frasnian. The Early to Late
3triangularis Zones record a return to pale grey micrite deposition.
3Thus, the Benner section records two discrete anoxic events during
3the late Frasnian, manifest as the “Kellwasser Horizons”. These
3provide evidence for deepening, and as such the two transgressions
hange and marine anoxia in the Frasnian–Famennian (Late Devonian)
8), doi:10.1016/j.palaeo.2008.02.015
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of T–R cycle IId of Johnson et al. (1985) can be recognised in Germany.
The diachronous nature of the Lower Kellwasser Horizon has been
demonstrated by Crick et al. (2002) based on magnetostratigraphic
susceptibility, and later by Bond et al. (2004), and thus the basal
transgression of T–R cycle IId occurs at the base of the Late rhenana
Zone at Steinbruch Benner, slightly later than it occurs elsewhere.

3.5. Poland

The Late Devonian of the Holy Cross Mountains records deposition
in a carbonate platform and basin system, which formed part of a large
equatorial carbonate shelf (Szulczewski, 1995; Racki et al., 2002).
Facies evidence from two boundary sections is presented here: the
well-known Kowala Quarry sequence which records base-of-slope to
basinal deposition within the intrashelf Chęciny–Zrbza basin; and the
Psie Górki section, which records shallow-water deposition of the
Dyminy reef complex immediately to the north.

At Kowala Quarry, the succession is dominated by micrites, inter-
bedded with thin beds of calcareous, dark grey shales and calcarenites
(pelbiosparites, grainstones). The jamiae to Early rhenana Zone sequence
comprises generally massive, pale-to-dark grey, marly micrites with thin
interbeds of shales and calcarenites. During the Early rhenana to Late
rhenana Zone, the frequency of calcarenite input decreased, and the
succession becomes dominated by beds of pale-to-dark grey micrites,
sometimes finely laminated, with rare, thin shale interbeds. This style of
deposition continued into the Famennian, with periodic fluctuations in
redox conditions. Thus, in the upper part of the Late rhenana Zone a
distinctive, dark grey to black, finely laminated shale is seen, and this
contains pyrite framboids and trace metals indicative of intensely anoxic
conditions (Bond et al., 2004). This facies is repeated in the upper part of
the linguiformis Zone, where it is the regional manifestation of the Upper
Kellwasser Horizon (e.g. Joachimski et al., 2001). The F–F boundary itself
has been placed by Racki (1999) in the upper of two distinctive, thin chert
beds, both of which have a crinoidal hash at their base. In the Famennian,
the thickness of the shale interbeds increases to the point where they
dominate the sequence in the Late triangularis Zone.

The interpreted relative sea-level changes at Kowala begins with
transgression in the late Frasnian that caused the source of calcarenite
to becomemore distal and thus lost from this basinal setting. This was
perhaps followed by regression in the later part of the triangularis
Zone that caused the clastic content of the section to increase. There is
no clear evidence for the higher frequency sea-level changes of
Johnson et al. (1985) or Filer (2002) in this section.

The Psie Górki section exposes shallow-water fore-reef sediments
that provides a particularly sensitive record of sea-level change near the
F–F boundary, although the rhenana Zone is not exposed. The lingui-
formis Zone consists of packstones and biomicrites composed of reef
debris (mostly stromatoporoid, coral and dasycladacean clasts). The
triangularis Zone sediments comprise grainstones, composed of
crinoids (in the lower part) and algal mat intraclasts, but no Frasnian
reef fauna is present (Casier et al., 2002). The F–F boundary itself is
placed within an 8 cm-thick bed of finely laminated micropelsparite
which separates the two principal lithologies described above. The
facies either side of the F–F boundary are broadly similar and indicate
very shallow-water deposition. However, the finely laminated bed,
enriched in redox sensitive trace metals (Bond et al., 2004), at the stage
boundary is suggestive of anoxic, deeper-water deposition and there-
fore a brief, high amplitude transgression. This interpretation contrasts
with previousworkwhich has suggested that the reef developmentwas
terminated by a brief end-Frasnian regression (Racki, 1990; Casier et al.,
2002). However, there is no clear meteoric diagenetic evidence in the
top Frasnian, which onemight expect if there had been exposure. Other
evidence for a late linguiformis regression in Poland includes a bloom of
icriodid conodonts (Szulczewski, 1989). However, conodont biofacies
evidence is controversial as outlined below. More tangible evidence for
regression includes detrital intercalations, local conglomerates and
Please cite this article as: Bond, D.P.G., Wignall, P.B., The role of sea-level c
mass extinction, Palaeogeography, Palaeoclimatology, Palaeoecology (200
TE
D P

RO
OF

breccias (Matyja and Narkiewicz, 1992), but the biostratigraphic control
on these occurrences needs improving.

4. Comparison with other regions

Studies of F–F boundary sections in other regionsprovideevidence to
support, and refine, several aspects of the Johnson et al. (1985) sea-level
curve.

4.1. South China

In southern China (Guangxi province) the linguiformis Zone
sediments comprise shales and mudstones overlain by bioclastic
limestones of the triangularis Zone. Muchez et al. (1996) derived a Late
Devonian sea-level history for this region based on facies analysis and
produced a curve that resembles the Johnson et al. (1985) curve as
depicted in their Fig. 12 (our Fig. 2). This included two transgressions
in the Late rhenana and linguiformis Zones, separated by regression
with a second regression and sequence boundary formation occurring
at the F–F boundary. The subsequent sea-level rise in the Middle
triangularis Zone is then presumably the onset of T–R cycle IIe of
Johnson et al. (1985). The Muchez et al. (1996) sea-level history differs
from that implied by Johnson et al. (1985) in their text in the crucial F–
F boundary and extinction interval, in that no sequence boundary is
developed here. Indeed little facies evidence was provided by Muchez
et al. (1996) in support of their interpretation.

Chen and Tucker (2003, 2004) have also studied the sections of
Guangxi, in this case the area around Guilin. They presented a sequence
stratigraphic analysis of several F–F boundary sections from deep-water
and carbonate platform settings and identified cycle IId of Johnson et al.
(1985) with a transgressive–regressive sequence beginning during the
Early rhenana Zone and culminating in a major lowstand in the Late
triangularis Zone (Fig. 6). This cycle is composed of two third-order
cycles, SFr and SFa separated by a sequence boundary that Chen and
Tucker (2003, 2004) place in the late linguiformis Zone. Field evidence for
this boundary consists of a prominent palaeokarst surface in peritidal
sediments, filled with dark grey limestones. The infilling limestones
record a rapid, third-order sea-level rise during the latest part of the
linguiformis Zone,which Chen and Tucker (2003) notedwas synchronous
with the Upper Kellwasser Horizon of Germany. This observation led
Chen and Tucker (2003, p. 103) to suggest that “the rapid sea-level rise
(third order) of sequence SFa starting from the latest Frasnian seems to
have been synchronous worldwide”, and that the associated develop-
ment of marine anoxia led to a massive faunal decline in communities
already severely depleted by the preceding sea-level fall. In fact their
latest linguiformis age for the South China sequence boundary,
transgressed only 16–18 kyr before the F–F boundary is significantly
younger than that seen in the Johnson et al. (1985) curvewhere it occurs
at the base of this zone. As shown above, the sequence boundary prior to
the Upper Kellwasser anoxic event is generally found in the base or
middle of this zone (e.g. Fig. 4). Chen and Tucker's (2003) evidence for a
latest linguiformis age is based on the assumption that absolute durations
for sedimentation can be obtained by assuming the cycles are the result
of orbital forcing. On the whole this is a reasonable assumption, but
transgressive sediments are typically condensed andwe consider it likely
that the thin package of sediment atop the linguiformis Zone sequence
boundary could represent a significant portion of this zone. By assuming
constant sedimentation rate, Chen and Tucker (2003) place the sequence
boundary late in the linguiformis Zone at a time when, elsewhere in the
world, base-level was rising rapidly, and as a result, the Guangxi record
becomes out of kilter with the eustatic curve.

4.2. Australia

It has proveddifficult to establish conodontbiostratigraphic dating in
the celebrated reef sections of the Canning Basin of Western Australia,
hange and marine anoxia in the Frasnian–Famennian (Late Devonian)
8), doi:10.1016/j.palaeo.2008.02.015
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Fig. 6. Comparison of sea-level histories for South China (Chen and Tucker, 2003) and South China and Belgium (Muchez et al., 1996). SB = sequence boundary. SFr = Frasnian
sequence, and SFa = Famennian sequence of Chen and Tucker (2003).
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although anabundant ammonoid faunahas facilitatedglobal correlation
(Becker and House, 1997). The reefs of the region are terminated by a
karstic surface that has been dated as F–F boundary age (Playford et al.,
1989; Holmes and Christie-Blick, 1993; Playford, 2002). This lies
between the Pillara Sequence and the Nullara Sequence and marks a
long-term change from retrogradational stromatoporoid reefs to
progradational stromatolite reefs (Becker and House, 1997). However,
both the origin and age of the sequence boundary are contentious. Some
workers favour a tectonic control with footwall uplift leading to local
emergence (Southgate et al., 1993; Chow et al., 2004), whereas others
favour eustatic regression (Becker and House, 1997; Playford and
Hocking, 2006). The more local development of hiatuses is supported
byBecker andHouse's (1997, p.138) observation that sections in “a range
of facies settings in themarginal-slopeor in algal-spongebioherms cross
the [F–F] boundary and there is evidence of considerable facies
fluctuations but no sedimentary breaks are developed (our italics)”. In
the more basinal sections they note “No lithological change at all is
recognizable at the boundary” (Becker and House, 1997, p. 138). Despite
these observations, Becker and House (1997) favour eustatic regression
at the stage boundary. Pertinently, they also record evidence for “a brief
but widely recognizable shallowing episode at the base of the lingui-
formisZone.” (Becker andHouse,1997, p.138). This is the sameage as the
widespread regression seen within cycle IId of the Johnson et al. (1985)
curve.

Stephens and Sumner (2003) studied Canning Basin reef com-
plexes, using carbon isotope stratigraphy as a basis for correlation. A
δ13C curve has been well established in Europe and North America,
where two positive excursions coincide with the Kellwasser anoxic
events (Joachimski and Buggisch, 1993; Wang et al., 1996; Joachimski
et al., 2002). By identifying these excursions Stephens and Sumner
(2003) were able to date two late Frasnian transgressions in the Oscar
Range as coincident with the Kellwasser transgressions. These saw the
development of upper marginal-slope facies in reef-margin settings at
Please cite this article as: Bond, D.P.G., Wignall, P.B., The role of sea-level c
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5a time of backstepping stratal geometry. The development of a
5lowstand reef (i.e. progradation of the reef margin) in the Oscar Range
5in the inferred earliest linguiformis Zone indicates regression between
5the two transgressive intervals. This regression has also been inferred
5in subsurface data, where a prominent linguiformis Zone sequence
5boundary is identified (Kennard et al., 1992; Southgate et al., 1993).
5Thus, there is compelling evidence for eustatic control in the Canning
5Basin succession with the fluctuations of the Johnson et al. (1985)
5curve readily identifiable, but with possible tectonic complications.

54.3. Canada

5Sea-level history in Canadian sections indicates substantial
5oscillations around the F–F boundary although a paucity of conodont
5biostratigraphic evidence makes comparison with the Johnson et al.
5(1985) curve somewhat difficult. In the Northwest Territories, two
5minor hiatuses are inferred close to the boundary (Geldsetzer et al.,
51993). The first hiatus is recorded by karstification and brecciation of
5the top surface of the Kakisa Formation. A lack of conodont evidence
5only makes it possible to date this hiatal surface to somewhere
5between the Late rhenana and Early triangularis zones. It could be the
5early linguiformis regression seen in many other regions. Neptunian
5dykes within the Kakisa Formation are infilled with Mid triangularis
5wackestones indicating that sea-level had risen by this time. Angular
5fragments of this wackestone in the basal Trout River Formation, are
5interpreted to record a second hiatus, which probably straddled the
5Middle/Late triangularis zonal boundary (Geldsetzer et al., 1993).
5Nine hundred kilometres to the south of the Trout River locality, at
5Medicine Lake, Alberta, the Jasper Basin provides a continuous record
5of Late Devonian sedimentation (Geldsetzer et al., 1987). Here, the
5extinction is associated with an abrupt facies shift from bioturbated
5sediments, to laminated dark shales, the result of flooding of the basin
5by anoxic waters. Thus, Geldsetzer et al. (1987) invoke an anoxic kill
hange and marine anoxia in the Frasnian–Famennian (Late Devonian)
8), doi:10.1016/j.palaeo.2008.02.015
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mechanism during highstand as the cause of the F–F extinction.
Orchard (1988) notes that the basin was later filled with siliciclastics,
beginning in the triangularis Zone. This may reflect shallowing above
the F–F boundary, and the top of T–R cycle IId, but regression and
karstification in the region has generally been dated to the stage
boundary (Copper, 2002), although detailed conodont biostrati-
graphic constraint is lacking.

Excellent conodont biostratigraphic control is available from the
Moose River Basin of northern Ontario where the F–F boundary
interval is recorded in a mudrock succession (Levman and von Bitter,
2002). At the Abitibi River section the rhenana Zone sediments consist
of greenmudstones with two thin dolostone layers. The upper of these
dolostones is capped by a hardground and thin lag layer, and overlain
by 4 m of black shale. Conodonts of the linguiformis Zone occur in the
basal 2–3 cm of the black shale and basal triangularis conodonts occur
above this (Levman and von Bitter, 2002). Once again, a basal lingui-
formis regressionwas succeeded by a rapid rise of sea-level, associated
with the spread of anoxic facies, that continued into the triangularis
Zone.

5. Conodont biofacies analysis

Many studies of sea-level change during the F–F mass extinction
have used changes in conodont assemblages to infer a eustatic history.
The results are often in conflict with the interpretations derived from
facies and sequence stratigraphic analysis. Early work by Sandberg
(1976) identified 11 biofacies along a nearshore-basinal transect. In
particular, the genera Palmatolepis and Polygnathus were used to
indicate deep and/or open waters, whilst Icriodus indicated shallow-
water. Thus, Sandberg et al. (1988) demonstrated a progressive
increase in the proportion of Icriodus elements from the linguiformis
to the triangularis zones in two European sections (Hony, Belgium, and
Steinbruch Schmidt, Germany) and inferred “an abrupt eustatic fall
immediately preceded the late Frasnian mass extinction and that the
fall continued unabated into the early Famennian” (Sandberg et al.,
1988, p. 267). This conclusion is in stark contrast to the transgression-
UN
CO

RR
EC

Fig. 7. Detailed sea-level history across the F–F boundary, reproduced from Sandberg et al. (2
limestones.
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related anoxia and mass extinction inference of Johnson et al. (1985),
published only three years before.

Sandberg et al. (1989, 2002) further developed their techniques to
produce a series of palaeobiogeographic lithofacies maps and an event
history, largely based on the concept of conodont biofacies, but now
also supported by a study of the sediments that contain these
conodonts. Their event history includes the major transgression
during the Early rhenana Zone which saw the rapid evolution and
dispersal of the deep-water conodont Palmatolepis semichatovae
(hence the “semichatovae transgression” — see Section 3.1 above).
This is followed by an abrupt eustatic fall which occurred still within
the Early rhenana Zone. The fall had little effect on sedimentation in
the western United States, but resulted in the cessation of carbonate
platform sedimentation in other areas (e.g. the Jefferson Formation of
Montana, Sandberg et al., 1989). A major transgression then occurred
during the Late rhenana and linguiformis Zones, leading to the
widespread establishment of basinal anoxia (Events 5 and 6 of
Sandberg et al., 2002, see Fig. 7). This transgression was succeeded by
Events 7 and 8 of Sandberg et al. (2002), two pulses of regression that
began in the linguiformis Zone and continued into the Early triangu-
laris Zone (Fig. 7). This regression is again based upon changes in
conodont percentages and is also supported by an increase in the
clastic content in all four lithofacies described in map 4 of Sandberg
et al. (1989). However, this lithofacies map corresponds to the Early
triangularis Zone and so it is unclear why the onset of regression is
placed within the Frasnian. The subsequent transgression begins in
the Middle triangularis Zone. Sandberg et al.'s (1988, 1989, 2002) sea-
level history recognises two F–F transgressive–regressive cycles, as
per the original Johnson et al. (1985) curve, but it differs from that of
Johnson et al. (1985) in the timing of these eustatic changes. The
association of themass extinctionwith regression at the F–F boundary
is the fundamental and key difference with the Johnson et al. (1985)
curve which clearly linked the mass extinction to a phase of anoxia
that spread during a transgression in the late linguiformis Zone.

So why is there such a discrepancy in these sea-level interpreta-
tions? Sandberg et al. (1988) rely heavily on the assumption that
T

002). Lithologic key as in Fig. 4. Note that shaded lithologies represent dark grey to black

hange and marine anoxia in the Frasnian–Famennian (Late Devonian)
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variations in conodont assemblages reflect sea-level change. However,
this assumption is potentially flawed, because the F–F mass extinction
was particularly severe for conodonts, with many species and genera
becoming extinct. It is possible that the increase in the supposedly
shallow-water genus Icriodus merely reflects the near-total loss of all
deep-water conodonts at this time, allowing the opportunistic
expansion of the survivors (Hallam and Wignall, 1999). Certainly the
increase in importance of Icriodus is not reflected as an increase in
their abundance, as can be seen in the original data of Sandberg et al.
(1988, Tables 1–3), but is a function of the extinction of species of
other genera.

The water-depth significance of Icriodus is also not clear. Belka and
Wendt (1992) studied the conodont palaeoecology of the F–F interval
in Morocco, and found that in samples of Late rhenana Zone age,
obtained from the margins of the Tafilalt Basin, Icriodus accounted for
as much as 20% of the total conodont population. According to their
Fig. 10, Icriodus makes up 81% of the total population from a basinal
sample of the same age. Belka andWendt (1992) note that this sample
is characterised by high clastic input, but rule out sedimentary
reworking of the icriodid elements because they are not contained
within turbiditic layers. In any case, palmatolepid elements should be
preferentially reworked by sedimentary transport because they are
more abundant than icriodids along the margin of the Tafilalt
platform. Belka and Wendt (1992) also found that three species of
Icriodus, including I. alternatus alternatus and I. alternatus helmsi are
randomly distributed throughout the whole Tafilalt and Mader area,
and thus show no particular water-depth dependence. These two
species form the vast majority of icriodids recovered by Sandberg et al.
(1988) in their study.

Girard and Renaud (2007) have also inferred F–F boundary eustasy
based on the assumption of a shallow-water habit for Icriodus and
deeper-water affinity of other genera such as Palmatolepis. Girard and
Renaud (2007, p. 120) note that “a peak in Icriodus percentage occurs
at the F–F boundary and is associated with the end of the UKE (Upper
Kellwasser Event)”. This increase can be more simply attributed to the
drastic losses amongst Palmatolepis and Polygnathus rather than sea-
level change. Furthermore, their data reveals that this “Icriodus spike”
actually occurs within the triangularis Zone, and thus any inferred sea-
level fall post-dates the F–F extinction. It is noteworthy that peaks in
absolute number of Icriodus elements are rather diachronous and
occur in better oxygenated strata at different levels within the Early
and Late rhenana Zone at both the Coumiac and La Serre sections in
France. For example, at La Serre, Girard and Renaud (2007) inferred a
decrease of conodonts within the Early rhenana Zone (bed 8), a level
they suggested was the Lower Kellwasser Event, which they assume to
be isochronous. In fact pyrite petrographic data indicates that the
most intense anoxia at this level occurs in bed 9 (uppermost Early
rhenana Zone) at La Serre, the most likely level for the Lower
Kellwasser Event (Bond et al., 2004). Even in the latest Frasnian and
earliest Famennian beds, when the relative abundance of Icriodus is
high, their absolute abundance is actually rather low. This serves to
further highlight that great care should be taken using conodonts to
interpret sea-level changes.

6. Discussion

6.1. Sea-level and extinction

Sea-level change figures in nearly all mass extinction scenarios for
the F–F event. Most workers are in agreement that this interval falls in
the later part of a major transgression, with regression and sequence
boundary generation in the early part of the Famennian Stage.
Although these higher order events are contentious, the interpretation
of the shorter-term (third order) changes of eustasy have proved
particularly controversial. No workers attribute the F–F extinction
directly to transgression, although the associated spread of anoxic
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6waters is a clearer kill mechanism (see below). However, many
6workers link the extinction to cooling and an associated (glacioeu-
6static?) regression (e.g. Copper, 1975, 2002; Playford et al., 1989;
6Becker and House, 1997; Chen and Tucker, 2003, 2004). For some, this
6severe phase of regression occurred during the development of the
6euxinic facies of the Upper Kellwasser Event (e.g. Sandberg et al., 2002,
6Fig. 5), but most proponents of regression highlight the presence of
6karstic surfaces in carbonate sections as evidence for this regression–
6extinction link (e.g. Canadian Rockies, Canning Basin, Australia,
6Guangxi, China). Dating a karstification event is difficult but it most
6likely formed during the earliest linguiformis Zone, before the Upper
6Kellwasser Event, and not at the F–F boundary. This does not
6invalidate a regression–extinction link but implies that the F–F
6extinction was spread over the duration of the linguiformis Zone.
6However, in those few sectionswhere Frasnian reefs survived until the
6late linguiformis Zone (e.g. Psie Górki, Poland) the reef taxa clearly
6survived the early linguiformis regressive phase. In the more offshore,
6basinal sections the extinction losses (of groups such as tentaculitoids,
6ammonoids, conodonts, and ostracods) are clearly associatedwith late
6transgression or maximum Highstand Systems Tract.

66.2. Anoxia and extinction

6The close association of the development of anoxic facies and the
6Late Devonian mass extinction has lead many authors to attribute a
6cause-and-effect relationship (e.g. Buggisch, 1972; House, 1985; Casier,
71987; Geldsetzer et al., 1987; Goodfellow et al., 1989; Walliser et al.,
71989; Buggisch, 1991; Becker, 1993; Joachimski and Buggisch, 1993;
7Becker and House, 1994; Joachimski et al., 2001, 2002; Levman and von
7Bitter, 2002; Chen and Tucker, 2003; Bond et al., 2004; Tribovillard et al.,
72004; Bond and Wignall, 2005; Riquier et al., 2005; Bond, 2006; Pujol
7et al., 2006). The linkhas been criticised by Copper (2002, p. 46–47)who
7notes that “A major problem with the anoxia hypothesis is that it is
7difficult to imagine how ‘giant megaburps’ of CO2 (and SO2)-enriched
7waters, brought up from below the CCD, could simultaneously spill over
7all the world's tropical shelf areas”. This criticism rests on the
7assumption that only one mechanism – global oceanic upwelling –

7can produce widespread anoxia. In fact, analysis of the distribution of
7anoxic waters shows that theywere best developedwithin the interiors
7of epicontinental basins, and expanded their extent during the
7transgressive episodes of cycle IId. There is little evidence for anoxia in
7oceanic margin settings and a ‘megaburp’ upwelling model is therefore
7inappropriate for the Upper Kellwasser Event (Bond et al., 2004).
7A more compelling argument against the anoxia–extinction link
7may be the observation that “There is no evident, direct relationship
7between black shale horizons and reef disappearances in any sections”
7(Copper, 2002, p. 47). The demise of the Psie Górki reef may be an
7exception, but Copper's (2002) general point is a good one and it
7reiterates the point made by Becker et al. (1991, p. 183) that there is
7“no evidence for the organic-rich dark Kellwasser limestone facies”
7associated with the demise of the Canning Basin reefs. However, there
7has been no attempt to analyse redox variations in the Australian
7sections. Often the evidence for such changes can be rather cryptic,
7particularly in deeply-weathered desert sections. For example, Bratton
7et al. (1999) concluded, on the basis of trace metal geochemistry, that
7there was no evidence for the Upper Kellwasser Event in the desert
7sections of the Great Basin, USA. However, the Event was discovered
7using petrographic analysis of the same sections (Bond and Wignall,
72005). This revealed an intense phase of euxinia, based on pyrite
7framboid data. The framboids had been oxidised to iron oxyhydr-
7oxides, but still retained their form, whereas the geochemical
7signature had been lost due to intense oxidation of the samples in a
7desert climate. Similar studies in the Canning Basin may yet reveal a
7role for anoxia in the reef extinctions.
7The transgression-anoxia–extinction scenario invoked here and by
7those authors cited above appears to be a pattern which was repeated
hange and marine anoxia in the Frasnian–Famennian (Late Devonian)
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several times during the Devonian. Brett and Baird (1995) recognised
six Ecological–Evolutionary (E–E) subunits in the Early Devonian to
Frasnian interval, at least five of which were apparently terminated by
widespread hypoxic highstands. Thus, there were probably several
lesser extinctions during the Devonian, and the Frasnian–Famennian
event was merely a more intense manifestation of this scenario.

7. Conclusions

Similar relative sea-level changes near the Frasnian–Famennian
boundary are recorded in many sections worldwide, which implies a
eustatic control. The details of this eustatic history were first outlined
in cycle IId of Johnson et al. (1985), although the discrepancy between
their text and their Fig. 12 has led to confusion in subsequent studies.

Cycle IId begins with a major transgression in the Early rhenana
Zone that is clearly seen in many sections. The subsequent regression
in the early linguiformis Zone was considered a minor one by Johnson
et al. (1985). This is supported by its weak manifestation in many
basinal and base-of-slope sections where its impact was either minor
(e.g. in the Woodruff and Pilot basins of the Great Basin, USA) or
undetectable (e.g. in the Kowala section, Poland). In contrast this
apparently minor regression appears to have caused the emergence
and karstification of carbonate platform deposition over wide areas
(Canadian Rockies, Guangxi, China).

Transgression during the linguiformis Zone is associated with the
spread of anoxic facies (Upper Kellwasser Event) and major extinction
losses, a more intense manifestation of a scenario that may have
repeated several times during the Devonian. The linguiformis Zone
deepening persisted across the F–F boundary and was terminated by
subsequent sea-level fall in the triangularis Zone. The report of a
spectacular eustatic regression at the F–F boundary (e.g. Sandberg et
al., 2002) may be a miscorrelation of the early linguiformis sequence
boundary. Nonetheless, the links of regression and extinction cannot
be discounted because this emergence event removed much of the
platform carbonate habitat area.

Sea-level does not change in isolation within the earth-surface
system and it is likely that the major eustatic changes associated with
F–F mass extinction indicate destabilisation of the climate and C cycle
(e.g. Copper, 1986; Buggisch, 1991; Joachimski and Buggisch, 1993;
Becker and House, 1994; Algeo et al., 1995; Algeo and Scheckler, 1998;
Streel et al., 2000; Joachimski et al., 2002; Goddéris and Joachimski,
2004; Averbuch et al., 2005; Chen et al., 2005; Riquier et al., 2005). The
role of volcanism, often regarded as a key triggering factor during
other global environmental perturbation events, also needs further
evaluation (Racki, 1998).
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