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Regulatory Motif Discovery Using a Population
Clustering Evolutionary Algorithm

Michael A. Lones and Andy M. Tyrrell

Abstract—This paper describes a novel evolutionary algorithm for regulatory motif discovery in DNA promoter sequences. The

algorithm uses data clustering to logically distribute the evolving population across the search space. Mating then takes place within

local regions of the population, promoting overall solution diversity and encouraging discovery of multiple solutions. Experiments using

synthetic data sets have demonstrated the algorithm’s capacity to find position frequency matrix models of known regulatory motifs in

relatively long promoter sequences. These experiments have also shown the algorithm’s ability to maintain diversity during search and

discover multiple motifs within a single population. The utility of the algorithm for discovering motifs in real biological data is

demonstrated by its ability to find meaningful motifs within muscle-specific regulatory sequences.

Index Terms—Evolutionary computation, population-based data clustering, motif discovery, transcription factor binding sites, muscle-

specific gene expression.

Ç

1 INTRODUCTION

Amotif, in the context of biological sequence analysis, is
a pattern of nucleotide bases or amino acids which

captures a biologically meaningful feature common to a
group of nucleic acid or protein sequences. Examples of
motifs include protein domains and binding sites within
amino acid sequences, and regulatory, splicing and locali-
zation signals within DNA and RNA sequences. Motif
discovery is the process of identifying motifs within
biological sequences.

In this paper, we focus upon the problem of identifying
regulatory motifs within the promoter sequences of coex-
pressed genes. The identification of regulatory motifs is an
important problem in contemporary biology since it under-
lies efforts to understand and reconstruct the regulatory
networks that are central to the functioning of biological
organisms. However, it is also a particularly hard problem,
made difficult by a low signal-to-noise ratio resulting from
the poor conservation and short length of transcription
factor binding sites when compared to the length of
promoter sequences. Recent reviews have noted some
important limitations of existing tools for regulatory motif
discovery: notably, the limited applicability of current
nucleotide background models [34], rapid failure with
increasing sequence length [14], and a tendency to report
false positives rather than true transcription factor binding
sites [14], [34].

We describe a novel evolutionary computation algorithm
for regulatory motif discovery. The algorithm uses popula-
tion clustering to logically partition the search space,
thereby allowing weak motifs to be found in the presence

of stronger motifs and noise. Over a series of experiments,
using both synthetic and real DNA sequences, we show
how this approach allows biologically significant motifs to
be found in relatively long promoter sequences of up to
5 kb, and multiple significant motifs to be found within a
single run. The paper is organized as follows: Section 2
reviews relevant background material. Section 3 describes
the population clustering evolutionary algorithm and its
application to regulatory motif discovery. Experimental
results are presented in Section 4 and discussed in Section 5.
Section 6 concludes.

2 BACKGROUND

2.1 Regulatory Motifs

Regulatory motifs capture the patterns of DNA bases
responsible for controlling when and where a gene is
expressed. Typically, regulatory motifs describe transcrip-
tion factor binding sites (TFBSs) embedded in the DNA
sequences upstream of a gene’s transcription start site (TSS).
More rarely, regulatory signals may occur downstream of
the TSS and even within coding sequences. Many well-
characterized motifs, such as the TATA box and Sp1, occur
proximal to the TSS. DNA bending allows transcription
factors bound at TFBSs located kilobases from the TSS to
interact with the transcription complex. Hence, regulatory
motifs may be found large distances upstream or down-
stream of the TSS. This also means that, for most TFBSs,
there are few constraints upon their spatial location within
a DNA sequence. Most TFBSs have a span of 5-8 bp,
although the footprint of a transcription factor typically
spans 10-20 bp, placing constraints upon the bases
surrounding the binding site [38].

Well-conserved motifs, such as CCATT and TATA, are
defined by their consensus sequences or, where variation
exists, by simple regular expressions. For many regulatory
motifs, however, there exists considerable sequence varia-
tion both within and between species. Consequently, it is
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normal for regulatory motifs to be represented as position
frequency matrices (PFMs, also known as profiles) or
position weight matrices (PWMs), showing the likelihood
of each base occurring at each position within the motif.
Known regulatory motif profiles are cataloged in databases
such as TRANSFAC [19] and JASPAR [24].

2.2 Motif Discovery

There have been a number of recent reviews of motif
discovery techniques [14], [21], [26], [31], [34], [36].
Although it is difficult to categorize all the different
techniques, a distinction is often made between enumera-
tive and statistical approaches. The former attempt to
enumerate the search space of possible motifs and test each
for significance, while the latter attempt to optimize the
parameters of a motif model by statistical analysis of the
sequence data. Enumerative algorithms will find optimal
solutions for discrete representations of relatively short
motifs, but do not scale to larger motifs and continuous
models due to the combinatorial growth in the search space.
Nevertheless, more complex exhaustive search algorithms,
such as TEIRESIAS [22], which uses information about the
relative occurrences of substrings to reduce the search
space, can be used to discover discrete representations of
longer motifs. Statistical approaches, by comparison, are
commonly used for finding continuous motif models such
as position frequency matrices. By far the most common
statistical approaches used in motif discovery tools are
Expectation-Maximisation (EM) [1] and Gibbs Sampling
[33] algorithms, which use an iterative procedure to
optimize an initial estimate of the motif model’s parameters
(see [31] for a review). MEME [1] is perhaps the best-known
example of this approach.

The limitations of existing motif discovery tools have
been highlighted in two recent comparative experimental
studies [14], [34]. Tompa et al. [34] compared the abilities of
14 different tools to rediscover knownmotifs in both real and
synthetic eukaryotic promoter sequences. While many of the
tools performed well on yeast data sets, performance upon
metazoan data sets was significantly poorer—leading the
authors of the study to suggest that there is a need for better
modeling of metazoan regulatory regions. In a complemen-
tary study, Hu et al. [14] compared the performance of
5 prominent tools upon a number of prokaryotic promoter
data sets. Notably, they found that sequence length is the
main limiting factor, with performance of all the tools
degrading rapidly as the sequence length was increased.
They also noted the importance of being able to search for
motifs of appropriate length since algorithms with fixed-
sized solutions performed poorly with inappropriate para-
meter settings. The authors of both reports also highlighted
the fact that motifs with high significance scores are not
necessarily of biological interest, suggesting a need for tools
to generate multiple predictions.

The NestedMICA algorithm of Down and Hubbard [6]
and the Deterministic Matrix Enumerator (DME) algorithm
of Smith et al. [30] are two recent approaches that attempt to
overcome some of the limitations of earlier motif discovery
tools. NestedMICA combines a new statistical sampling
algorithm with a multiclass nucleotide background model
to improve sensitivity. The authors show that the algorithm

is able to find regulatory motifs in longer sequences than
MEME. DME is an enumerative algorithm that uses levels
of information content to discretize the search space and
local search to optimize the results. Rather than using a
probabilistic nucleotide background model, DME uses a set
of sequences to explicitly capture the nucleotide back-
ground. The authors believe that this is particularly
appropriate for discovering tissue-selective regulatory
motifs, where background sequence sets can readily be
assembled from promoter sequences of genes known not to
be expressed within a specified tissue. Their results suggest
that DME carries out more sensitive motif discovery than a
number of more common algorithms.

2.3 Motif Discovery Using Evolutionary Algorithms

Evolutionary algorithms (EAs) are a family of stochastic
population-based search algorithms that carry out an
evolutionary search process looselymodeled upon biological
evolution. Typically, the algorithm begins with a population
of randomly generated candidate solutions to some problem.
This population is then evolved over a succession of
generations by iteratively removing the relatively poor
solutions and introducing new solutions derived from the
relatively fit members of the population. New solutions are
created using heuristic operations that either randomly
change (mutate) pieces of existing solutions or randomly
recombine pieces of more than one existing solution (cross-
over). Evolutionary algorithms have been used to solve a
number of problems in bioinformatics [8]. The main benefit
of the approach is that it carries out global nonexhaustive
search while requiring little knowledge of how the search
space is structured.

There have been numerous applications of evolutionary
computation to consensus biosequence discovery. Many of
these have been concerned with multiple sequence align-
ment, a problem for which EAs have been shown to
outperform more conventional approaches in terms of
alignment quality [18], [29]. Evolutionary algorithms have
also been applied to the specific problem of motif discovery.
The relative flexibility of evolutionary computation with
regard to representation has allowed these approaches to
use a variety of motif models. Regular expressions have
been evolved by both Hu [15] and Heddad et al. [12] to
describe protein motifs, producing results competitive with
more conventional approaches. Ross [23] has described how
an EA can be used to evolve probabilistic regular expres-
sions which can effectively classify PROSITE families. A
number of studies have looked at how EAs may be used in
the design of Hidden Markov Models (HMMs) for use in
biosequence applications [37], [39]. Evolutionary computa-
tion approaches have also been used to evolve a number of
unconventional structures for representing and recognizing
sequence motifs [2], [13], often with higher classification
accuracy than conventional approaches.

There have been several previous approaches to
regulatory motif discovery using EAs. Early work by
Corne at al. [5] showed how a simple steady-state EA
could be used to evolve consensus sequence strings and
weight matrices describing core promoter motifs in the
TSS-proximal region (�40 to þ11 bp). In more recent work,
Fogel et al. [7] have used an EA to discover regulatory
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motifs within the 1 kb promoter regions of coexpressed
genes. A notable feature of this approach is that the
authors evolved both the content of the motif and its
position within each sequence, making use of specialized
crossover operators to achieve the latter. Solution diversity
was preserved during evolution to discourage conver-
gence to local optima by the use of an island model
distributed population and the removal of duplicate solu-
tions. The algorithm was able to discover consensus
sequences corresponding to the binding sites of two known
transcription factors. Another recent approach, by Congdon
et al. [4], has shown the ability of genetic algorithms to find
conserved sequence strings in situations where exhaustive
methods would be intractable.

3 MATERIALS AND METHODS

3.1 Objective

The objective of the algorithm is to identify regulatory
elements common to groups of coexpressed genes. The
algorithm is provided with a set of promoter sequences
from the coexpressed genes and a second set of sequences
specifying the nucleotide background. After processing, the
algorithm outputs those motifs that it has identified as
being most overrepresented in the promoter sequences
relative to the background sequences. With the notable
exception of DME, this use of a background sequence set is
not commonplace within motif discovery tools, which, in
general, either build a background model from the set of
promoter sequences in which they are searching for motifs
or are provided with a background model derived from a
larger set of sequences. However, this approach is often
used in evolutionary computation-based approaches, in
which there is no explicit modeling of the nucleotide
background.

3.2 Motif Representation and Evaluation

Regulatory motifs are represented as variable-length nor-
malized position frequency matrices in order to capture the
variation in both defining length and degree of conservation
among TFBSs. The fitness of a motif is a measure of how
well it differentiates between sequences in a specified data
set and the set of background sequences. It is calculated as
follows: Prior to fitness evaluation, the PFM is converted to
a PWM with log-odds scores for more efficient matching.
This is done by multiplying each entry in the PFM by 4 and
then taking the natural logarithm (see Fig. 1 for an
example). For each sequence in both the data set and the
background set, the best match to the PWM is found by
calculating the PWM match score at each offset in the
sequence. This value is then normalized to the range [0, 1]
by dividing by the maximum possible score for any PWM
of equivalent size. The fitness of the motif is given by the
difference between the mean best match score upon the
coexpression data set and the mean best match score upon
the background data set. This is mapped linearly to a value
between 0 and 1, with values above 0.5 indicating a better
match against sequences in the data set than the back-
ground set.

Unlike standard scoring metrics, this measure of fitness
does not use a cutoff value to classify matches as true or

false positives or negatives but, rather, uses a continuous
function taking into account all partial matches. This is
important from an evolutionary computation perspective
since it givesmore informationabout the searchgradient than
standard metrics. It is interesting to note that this fitness
functionhas an implicit bias towardhigh information content
motifs, since those capable of generating highermatch scores
per base can receive higher fitness scores. This is generally a
useful feature since the conserved regions of regulatory
motifs tend to have high information content [17].

Where evolved PFMs are compared to known motifs, we
use the metric defined by Sandelin et al. [25], which uses a
modified dynamic programming algorithm to find the best
alignment between the two frequency matrices, allowing for
a single gap. This is the same algorithm that is used for
comparing motifs on the JASPAR Web server [24].

3.3 Population Clustering

Regulatory motif discovery involves finding biologically
meaningful, not necessarily well-conserved, patterns within
noisy data sets. These patterns are generally short and can
occur anywhere within sequences up to about 10 kb in
length. In most cases, the set of positive example sequences
is small and contains many overrepresented patterns when
compared to the nucleotide background. Gene expression is
typically determined by the binding of multiple transcrip-
tion factors and, consequently, there are likely to be multiple
relevant patterns within a data set.

Two factors make this problem particularly difficult for
standard evolutionary algorithms to solve: the need to find
multiple solutions and the fact that biologically meaningless
solutions may have a higher apparent fitness then those
representing true regulatory sites. Standard evolutionary
algorithms generally converge to either a single solution or
a set of similar solutions. This convergence is due to loss of
solution diversity during selection, since the level of
selective pressure required to find good solutions also
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tends to remove diversity from the population. Conse-
quently, standard evolutionary algorithms cannot generally
maintain multiple diverse solutions to a problem or
solutions with a fitness level much below that of the
population’s maximum fitness. To overcome these pro-
blems, a number of techniques have been developed that
attempt to maintain diversity within evolving populations.
These include fitness sharing and crowding [27], speciation
through limited mate choice [9], and the use of multiple
subpopulations and spatially distributed populations [3].

In this work, we use population clustering [28], [32] to
maintain solution diversity. Population clustering uses a
data clustering algorithm to partition the population into
subpopulations prior to mating. Mating then takes place
solely within subpopulations. This explicit partitioning of
the population is the primary advantage of population
clustering over fitness sharing, crowding, and mating-based
techniques—all of which achieve partitioning through
indirect means—since it enables both selection and recom-
bination to be carried out locally. In particular, selective
pressure can be made high within partitions, promoting
optimization of individual solutions, whilst remaining low
between partitions, promoting solution diversity. Unlike
distributed populations, which also have explicit partition-
ing, this partitioning is determined by similarity between
solutions rather than by evolutionary history, promoting
better coverage of the search space.

3.3.1 Clustering Algorithm

There are a large number of data clustering algorithms
which could be used for population clustering. In this
work, we use a sequential leader clustering algorithm
[11], a simple incremental clustering algorithm chosen
predominantly for its low time complexity. The leader
algorithm makes a single pass through the population,
and depending upon the degree of similarity, either
assigns each solution to an existing cluster or uses it to
seed a new cluster. Pseudocode for our implementation is
given in Algorithm 1. Sequential leader clustering is order-
dependent, and we take advantage of this by processing the
fittest solutions from the fittest clusters first (see Algo-
rithm 3, line 22 onward for details). This means that the
fittest solutions are more likely to be at the centre of
clusters. The relative imprecision of leader clustering also
means that clusters can vary significantly from one
generation to the next, providing an opportunity for
solutions to move between clusters and thereby allowing
a degree of genetic flow and implicit intercluster mating.

Algorithm 1 Population Clustering

1: Clusters ( ;
2: for all pfm in fPopulationg do

3: if Clusters ¼ ; then

4: create a new cluster and insert pfm

5: else

6: smallestdistance ( 1
7: ~fv ( feature vector for pfm

8: for all c in Clusters do

9: ~cfv ( mean feature vector for c
10: distance ( Euclidean distance between ~fv

and ~cfv

11: if distance < smallestdistance then

12: smallestdistance ( distance

13: closest ( c

14: end if

15: end for

16: if ðsmallestdistance > maxdistanceÞ and
ðkClustersk < maxclustersÞ then

17: create a new cluster and insert pfm

18: else

19: insert pfm into closest

20: end if

21: end if

22: end for

3.3.2 Clustering Metric

Useful population clustering is dependent upon a suitable
choice of clustering metric. In this work, we have used the
distance between the tetranucleotide distributions of PFMs
as a clustering metric.1 An example of the tetranucleotide
distribution corresponding to a PFM is shown in Fig. 1. This
metric was successfully used in [10] to identify TFBS
families within the TRANSFAC database. Pseudocode for
generating a feature vector describing the tetranucleotide
distribution of a PFM is given in Algorithm 2. Since the
information content of solutions in the population will
generally increase during search, the distances generated by
this clustering metric will also increase. To compensate for
this, the between-cluster distance parameter (maxdistance
in Algorithm 1) is set proportional to the average highest
tetranucleotide probability among high scoring solutions
using the following equation:

maxdistance ¼ kðvÞ4; ð1Þ

where v is the average highest column value among the
fittest PFMs from each cluster, and k is a constant which
indirectly affects the number of clusters in the final
population.

Algorithm 2 Calculate Feature Vector fv

for Position Frequency Matrix pfm

1: tn ( 0

2: for all tetranucleotide in fAAAA . . .TTTTg do

3: psum ( 0, count ( 0

4: for i ¼ 0 to number of columns in pfm� 4 do

5: p ( 1

6: count ( countþ 1

7: for all residues in tetranucleotide do

8: p ( p� pfm value for residue at

column ðiþ residue positionÞ
9: end for

10: psum ( psum þ p

11: end for

12: fv½tn� ( psum=count ## normalize probability to

avoid PFM length bias ##

13: tn ( tnþ 1

14: end for

3.4 Population Clustering Evolutionary Algorithm

Pseudocode for the population clustering evolutionary
algorithm (PCEA) is given in Algorithm 3. The algorithm
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consists of an initialization stage followed by an iterative

phase comprising clustering, mating, and evaluation.

During initialization, the population is filled with randomly

generated PFMs with uniformly distributed frequencies for

each base. Following clustering of the population (see

Section 3.3.1), mating takes place within each cluster, with

the number of child solutions produced in each cluster

proportional to the relative fitness of the solutions in the

cluster. Every cluster produces at least one child solution, in

order to preserve population diversity. New PFMs are

generated using mutation and uniform crossover. A fitness-

ranked selection strategy is used to select parents for

mating. Mutation is applied with a given probability per

nucleotide position and works by randomly changing the

frequencies assigned to one or more residues and then

normalizing the other frequencies so that the total still sums

to unity. Uniform crossover selects crossover points with a

given probability per nucleotide position and then swaps

the groups of matrix columns occurring between every

other pair of crossover points. Mutation and crossover are

applied independently according to a specified mutation-

crossover ratio. After creation, new PFMs are immediately

evaluated using the fitness function described in Section 3.2.

Algorithm 3 Population Clustering Evolutionary Algorithm

1: Population ( initializeðÞ
2: evaluateðPopulationÞ
3: for generation ¼ 1 to maxgenerations do

4: Clusters ( clusterðPopulationÞ
5: order Clusters by fitness rank
6: ## carry out breeding within clusters ##

7: for all c in Clusters do

8: c0 ( new cluster

9: set kc0k inversely proportional to

fitness rank of c

10: for child ¼ 1 to kc0k do

11: if randomðÞ < mutationcrossoverratio

then

12: c0½child� ( mutate (parent chosen by

rank selection)

13: else

14: c0½child� ( crossover (parents chosen

by rank selection)

15: end if

16: evaluateðc0½child�Þ
17: end for

18: c ( c0

19: end for

20: order Clusters by fitness rank

21: ## order population for clustering ##

22: for member ¼ 1 to size of largest cluster do

23: for all c in Clusters do

24: if member � kck then

25: add c½member� to Population0

26: end if

27: end for

28: end for

29: Population ( Population0

30: end for

3.5 Methodology

We are primarily interested in the ability of the algorithm to
discover promoter elements that are common to groups of
temporally or spatially coexpressed genes, such as those
identified through microarray analysis. Since the locations
of promoter elements are not necessarily conserved or
constrained within promoter sequences and given that they
are known to occur at considerable distances from the TSS
[38], one behavior we are particularly interested in is the
ability of the algorithm to identify motifs within relatively
long promoter sequences (i.e., > 1 kb). To test the algor-
ithm’s capacity in this regard, we follow the approach
described by Down and Hubbard [6], using synthetic data
sets containing DNA sequences of various fixed lengths.
These sequences are created by inserting known regulatory
motifs from the JASPAR [24] database into intergenic DNA
sequences. Since gene expression is typically the result of
interactions between multiple transcription factors bound at
different promoter elements, we are also interested in the
ability of the algorithm to identify multiple motifs common
to a group of sequences. To test this, we use both synthetic
sequences with multiple embedded motifs, and a set of
muscle-specific promoter sequences curated by Wasserman
and Fickett [35] and known to contain multiple promoter
elements.

3.6 Data Sets

Data sets used to test the PCEA’s behavior are described
below. Where we use data sets provided by other authors,
URLs for the original data files are given in footnotes. Our
own data sets are in Appendix A (which can be found on the
Computer Society Digital Library at http://computer.org/
tcbb/archives.htm).

3.6.1 Synthetic Test Data with Single Motifs

In a recent study, Down and Hubbard [6] used synthetic
DNA sequences to compare the ability of MEME and
NestedMICA to identify known regulatory motifs from the
JASPAR transcription factor binding site database. These
synthetic sequences were composed of intergenic DNA
sequence fragments into which one or more known motifs
had been inserted at random positions. The motifs were
generated probabilistically from JASPAR position fre-
quency matrices, with the probability of a particular
nucleotide occurring at each offset in the motif directly
proportional to its respective frequency in the PFM. To
mimic the difficulty of real biological data sets, motifs were
embedded in only 50 of the 100 sequences in each data set.

To allow direct comparison with Down and Hubbard’s
results for MEME and NestedMICA, we use the data sets
they provide for the JASPAR motifs HFH-1, HLF
and c-FOS2 (see Table 1). These are available in sequence
lengths of up to 2 kb for HFH-1 and 1 kb for HLF and c-FOS.
In particular, for each of these motifs, we use two of Down
and Hubbard’s data sets: one for which NestedMICA was
able to find the embedded motif, and one corresponding to
the longest available sequence length, for which, in all cases,
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NestedMICA and MEME were not able to find the
embedded motif.

For longer sequence lengths, we created new data sets
using human promoter sequences from the Eukaryotic
Promoter Database (EPD) [20], EMBL Release 85. All
sequences covering a range of �4;900 to þ100 bases relative
to the TSS were extracted from the database. Where shorter
sequences are used, they are cropped from the upstream
end. All positive data sets comprise 100 randomly selected
sequences, half of which have a known motif probabilisti-
cally embedded using the procedure described by Down
and Hubbard.

Background sequence sets are composed of a specified
number of randomly selected EPD sequences with no
embedded motifs. These sequences are cropped to the same
length as those in the synthetic sequence data set with
which they are used. For the longer sequence lengths, we
ensure that the background sequences are not the same as
those used to construct the synthetic sequences.

3.6.2 Synthetic Test Data with Multiple Motifs

To test the ability of the PCEA to identify multiple known
motifs, we constructed a data set containing multiple
JASPAR motifs. These were chosen to cover a range of
values for information content and defining length and are
listed in Table 2. In particular, RORA1, RXR-VDR, and
PPARG-RXRA were chosen in order to test the ability of the
algorithm to correctly distinguish between similar motifs,
since these are all members of the nuclear receptor family
and each contains the conserved sequence GGTCA. As for
the single-motif data sets, the motifs were stochastically
inserted into half the 100 sequences in the data set. A
background sequence set of 1,000 sequences is used for this
experiment. In order to avoid search biases introduced by
unidentified motifs, random DNA sequences with the same
single-nucleotide distribution as the EPD sequences are
used rather than the EPD sequences themselves. Sequences
in the data set and background set are both 1 kb in length.

3.6.3 Muscle-Specific Data Set

To test the applicability of the PCEA to real biological data,
we have applied the algorithm to Wasserman and Fickett’s
collection of 43 muscle-specific promoter sequences [35].
Following the approach of Smith et al. [30], who applied the
Discriminating Matrix Enumerator (DME) algorithm to this
data set, we use the 2,348 nonmuscle entries in the EPD as a
background set, and use the 28 muscle-specific promoter
sequences in the EPD as a test set.3 The latter is used to

determine which motifs discovered in the Wasserman and
Fickett data set have more general significance within
muscle promoter sequences and are therefore likely to have
biological meaning. Sequences in Wasserman and Fickett’s
data set have lengths between 197 bp and 802 bp, those in
the test set have lengths between 268 bp and 600 bp, and
those in the background set have lengths between 91 bp and
600 bp.

3.7 Parameter Settings

For the synthetic data sets, motifs in the initial generation
were generated with lengths in the range 5-50 bases to test
the algorithm’s ability to find appropriately sized solutions.
For the muscle data set, bounds of 8-40 were used, since
interesting motifs are unlikely to be found outside this
range. During evolution, new solutions are generated using
mutation and uniform crossover in the ratio 7:3. Mutation is
applied with a probability of 8 percent per base for new
solutions generated by mutation. Two forms of mutation
are used. Gaussian mutation selects a new frequency value
for a single residue using a Gaussian distribution centerd on
the current value and covering one standard deviation in
the range � 0:5. Values outside the range [0, 1] are rejected.
Gaussian mutation is applied during 90 percent of mutation
events.

A more disruptive mutation operator, which randomizes
then normalizes all the residue frequencies in the selected
matrix column, is applied during the remaining mutation
events. There is also a 4 percent likelihood of adding a new
column with random frequencies to either the start or end
of a motif during mutation. Uniform crossover selects
crossover points according to a probability of 15 percent per
base. These operators were chosen to provide a variety of
exploratory mechanisms for evolutionary search, and
suitable parameter settings were determined experimen-
tally. The number of clusters is limited to a maximum of 200
for efficiency reasons. A value of 0.3 is used for the
parameter k in (1). We have found that this value maintains
the number of clusters at or near the limit of 200. Larger
values reduce the number of clusters but, generally, at the
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3. These data sets are available from http://www.pnas.org/cgi/
content/full/0406123102/DC1.

TABLE 1
JASPAR Motifs Embedded in Single Motif Synthetic Data Sets

TABLE 2
JASPAR Motifs Embedded in Multiple Motifs Synthetic Data Set



expense of solution diversity. Parameter values were
selected for overall performance and have not been tuned
for individual experiments.

4 RESULTS

4.1 Synthetic Data with Single Motifs

We carried out 20 runs of the PCEA on each of the synthetic
data sets containing a single embedded motif in each
sequence. Each run had a maximum of 200 generations.
Table 3 shows the proportion of runs in which the correct
motif was found, the average length of motifs discovered by
the algorithm, and an example of an evolved solution for
each data set. For a run to be classified as successful, the
final population must contain a motif with a high level of
similarity to the target motif and have a length at least
50 percent of that of the target motif. Population and
background set sizes were determined experimentally and
generally represent suitable values for most runs to be
successful. Longer sequences required larger populations
and background set sizes in order to handle the larger
number of patterns present in the sequences and to
sufficiently distinguish them from the nucleotide back-
ground. The only low success rate is for the c-FOS data set
with sequences of length 1,000, for which the PCEA had
only a 60 percent success rate despite having the same
population size as the c-FOS data set with sequences of
length 1,500, which has a high success rate. This is likely to
be due to the composition of the sequences underlying the
Down and Hubbard data sets, which are general intergenic
sequences rather than specifically promoter sequences.
Consequently, the EPD sequences in the background set
may less accurately capture the background distribution of
these data sets than those constructed from promoter
sequences.

Fig. 2 plots trends in solution fitness and the match to the
target motif during evolution when the PCEA is applied to

the data sets with the longest sequence length for each
motif. Match to the target motif is measured according to
the dynamic programming method of Sandelin et al. [25]
(see Section 3.2). From these plots, it is evident that
solutions with a reasonable match to the target motif but
with low fitness are usually found in the initial population
and that, during evolution, both match and fitness increase
in the majority of cases. On average, at the end of a run, the
fitness of the closest match is at least as high as that of the
target motif. In general, throughout evolution, the closest
match to the target motif has lower fitness than the fittest
motif found within the population.

4.2 Synthetic Data with Multiple Motifs

We carried out 40 runs of 150 generations on the synthetic
data set containing eight embedded motifs, using a
population size of 2,000. Table 4 gives the results from five
of these runs, showing motifs in the final populations
which bore the closest resemblance to the embedded
motifs. In most cases, there is a good match between the
discovered motifs and the embedded motifs in all of the
runs. SPI-B has a relatively poor match, though this is
unsurprising due to its low information content and short
defining length. RXR-VDR is the only high information
content motif which is not well characterized. This may be
due to interference from the other nuclear receptor motifs.
In general, there is a tendency to capture only the most
significant regions of the long, high information content
motifs, possibly because the full length is not required to
differentiate between the data set and the background
sequences. With the exception of low information content
flanking regions, the defining lengths of the shorter
motifs—HLF, FOXI1, and NFKB1—are generally well
characterized.

These observations are reflected in Fig. 3, which shows
the mean target matches and fitnesses across all 40 runs. It
can be seen that, with the exception of SPI-B, on average,
both the match to the embedded motifs and the fitness of
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TABLE 3
Results for Synthetic Data Sets with Single Embedded Motifs Evolved with Given Population and

Background Sequence Set Sizes, Showing Percentage of Successful Runs, Mean Length of Evolved Motif
as a Percentage of the Length of the Embedded Motif, and an Example of an Evolved Motif



410 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 3, JULY 2007

Fig. 2. Evolution of motifs for synthetic data sets. (a) HFH-1 length 5,000. (b) HLF length 1,500. (c) c-FOS length 1,500. The top row shows mean

closest match to the target motif during evolution. The bottom row shows mean fitness during evolution of fittest motif in population (“best”) and motif

with closest match to the target motif (“closest”), also showing the fitness of the target motif (“target”). Error bars show standard deviation.

TABLE 4
Motifs Discovered in the Synthetic Data Set with Multiple Embedded Motifs during Five Consecutive Runs of the PCEA

The embedded JASPAR motifs are shown in column headers.

Fig. 3. Target match and fitness of closest match for each motif embedded in the synthetic sequences. Standard deviation is shown for overall best

solution fitness.



the closest matching solution increases during evolution.
Fig. 3 also shows how the clustered population supports a
wide range of fitness levels during evolution. This diversity
is depicted in Fig. 4, which shows the clusters within the
population of one of the runs at generation 60. Even at this
stage, the population still displays a wide diversity in terms
of both solution content and solution fitness, with the fittest
clusters mostly containing versions of the JASPAR motifs,
whereas other clusters generally contain suboptimal var-
iants of the fittest solutions.

4.3 Muscle-Specific Data Set

We carried out 20 runs of 150 generations upon Wasser-
man and Fickett’s muscle-specific data set with a
population size of 4,000. Motifs discovered in each run
were then scored against the test set. Any which scored
poorly against these sequences were rejected, since such
motifs are more likely to reflect spurious overrepresented
patterns in Wasserman and Fickett’s data set rather than
true muscle-specific TFBSs. The remaining motifs were
then manually grouped by similarity and the best
examples of each (measured by test set score) were kept,
leaving the most significant motifs found by the algo-
rithm. Appendix A (which can be found on the Computer
Society Digital Library at http://computer.org/tcbb/
archives.htm) gives examples of motifs discovered in this
fashion for the first five runs. Table 5 gives examples of each
kind of motif discovered during the runs. Motifs 1-5 in
Table 5 bear a clear resemblance to known instances of the
five regulatory motifs identified by Wasserman and Fickett
as occurring within this data set [30], [35]. Motif 6 closely
resembles the binding site for MyoD, another known

muscle-specific transcription factor which has also been
previously identified within Wasserman and Fickett’s data
set. Motif 7 bears a limited resemblance to the binding site
for TEF, although it may be unrelated, and Motif 8 bears
little resemblance to any well known muscle-specific TFBS.
Of the 20 total runs, binding sites for MEF2, Sp1 and motif 8
were found in all 20 runs, those for MyoD and motif 7 were
found in 19 runs, SRF was found in 18 runs, and Myf was
found in 15 runs. The relative difficulty of finding the
binding site for Myf may be due to its similarity to that of
MyoD, which has a comparatively well-conserved central
region.

5 DISCUSSION

These results demonstrate that the PCEA is able to discover
motifs in relatively long DNA promoter sequences of up to
5 kb and discover multiple motifs, both strongly and
weakly conserved, within a single run. The former is shown
by Table 6, which compares the results from Section 4.1
with those of Down and Hubbard [6] when using the data
sets described in Section 3.6.1. For each of the three motifs,
the PCEA is able to find embedded motifs in data sets
which NestedMICA and MEME (with standard parameter
settings for this kind of problem) failed to solve and within
data sets comprising sequences of significantly longer
lengths. In the case of HFH-1, which has relatively high
information content, the PCEA was able to consistently
discover motifs in sequences more than four times longer
than those solvable by NestedMICA and MEME.

Results from the experiments using synthetic sequences
with multiple embedded motifs (Section 4.2) illustrate the
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Fig. 4. Clusters within a population. Clusters are represented by their fittest motif, relative fitness is shown by motif size, and the layout is a

multidimensional scaling of intercluster distances, produced by the Kamada-Kawai force-directed method [16]. Labels indicate the fittest cluster for a

particular motif.



PCEA’s ability to maintain a diverse population of solutions
yet still optimize individual solutions. This is also demon-
strated by results from the muscle-specific data set
(Section 4.3) in which the PCEA discovered instances of
most of the well-known muscle TFBSs in most of the runs.
This compares well against DME, which Smith et al. [30]
report to have discovered three well-known muscle
regulatory motifs within the Wasserman and Fickett data
set. These are reproduced in Table 7, which also gives
match statistics using the same metric as the PCEA results
in Table 5. It is notable that there is a high degree of
resemblance between the versions of MEF2 and SRF
discovered by the PCEA and DME. Although the version
of MyoD discovered by the PCEA appears to offer better
descrimination of the EPD test set from the background set,
it should be noted that this difference may be heightened by
our choice of scoring metric, which differs from that used
by Smith et al.

Repeatability is an important issue for stochastic algo-
rithms. In general, we have found that, with a sufficiently
large population size, there is a high degree of similarity
between runs. This is demonstrated by the high success
rates for most of the experiments in Section 4.1 and the self-
similarity between discovered motifs in experiments invol-
ving multiple motifs (e.g., Table 4). However, in practice it
would be harder to determine a suitable population size

unless some knowledge of a regulatory motif’s information
content was available in advance. As such, we would

recommend using the largest population size possible
(taking into account constraints on time and computational
resources) in order to reduce the likelihood of missing

poorly conserved motifs. Execution time is dominated by
solution evaluation and, consequently, grows linearly with
each of population size, number of generations, motif

length, sequence length, and data set sizes. For example, on
an Intel 2 GHz core duo machine (running Mac OS, with the
algorithm implemented in Java and using multithreaded

evaluation) execution time was approximately 2 hours per
run for the multiple motif synthetic data set, approximately
1 day per run for the muscle data set, and approximately

4 days per run for the HFH-1 data set with sequences of
length 5,000 and a population of 4,000.

An interesting property of the PCEA approach is its
ability to identify multiple motifs within a single run. With

more conventional approaches, identification of multiple
motifs is typically done over a succession of runs, masking
those motifs found in earlier runs from the data sets of later

runs. One advantage of the PCEA’s parallel motif discovery
approach is that it removes the need to run the algorithm an
unknown number of times in order to filter out strong
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TABLE 5
Summary of Results from Running the PCEA upon the Muscle Data Sets

W&F, EPD, and bg indicate percentage of sequences matched in the Wasserman and Fickett, EPD muscle, and background sets, respectively. A
match was determined by a value above 80 percent of the corresponding PWM’s best possible match value. Right-hand columns show similarity to
known muscle TFBSs, showing transcription factor name, database ID, and sequence logo. IDs of the form MAxxxx refer to JASPAR records, and
those of the form Mxxxxx refer to entries in the transfac matrix database.

TABLE 6
Maximum Sequence Lengths for which

Motifs Could Be Identified

TABLE 7
Motifs Discovered by DME in the

Wasserman and Fickett Data Set (from [30])



motifs and their variants before weak motifs can be
identified. However, it also introduces the potential to
make use of cooccurrence information during search in
order to identify motifs that are too weak to be identified
individually. In future work, we plan to look at how the
PCEA may form the basis of a combinatorial motif
discovery system, using coevolution to search for regula-
tory motifs and rules describing their interactions.

6 CONCLUSIONS

We have described an evolutionary algorithm that applies
data clustering between generations to partition the
population into demes for mating purposes. This approach
is designed to maintain solution diversity within the
population, avoiding premature convergence while search-
ing for multiple solutions in parallel. Such behavior is
particularly appropriate for the kind of multimodal search
spaces found in motif discovery problems.

Through a series of experiments, we have shown how
this evolutionary algorithm can be applied to the problem
of regulatory motif discovery in DNA sequences. Our
results demonstrate that the algorithm is able to find and
characterize motifs in relatively long promoter sequences
when compared to other algorithms. The results also show
that the algorithm is able to discover multiple motifs within
a single run while accurately characterizing motifs found in
real biological data sets. We have speculated how this
inherent parallel discovery might form the basis for a
combinatorial motif discovery system.

In a recent paper [18], we suggested that evolutionary
algorithms have three characteristics thatmake them suitable
for motif discovery: global search that is neither exhaustive
nor biased by specific heuristics, representational flexibility,
and no dependence between the way in which solutions are
derived and the way in which they are scored. In this paper,
we have concentrated on the first of these, showing how an
evolutionary algorithm with suitable population manage-
ment can be used to effectively discover motifs in biological
sequences. In future work, we plan to look at how the
representational flexibility of evolutionary algorithms may
allow the development of more accurate motif and regula-
tory models for motif discovery.
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[3] E. Cantú-Paz, “Designing Efficient and Accurate Parallel Genetic
Algorithms,” PhD dissertation, Univ. of Illinois at Urbana-
Champaign, 1999.

[4] C.B. Congdon, C. Fizer, N.W. Smith, H.R. Gaskins, J. Aman, G.M.
Nava, and C. Mattingly, “Preliminary Results for GAMI: A
Genetic Algorithms Approach to Motif Inference,” Proc. IEEE
Symp. Computational Intelligence in Bioinformatics and Computational
Biology (CIBCB ’05), pp. 97-104, 2005.

[5] D. Corne, A. Meade, and R. Sibly, “Evolving Core Promoter Signal
Motifs,” Proc. Congress Evolutionary Computation (CEC ’01),
pp. 1162-1169, May 2001.

[6] T.A. Down and T.J.P. Hubbard, “NestedMICA: Sensitive Inference
of Over-Represented Motifs in Nucleic Acid Sequence,” Nucleic
Acids Research, vol. 33, no. 5, pp. 1445-1453, 2005.

[7] G. Fogel, D. Weekes, G. Varga, E. Dow, H. Harlow, J. Onyia, and
C. Su, “Discovery of Sequence Motifs Related to Coexpression of
Genes Using Evolutionary Computation,” Nucleic Acids Research,
vol. 32, no. 13, pp. 3826-3835, 2004.

[8] Evolutionary Computation in Bioinformatics, G.B. Fogel and
D.W. Corne, eds. Morgan Kaufmann, 2002.

[9] R. Fry, S. Smith, and A. Tyrrell, “A Self-Adaptive Mate Selection
Model for Genetic Programming,” Proc. IEEE Congress Evolu-
tionary Computation (CEC ’05), vol. 3, pp. 2707-2714, 2005.

[10] K. Grote, R. Schneider, and T. Werner, “Kohonen Maps Are
Suitable for a Biologically Meaningful Classification of Transcrip-
tion Factor Binding Site Matrices,” Proc. German Conf. Bioinfor-
matics (GCB ’99), 1999.

[11] J. Hartigan, Clustering Algorithms. John Wiley & Sons, 1975.

[12] A. Heddad, M. Brameier, and M. MacCallum, “Evolving Regular
Expression-Based Sequence Classifiers for Protein Nuclear Loca-
lisation,” Applications of Evolutionary Computing, Proc. EvoWork-
shops ’04, pp. 31-40, Apr. 2004.

[13] D. Howard and K. Benson, “Evolutionary Computation Method
for Pattern Recognition of Cis-Acting Sites,” Biosystems, vol. 72,
nos. 1-2, pp. 19-27, Nov. 2003.

[14] J. Hu, B. Li, and D. Kihara, “Limitations and Potentials of Current
Motif Discovery Algorithms,” Nucleic Acids Research, vol. 33,
no. 15, pp. 4899-4913, 2005.

[15] Y.-J. Hu, “Biopattern Discovery by Genetic Programming,” Proc.
Genetic Programming Conf., J.R. Koza et al., ed., pp. 152-157, 1998.

[16] T. Kamada and S. Kawai, “Automatic Display of Network
Structures for Human Understanding,” Technical Report 88-007,
Dept. of Information Science, Univ. of Tokyo, 1988.

[17] K.J. Kechris, E. van Zwet, P.J. Bickel, and M.B. Eisen, “Detecting
DNA Regulatory Motifs by Incorporating Positional Trends in
Information Content,” Genome Biology, vol. 5, no. 7, p. R50, 2004.

[18] M.A. Lones and A.M. Tyrrell, “The Evolutionary Computation
Approach to Motif Discovery in Biological Sequences,” Proc.
Genetic and Evolutionary Computation Conf. (GECCO) Workshop
Program, Workshop Biological Applications of Genetic and Evolutionary
Computation, F. Rothlauf, ed., pp. 1-11, June 2005.

[19] V. Matys, E. Fricke, R. Geffers, E. Gssling, M. Haubrock, R. Hehl,
K. Hornischer, D. Karas, A.E. Kel, O.V. Kel-Margoulis, D.-U.
Kloos, S. Land, B. Lewicki-Potapov, H. Michael, R. Münch, I.
Reuter, S. Rotert, H. Saxel, M. Scheer, S. Thiele, and E. Wingender,
“TRANSFAC: Transcriptional Regulation, from Patterns to Pro-
files,” Nucleic Acids Research, vol. 31, no. 1, pp. 374-378, Jan. 2003.

[20] R. Prier, V. Praz, T. Junier, C. Bonnard, and P. Bucher, “The
Eukaryotic Promoter Database (EPD),” Nucleic Acids Research,
vol. 28, pp. 302-303, 2000.

[21] P. Qiu, “Recent Advances in Computational Promoter Analysis in
Understanding the Transcriptional Regulatory Network,” Bio-
chemical and Biophysical Research Comm., vol. 309, no. 3, pp. 495-501,
Sept. 2003.

[22] I. Rigoutsos and A. Floratos, “Combinatorial Pattern Discovery in
Biological Sequences: The TEIRESIAS Algorithm,” Bioinformatics,
vol. 14, no. 1, pp. 55-67, 1998.

[23] B.J. Ross, “The Evolution of Stochastic Regular Motifs for Protein
Sequences,” New Generation Computing, vol. 20, no. 2, pp. 187-213,
Feb. 2002.

[24] A. Sandelin, W. Alkema, P. Engström, W.W. Wasserman, and B.
Lenhard, “JASPAR: An Open-Access Database for Eukaryotic
Transcription Factor Binding Profiles,” Nucleic Acids Research,
vol. 32, pp. D91-D94, Jan. 2004.
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