This is an author produced version of a paper published in Twin Research and Human Genetics.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/3417/

Published paper
Internet Cognitive Testing of Large Samples Needed in Genetic Research

Claire M. A. Haworth¹, Nicole Harlaar¹, Yulia Kovas¹, Oliver S. P. Davis¹, Bonamy R. Oliver², Marianna E. Hayiou-Thomas³, Jane Frances¹, Patricia Busfield¹, Andrew McMillan¹, Philip S. Dale⁴, and Robert Plomin¹

¹ Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK.
² Forensic Mental Health Science, Institute of Psychiatry, King’s College London, London, UK.
³ Department of Psychology, University of York, York, UK.
⁴ Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, USA.

Address for Correspondence: Claire Haworth, SGDP Centre, P080, Institute of Psychiatry, King’s College London, De Crespigny Park, London SE5 8AF, UK.
Tel: +44 (0) 20 7848 5401
Fax: +44 (0) 20 7848 0895
Email: Claire.Haworth@iop.kcl.ac.uk

Running Head: VALIDATION OF INTERNET TESTING IN CHILDREN

Date of submission: 19th February 2007
Date of resubmission: 1st May 2007
VALIDATION OF INTERNET TESTING IN CHILDREN

Internet Cognitive Testing of Large Samples Needed in Genetic Research

Quantitative and molecular genetic research requires large samples to provide adequate statistical power, but it is expensive to test large samples in person, especially when the participants are widely distributed geographically. Increasing access to inexpensive and fast internet connections makes it possible to test large samples efficiently and economically online. Reliability and validity of internet testing for cognitive ability have not been previously reported; these issues are especially pertinent for testing children. We developed internet versions of reading, language, mathematics and general cognitive ability tests and investigated their reliability and validity for 10- and 12-year-old children. We tested online more than 2500 pairs of 10-year-old twins and compared their scores to similar internet-based measures administered online to a subsample of the children when they were 12 years old (>759 pairs). Within 3 months of the online testing at 12 years, we administered standard paper and pencil versions of the reading and mathematics tests in person to 30 children (15 pairs of twins). Scores on internet-based measures at 10 and 12 years correlated .63 on average across the two years, suggesting substantial stability and high reliability. Correlations of about .80 between internet measures and in-person testing suggest excellent validity. In addition, the comparison of the internet-based measures to ratings from teachers based on criteria from the UK National Curriculum suggest good concurrent validity for these tests. We conclude that internet testing can be reliable and valid for collecting cognitive test data on large samples even for children as young as 10 years.
VALIDATION OF INTERNET TESTING IN CHILDREN

Internet Cognitive Testing of Large Samples Needed in Genetic Research

A practical problem in conducting genetic research is that large samples are needed but it is expensive to test large samples in person, especially when the participants are distributed over a wide area. In an attempt to address this problem we have developed cognitive tests that can be administered via the internet; these tests make it possible to assess large samples efficiently and economically.

The idea of using computers to aid the collection of data is not a new one (see for example Kiesler & Sproull, 1986; Welch & Krantz, 1996). The technological advances in computing and the invention of the World Wide Web in the last twenty years (Abbate, 1999) have made computerized and internet testing possible on a large scale. Researchers can use the internet as a tool for recruiting participants as well as administering questionnaires and tests via the internet. One concern about internet testing is that the characteristics of internet samples might differ from samples collected by more traditional methods. In fact, research has shown that internet samples are reasonably representative in terms of adjustment (Gosling et al., 2004). Internet samples are also generally more diverse in respect to gender, socioeconomic status and age than traditional samples that are often drawn from undergraduate university students (Gosling et al., 2004).

Although there is some consensus that internet testing is feasible, few studies have considered the validity and reliability of internet testing, and how results from internet tests compare to results from paper and pencil tests. All the work in this area to date has focused on questionnaire research, particularly in the field of personality.
Findings suggest that, with regard to questionnaire data, the internet is a valid and reliable tool (see for example Meyerson & Tryon, 2003; Pettit, 2002). An internet-based neurocognitive screening for adult head injuries has been developed (Erlanger et al., 2003; Erlanger et al., 2002), but we are unaware of any study that has validated the use of cognitive internet-based tests in adults or children.

Large samples for genetic research:

Quantitative and molecular genetic research requires large samples. This is becoming increasingly pertinent to molecular genetic studies as it becomes accepted that most genetic influence for complex traits involves many quantitative trait loci (QTLs) each with very small effect sizes (Cardon & Bell, 2001), which will require samples sizes in the thousands and possibly tens of thousands to be adequately powered. In-person cognitive testing entails considerable costs arising from employing and training personnel, time and travel expenses incurred by personnel or participants, as well as the costs of data entry. In our experience using UK-wide samples, our average cost per test session in the home is about 170 GBP, which quickly becomes untenable with samples in the thousands, particularly for longitudinal research.

Internet tests have three major advantages over traditional methods. Firstly, although moderately costly to prepare, internet tests can be used repeatedly at no additional expense which is ideal for testing very large samples (Naglieri et al., 2004). Secondly, scoring is done automatically and immediately, saving time and money and also eliminating data-entry errors (Kraut et al., 2004; Naglieri et al., 2004). Finally, internet tests provide a method of collecting data on very large samples quickly, and can
facilitate the collection of data from diverse samples from all around the world (Naglieri et al., 2004).

The present study:

Can internet testing be used as a reliable and valid tool for cognitive testing of children? The present study assessed the reliability and validity of internet testing of reading, language, mathematics and verbal and non-verbal cognitive abilities in 10- and 12-year-old twins. In addition to examining internal consistency of all measures at both ages, we also investigated two-year stability from 10 to 12 years. As a direct test of the validity of the 12-year internet testing, we compared internet testing of reading and mathematics to similar tests administered in person. Finally, as an index of concurrent validity, we compared internet testing to teacher reports of achievement in reading and mathematics based on criteria from the UK National Curriculum.

Materials and Methods

Sample:

The sampling frame for the present study was the Twins’ Early Development Study (TEDS), a study of twins born in England and Wales in 1994, 1995, and 1996 (Oliver & Plomin, 2007; Trouton et al., 2002). The TEDS sample has been shown to be reasonably representative of the general population (Kovas et al., in press b; Oliver et al. 2007).

Internet Access and Connection Speed:
In TEDS, 80% of the families have daily access to the internet (based on a pilot with 100 randomly selected TEDS families), which is similar to the results of market surveys of UK families with adolescents. Most children without access to the internet at home have access in their schools and local libraries. At 10 years 73% of those with internet at home were known to have a broadband internet connection, and at 12 years this rose to 81%. There was no correlation between internet speed (i.e. broadband versus dial-up connection) and socio-economic status (SES) at 10 or 12 years. The SES measure is a composite of parental education, occupation and the age of mother at the birth of first child.

Estimates of average completion time for the 10-year battery, for children with a broadband connection and those with a dial-up connection, were 82.2 minutes (SD = 33.3), and 122.1 minutes (SD = 36.2) respectively. At 12 years, average completion time for the whole battery is 97.9 minutes (SD = 27.3) for children with a broadband connection, and this is much longer for those children with a dial-up internet connection (mean = 148.6 minutes, SD = 49.0). Due to the length of the 12-year battery, it was separated into two parts, A and B. Information about which tests are in part A and B is included in Table 1. Part B included the language tests, which take longer to download due to the amount of audio streaming required. For this reason, those twins known to have a broadband internet connection were given part B first and then encouraged to complete part A. Those families with a dial-up internet connection completed part A first, and then were given access to part B. Again, these families were encouraged to complete both parts of the internet battery, although they were informed that the download times for the tests in Part B could be quite long on a dial-up connection.
Procedure for contacting TEDS families:

For the 10-year study the parents of the twins were contacted and asked for consent. Families were then sent log-in packs and information about the internet battery. A freephone number was available to the families in case of any problems or technical difficulties with the battery. Each family was assigned a caller, who briefly telephoned the family at the beginning of testing, and was able to monitor the twins’ progress online. The 10-year study was the first time the TEDS twins had used a test battery on the internet, and many of the families had technical questions about the internet and their computers. At 12 years the procedure for contacting the families was the same. Most of the families had already done the internet testing for the 10 year study and consequently 11% finished the 12-year battery before they were contacted by their caller.

10-year sample. From the 1994 and 1995 cohorts of the TEDS sample, 4135 families agreed to participate in the 10-year testing (71%). Of these, 5404 individuals (including 2635 pairs) completed the entire internet battery (65%). Data were collected for roughly equal numbers of males and females (45% male; 55% female) and of zygosity groups (36% MZ; 32% DZ same sex; 32% DZ opposite sex).

12-year sample.

From the 1994 cohort of the TEDS sample, 1549 families agreed to participate in the 12-year testing (71%). Of these, 1908 individuals (954 pairs) completed part A of the internet battery (62%) and 1480 individuals (740 pairs) completed part B of the internet battery (48%); 1138 individuals (569 pairs) completed both parts of the internet battery.
These completion rates are based on all the measures included in each part of the test battery – therefore the N for each individual measure is larger because not all of the children completed all of the tests. The sample was 44% male and included data from all zygosity groups (37% MZ; 33% DZ same sex; 30% DZ opposite sex). The 12-year data only includes children born in 1994; testing of the 1995 and 1996 cohorts is on-going. **12 year sub-sample.** Thirty of the children (15 twin pairs) were re-assessed in person within 3 months of completing the internet-based tests at 12 years. Participants from across the distribution of scores were selected on the basis of the internet battery.

Measures:

In designing our internet-based battery, it was important that we guarded against potential problems associated with research on the internet. For example, the testing was administered by a secure server in the TEDS office, which also provided a secure site for data storage; identifying information was kept separately from the data. Appropriate safeguards were in place that prevented children from answering the same item more than once. We provided technical support and assigned a caller to each family, who contacted the family at the start of testing and provided support and encouragement throughout testing. Furthermore, our toll-free telephone number was available to parents and children in case of any problems or questions.

Parents supervised the testing by coming online first with a user name and password for the family, examining a demonstration test and completing a consent form. Then parents allowed each twin to complete the test in turn. Each twin has a unique ID number as well as a family ID number. Parents were urged not to assist the twins with
answers and we are confident that most parents complied with this requirement, particularly given that families have been participating in the study for some time, and reliability and validity data for previous measures have been supportive of this assumption (Oliver et al., 2002; Saudino et al., 1998). There is also limited supervision provided by the family caller.

A set of adaptive branching rules was developed, so that all the children started with the same items, but then were branched to easier or harder items depending on their performance (see Kovas et al., in press b, for details). As with many psychological tests that use branching (e.g., Wechsler Intelligence Scale for Children (WISC-III-UK), Wechsler, 1992), the generic scoring rules were as follows: 1 point was recorded for each correct response, for each unadministered item preceding the child’s starting point, and for each item skipped through branching to harder items. After a certain number of failures, a discontinue rule was applied within each category, and no points were recorded for all items after discontinuation. As with other psychological tests with items of increasing difficulty and using similar rules, this scoring system is equivalent to that in which all children attempt all items, allowing us to calculate total number and proportion of correct responses for each child, as well as testing the internal consistency of each category. Specific branching and discontinuation rules are available from the authors.

Adapting to the children’s competence increases their engagement, while limiting the number of items that need to be answered (Birnbaum, 2004). The test battery is self-paced, and can be completed over a period of several weeks. Each child’s performance is monitored online and families are telephoned by their caller to provide support and encouragement throughout testing. All measures are normally distributed and show
skewness well under one, suggesting that these measures are discriminating at the low and high ends of the distribution.

To create the internet test battery, we worked with Planet Three Publishing (www.planet3.co.uk) and e-Business Systems (www.e-businesssystems.co.uk). For further details on the design and use of internet test batteries, including the TEDS battery, contact Sean Heraghty of e-Business Systems (sean_heraghty@e-businesssystems.co.uk).

The costs of our internet-based testing were largely due to the costs in creating the 10-year battery because we chose to develop our own battery rather than using commercially available products. The cost was much less for the 12-year battery because much of the battery was the same. The production costs of course depend on how much one is willing to invest in creating the battery, especially in terms of graphics that make the tests more interesting to children. Other investments that we chose to make even though they are not intrinsic to internet-based testing include our callers who intervened if the children had problems with the online testing, and who also monitored the children’s progress (internet-based testing makes this easy to do) and encouraged the children if their progress was flagging. Another expense was that we provided vouchers for the children after they completed the testing, although this is an expense we would have incurred even if we had tested the children in person in their homes. If commercial online tests are available, the costs of the tests are likely to be comparable to the use of traditional paper-and-pencil tests or tests administered by computer. Thus, the difference between internet testing and in-person testing lies in the time and expense involved in traveling to the children’s homes for testing or having them travel to our laboratory. The average cost for in-person testing (£170 in our case) is prohibitive for testing very large
samples. In contrast, the production and running costs for internet-based testing are amortized across the number of subjects tested, which is ideal for testing very large samples.

10 year internet battery:

Reading. At age 10, the twins completed an adaptation of the reading comprehension subtest of the Peabody Individual Achievement Test (Markwardt, 1997), which we will refer to as PIAT\textsubscript{rc}. The PIAT\textsubscript{rc} assesses literal comprehension of sentences. The sentences were presented individually on the computer screen. Children were required to read each sentence and were then shown four pictures. They had to select the picture that best matched the sentence they had read using the mouse. All children started with the same items, but an adaptive algorithm modified item order and test discontinuation depending on the performance of the participant. The internet-based adaptation of the PIAT\textsubscript{rc} contained the same practice items, test items and instructions as the original published test. Test-retest reliability of the PIAT\textsubscript{rc} across 7 months was estimated as .66 in a sub-sample of 55 twin pairs in TEDS (Harlaar et al., in press).

Mathematics. In order to assess mathematics, we developed an internet-based battery that included questions from three different components of mathematics. The items were based on the National Foundation for Educational Research 5-14 Mathematics Series, which is linked closely to curriculum requirements in the UK and the English Numeracy Strategy (NferNelson Publishing Co.Ltd, 1999). The presentation of items was streamed, so that items from different categories were mixed, but the data recording and branching
were done within each category. The items were drawn from the following three categories: Understanding Number, Non-Numerical Processes and Computation and Knowledge. A composite score was created by calculating the mean of the three mathematics scores. The mathematics battery is described in more detail elsewhere (Kovas et al., in press a).

General cognitive ability (g). At age 10, the twins were tested on two verbal tests, WISC-III-PI Multiple Choice Information (General Knowledge) and Vocabulary Multiple Choice subtests (Wechsler, 1992), and two non-verbal reasoning tests, the WISC-III-UK Picture Completion (Wechsler, 1992) and Raven’s Standard Progressive Matrices (Raven et al., 1996). We created a g score with equal weights for the four tests by summing their standardized scores.

12 year internet battery:

The 12-year internet battery included the same PIAT$_{12}$ as at 10 years but added another test of reading comprehension and a test of reading fluency. The tests of mathematics were similar although items of greater difficulty were added at 12 years. The same four verbal and non-verbal cognitive tests were used, although a few items of greater difficulty were added to the Raven’s measure. Two tests of spatial reasoning were also added. The biggest change at 12 years was the inclusion of three tests of language ability to assess syntax, semantics and pragmatics.
Reading. Three measures of reading ability were used at 12 years: two measures of reading comprehension and a measure of reading fluency.

Reading comprehension. At 12 years, the same PIATrc was used to assess reading comprehension. As well as the PIATrc, we assessed reading comprehension at age 12 using the GOAL Formative Assessment in Literacy for Key Stage 3 (GOAL plc, 2002). The GOAL is a test of reading achievement that is linked to the literacy goals for children at Key Stage 3 of the National Curriculum. Questions are grouped into three categories: Assessing Knowledge and Understanding (e.g. identifying information, use of punctuation and syntax), Comprehension (e.g. grasping meaning, predicting consequences), and Evaluation and Analysis (e.g. comparing and discriminating between ideas). Evaluation and analysis is deemed the highest order of the three skills. Within each category, questions about words, sentences, and short paragraphs are asked. Because we were primarily interested in comprehension skills, we used questions from the two relevant categories, Comprehension, and Evaluation and Analysis (20 items from each category). Correct answers were summed to give a total comprehension score.

Reading fluency. At 12 years, reading fluency was assessed using an adaptation of the Woodcock-Johnson III Reading Fluency Test (Woodcock et al., 2001). This is a measure of reading speed and rate that requires the ability to read and comprehend simple sentences quickly e.g. "A flower grows in the sky? - Yes/No". Low performance on reading fluency may be a function of limited basic reading skills or comprehension. The online adaptation consists of 98 yes/no statements; children need to indicate yes or no for each statement, as quickly as possible. There is a time limit of 3 minutes for this test. Correct answers were summed to give a total fluency score.
Language. In order to assess receptive spoken language, standardized tests were selected that would discriminate children with language disability as well as being sensitive to individual differences across the full range of ability. Furthermore, an aspect of language that becomes increasingly important in adolescence – and which shows interesting variability at this age - is metalinguistic ability, i.e. knowledge about language itself (Nippold, 1998). For this reason, the three measures selected for testing included one with low metalinguistic demands designed to assess syntax (Listening Grammar) and two with higher demands that assess semantics (Figurative Language) and pragmatics (Making Inferences).

Syntax. Syntax was assessed using the Listening Grammar subtest of the Test of Adolescent and Adult Language (TOAL-3) (Hammill et al., 1994). This test requires the child to select two sentences that have nearly the same meaning, out of three options. The sentences are presented orally only.

Semantics. Semantics were assessed using Level 2 of the Figurative Language subtest of Test of Language Competence - Expanded Edition (Wiig et al., 1989), which assesses the interpretation of idioms and metaphors; correct understanding of such non-literal language requires rich semantic representations. The child hears a sentence orally and chooses one of four answers, presented in both written and oral form.

Pragmatics. Level 2 of the Making Inferences subtest of the Test of Language Competence (Wiig et al., 1989) assessed an aspect of pragmatic language, requiring participants to make permissible inferences on the basis of existing (but incomplete)
causal relationships presented in short paragraphs. The child hears the paragraphs orally and chooses two of four responses, presented in both written and oral form.

Mathematics. A revised version of the 10-year mathematics internet test was administered that followed the same format, but included more advanced questions to reflect the age of the twins. The three mathematics categories were the same as in the 10 year battery (Understanding Number, Non-Numerical Processes and Computation and Knowledge).

General cognitive ability (g). At 12 years the same verbal and non-verbal tests were used (general knowledge, vocabulary, picture completion and Raven’s matrices). Raven’s matrices test was updated to include more difficult items from the Advanced Progressive Matrices (Raven et al., 1998). We created a g score with equal weights for the four tests by summing their standardized scores.

Spatial reasoning tests. The spatial reasoning tasks are intended to complement the two nonverbal reasoning tests described earlier in relation to g (these tests are not included in the g score). The Spatial Reasoning series (NferNelson Publishing Co.Ltd, 2002c; NferNelson Publishing Co.Ltd, 2002b; NferNelson Publishing Co.Ltd, 2002a) assesses a range of cognitive tasks that involve shape and space, such as mentally combining and rotating shapes, or imagining how a shape would look from different viewpoints. The tests do not require reading, the instructions are very simple, and the tests are not culturally-specific. These tests are not timed, but in order for them to be close to the original test format, we encourage children to do them as quickly as they can.
Hidden shapes. Children search for a specific shape embedded in one of four more complex shapes.

Jigsaws. Children decide which shape can be made by combining all four available ‘jigsaw’ pieces.

Table 1 provides a summary of the internet measures used at 10 and 12 years and their references.

Insert Table 1 about here

Tests administered in person:

Age-appropriate standard versions of the reading comprehension (PIAT_{rc} and GOAL), reading fluency, and mathematics tests were administered using standard test protocol to a sub-sample of 30 children at the Social, Genetic and Developmental Psychiatry Centre. The standard versions of these tests are much longer than our branched internet tests, which limit the number of questions each child has to answer. Due to time constraints we were unable to administer the entire cognitive battery. The total testing time was approximately three hours for each participant. Testing was done within 3 months of completion of the 12-year internet battery (Mean = 65 days, SD = 22).

National Curriculum (NC) measures:

As for all UK children at 10 and 12 years, the twins’ academic performance was assessed throughout the year by their teachers using the assessment materials of the
National Curriculum (NC), the core academic curriculum developed by the Qualifications and Curriculum Authority (QCA). The NC Teacher Assessments consist of teachers giving a score on the basis of the child’s performance throughout the school year.

Reminders of the NC criteria used to select the appropriate attainment level were provided as part of the questionnaire. Further details about these measures have been published previously (Haworth et al., 2007; Walker et al., 2004). At 10 and 12 years NC measures of reading and mathematics were collected. Of the teacher questionnaires sent, at 10 years, 6129 individual forms (79%) were returned complete, and at 12 years, 2312 individual forms (71%) were returned complete.

Analyses:

Internal consistency reliability. Cronbach’s alpha coefficients were calculated for the internet-based measures using one randomly selected member of each twin pair. For the mathematics and general cognitive abilities scales, internal consistency reliability was calculated for the items within each subscale.

Bivariate correlations. Bivariate correlations between pairs of measures were calculated using a phenotypic analysis in the structural equation software Mx, (Neale et al., 1999) that controlled for the twin-pair structure of the data, and therefore used the entire dataset. These correlations are equivalent to Generalized Estimating Equation (GEE) correlations. This analysis was similar to that of a recent report (Sluis et al., 2006). Correlations using one randomly selected member of a twin pair produced the same pattern of results. These analyses allowed us to investigate the validity of the internet-based tests (to what extent
are the tests measuring what they were designed to measure) and their reliability (the extent to which the tests are stable). Bivariate correlations were used to investigate three relationships:

1. The stability of internet scores in reading comprehension (PIAT_{rc}), mathematics and g from 10 to 12 years.

2. The relationship between internet-based measures at 12 years and their equivalent versions administered in person for reading comprehension (PIAT_{rc} and GOAL), reading fluency and mathematics.

3. The relationship between internet-based measures of reading comprehension (PIAT_{rc}) and mathematics versus NC teacher-rated measures of reading and mathematics.

Results

Reliability: Internal consistency:

The internal consistency of the internet-administered measures was examined, yielding high Cronbach’s alpha coefficients, as shown in Table 2. The median of coefficients was .89 (range: .58 - .96). Tests administered at 10 and 12 years show similar results for internal consistency.

Insert Table 2 about here

Stability of internet measures of reading comprehension, mathematics and g from 10 to 12 years:
As indicated in Table 3, the two-year stability of scores on internet-based tests of reading comprehension, mathematics and \(g \) are .57, .66 and .66, respectively.

Insert Table 3 about here

Validity: Correlations between internet-based and in-person testing:

The correlations between internet-based scores and scores derived from in-person testing are shown in Table 4 with their 95% confidence intervals. The correlations between these very different testing formats is .80 for PIAT_{rc} Reading Comprehension, .52 for GOAL Reading Comprehension, .81 for Reading Fluency, and .92 for Mathematics. The lower correlation for the GOAL (.52) is discussed later.

Insert Table 4 about here

Concurrent Validity: Correlations between internet-based measures and teacher ratings of reading and mathematics:

In order to assess concurrent validity, we correlated children’s composite measures of internet-based performance in reading and mathematics to composite measures of reading and mathematics performance in the classroom as assessed over the school year by their teachers on the National Curriculum Criteria. As indicated in Table 5, the correlation was .42 for reading and .50 for mathematics at 10 years and .45 and .56, respectively, at 12 years. These results suggest considerable concurrent validity given the
VALIDATION OF INTERNET TESTING IN CHILDREN

considerable differences in the content and methods of the internet-based tests and the teacher ratings.

Discussion

The aim of this study was to investigate the extent to which internet testing can be used to assess cognitive abilities in children as young as 10 years. Our results show that internet testing is both a reliable and valid method for collecting such data. In terms of internal consistency, all of the internet-based measures yielded high Cronbach’s alpha coefficients, with a median coefficient of .89. However, internal consistency is not the ideal indicator of reliability for a measure that utilizes a new method (as opposed to new items), because the reliable variance might be, in effect, method variance. In addition, the branching in our study might inflate the internal consistency, because children answer fewer questions when branching is used.

Scores on the internet-based measures show long-term stability from 10 to 12 years, with an average correlation of .63 for measures of reading (PIAT_{rc}), mathematics and g. This correlation suggests substantial stability for scores on these measures that were administered two years apart, in contrast to conventional test-retest intervals of two or three weeks.

Most importantly, we directly assessed validity by comparing performance on our internet-based measures of reading and mathematics to performance on traditional versions of these tests administered in person to the children in our laboratory. The
average correlation between performance on the internet-based and in-person tests was .76, despite the fact that the two test sessions were on average two months apart.

However, the GOAL test of higher reading comprehension yielded a significantly lower correlation \(r = .52 \) than the tests of reading fluency and mathematics (Cohen, 1988), even though the GOAL has high internal consistency \((\alpha = .91) \) and correlates moderately with other reading internet tests. The in-person version of the GOAL also correlated highly with the other in-person tests of reading and mathematics, and also with the other internet tests. In fact, the in-person version of the GOAL correlated more highly with the internet tests of reading than it does with the internet version of the GOAL, questioning the validity of the internet-based version of the GOAL.

Finally, correlations between our internet measures of reading and mathematics and teacher reports averaged .48. This suggests substantial validity because these measurement methods – objective internet tests at a single brief measurement occasion and teacher ratings based on wide range of performance during the entire academic year – are as different in format as two tests could be. We would not expect these correlations to be as high as those between the direct tests, because the teacher reports encompass many other indicators of performance, such as motivation and interest. The teacher reports are also based on an entire year’s performance in stark contrast to the snapshot impression of performance from scores on a single measurement occasion. The moderate correlation between the internet measures and the teacher reports lends support to the validity of the internet measures – and this is further confirmed by the comparison with validated in-person tests.
Advantages and disadvantages of internet testing:

Disadvantages of internet testing include the costs of creating such tests, as discussed above. Another limitation is that multiple-choice questions suit the internet format better than open-ended responses. On the internet, questions that would normally be read aloud to the child require audio streaming, and this greatly increases the download times for each question. Also the mode of response for in-person testing (e.g. pointing, writing or speaking) may be different from responses collected via computers (e.g. clicking, and typing), and it is unknown what differences in test scores, if any, this creates. These factors should be taken into consideration when adapting paper and pencil tests for internet use. For example, if during in-person testing a child would normally give the answer orally, then they should not be penalized for spelling mistakes if they must type the answer for the internet version. In such a case the scoring procedure must accept possible spellings of the correct response. The difficulties in adapting tests for internet-based testing are shared with the growing number of tests adapted for computer administration. Tests adapted for computer administration are widely available commercially and tests adapted for the internet are also increasingly available which will alleviate these problems for researchers in the future.

Market surveys of UK families with adolescents and our own study show that in the UK approximately 80% of adolescents have daily access to internet at home, and practically all have access to it at schools and libraries. Although the internet is not readily available to all twins in TEDS, the TEDS internet sample remains representative of the general population, and is representative of the whole TEDS sample.
Finally, the format of internet testing results in a lack of supervision and control over the testing environment which may be considered a disadvantage. However, the positive side to this is that the social pressure or embarrassment that might be present in face-to-face testing is reduced (Birnbaum, 2004; Kraut et al., 2004). In our introduction to the internet testing, we stress that the tests should be taken at a quiet place and time. In any case, the high correlations between our internet-based measures and supervised in-person testing suggest that children are not cheating during internet testing, and that the issue of supervision is not important in this sample. Researchers considering the use of internet testing should bear in mind that TEDS children have been part of the study since infancy and thus may be more motivated to comply with our instructions.

The main advantage of internet testing is that data from large widely dispersed samples can be collected quickly, cheaply, and as we show here, reliably and validly. Internet-based data collection is less error prone because it does not require human transcription and data entry (Kraut et al., 2004; Naglieri et al., 2004). The medium is well suited to older children, most of whom are competent computer users. It is interactive and enjoyable for children to complete; the test questions are easy to understand with suitable on-screen text, voice instructions, graphics and practice items. Additional games were included in our battery to keep the children interested and to reward them for their efforts. Another major benefit of internet testing is generally true of computerized testing: adaptive branching. Adaptive branching makes it possible to include a very large pool of items – for example, to assess the extreme low and high ends of the distribution – allowing children to complete a relatively small number of items. With adaptive branching, children are less likely to become bored by having to answer
questions that are well below their ability level or disheartened by having to answer questions well above their ability level.

Conclusions:

We conclude that, due to the advances in computing and the widespread availability of high speed internet connections, it is now possible to use internet testing to assess cognitive ability in children as young as 10 years. Data gathered via internet testing is both reliable and valid, and this testing approach is a cheap, quick and efficient method for collecting data on large and diverse samples. Internet testing is therefore a valuable resource for genetic research.
Acknowledgement: We gratefully acknowledge the ongoing contribution of the parents and children in the Twins’ Early Development Study (TEDS). TEDS is supported by a program grant (G0500079) from the UK Medical Research Council; our work on mathematics is supported in part by the US National Institute of Child Health and Human Development and the Office of Special Education and Rehabilitative Services (HD 46167); and our work on school environments is supported in part by the US National Institute of Health (HD 44454). We thank Paul Southcombe of Planet Three Publishing (www.planet3.co.uk) and Sean Heraghty of e-Business Systems (www.e-businesssystems.co.uk) for working with us to create the TEDS internet-based test battery.
Reference List

Table 1: Summary of Internet Measures at 10 and 12 Years

<table>
<thead>
<tr>
<th>Age at Testing</th>
<th>Intended Domain</th>
<th>Test</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 and 12</td>
<td>Reading: Literal comprehension</td>
<td>PIAT,A</td>
<td>Markwardt (1997)</td>
</tr>
<tr>
<td>12</td>
<td>Reading: Higher-order comprehension</td>
<td>GOAL formative assessment in literacyA</td>
<td>GOAL plc (2002)</td>
</tr>
<tr>
<td>12</td>
<td>Reading: Fluency</td>
<td>Reading FluencyA</td>
<td>Woodcock et al. (2001)</td>
</tr>
<tr>
<td>12</td>
<td>Language: Syntactic</td>
<td>Listening Grammar: Test of Adolescent and Adult LanguageB</td>
<td>Hammill et al. (1994)</td>
</tr>
<tr>
<td>12</td>
<td>Language: Semantics</td>
<td>Figurative language: Test of Language CompetenceB</td>
<td>Wiig & Secord (1989)</td>
</tr>
<tr>
<td>12</td>
<td>Language: Pragmatics</td>
<td>Making inferences: Test of Language CompetenceB</td>
<td>Wiig & Secord (1989)</td>
</tr>
<tr>
<td>10 and 12</td>
<td>Mathematics</td>
<td>Mathematics: Understanding number; non-numerical processes; computation and knowledgeA</td>
<td>NferNelson (2001)</td>
</tr>
<tr>
<td>10 and 12</td>
<td>Cognitive: Verbal</td>
<td>General KnowledgeB</td>
<td>Wechsler (1992)</td>
</tr>
<tr>
<td>10 and 12</td>
<td>Cognitive: Verbal</td>
<td>VocabularyB</td>
<td>Wechsler (1992)</td>
</tr>
<tr>
<td>10 and 12</td>
<td>Cognitive: Non-verbal</td>
<td>Raven’s Standard (and Advanced) Progressive MatricesB</td>
<td>Raven et al. (1996, 1998)</td>
</tr>
<tr>
<td>10 and 12</td>
<td>Cognitive: Non-verbal</td>
<td>Picture completionB</td>
<td>Wechsler (1992)</td>
</tr>
<tr>
<td>12</td>
<td>Cognitive: Spatial reasoning</td>
<td>Hidden shapesAB</td>
<td>NferNelson (2002a, 2002b, 2002c)</td>
</tr>
<tr>
<td>12</td>
<td>Cognitive: Spatial reasoning</td>
<td>JigsawsAB</td>
<td>NferNelson (2002a, 2002b, 2002c)</td>
</tr>
</tbody>
</table>

A = test is in part A of the 12 year battery.
B = test is in part B of the 12 year battery.
VALIDATION OF INTERNET TESTING IN CHILDREN

AB = test is included in both part A and B of the 12 year battery.
Table 2: Internal Consistency Reliability of Web-Based Measures – Cronbach’s Alpha Coefficients

<table>
<thead>
<tr>
<th>Age</th>
<th>Test</th>
<th>Cronbach’s Alpha</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reading: PIAT$_{10}$</td>
<td>.95</td>
<td>2924</td>
</tr>
<tr>
<td></td>
<td>Mathematics: Understanding Number</td>
<td>.92</td>
<td>2595</td>
</tr>
<tr>
<td></td>
<td>Mathematics: Non-Numerical Processes</td>
<td>.78</td>
<td>2698</td>
</tr>
<tr>
<td></td>
<td>Mathematics: Computation and Knowledge</td>
<td>.93</td>
<td>2698</td>
</tr>
<tr>
<td></td>
<td>Cognitive: Ravens Matrices</td>
<td>.91</td>
<td>2614</td>
</tr>
<tr>
<td></td>
<td>Cognitive: Vocabulary</td>
<td>.90</td>
<td>2576</td>
</tr>
<tr>
<td></td>
<td>Cognitive: Picture Completion</td>
<td>.74</td>
<td>2569</td>
</tr>
<tr>
<td></td>
<td>Cognitive: General Knowledge</td>
<td>.87</td>
<td>2615</td>
</tr>
<tr>
<td></td>
<td>Mathematics: Understanding Number</td>
<td>.94</td>
<td>1069</td>
</tr>
<tr>
<td></td>
<td>Reading: GOAL</td>
<td>.91</td>
<td>1047</td>
</tr>
<tr>
<td></td>
<td>Reading: Fluency</td>
<td>.96</td>
<td>1069</td>
</tr>
<tr>
<td></td>
<td>Language: Syntax</td>
<td>.94</td>
<td>759</td>
</tr>
<tr>
<td></td>
<td>Language: Semantics</td>
<td>.66</td>
<td>846</td>
</tr>
<tr>
<td></td>
<td>Language: Pragmatics</td>
<td>.58</td>
<td>790</td>
</tr>
<tr>
<td></td>
<td>Mathematics: Understanding Number</td>
<td>.91</td>
<td>982</td>
</tr>
<tr>
<td></td>
<td>Mathematics: Non-Numerical Processes</td>
<td>.88</td>
<td>982</td>
</tr>
<tr>
<td></td>
<td>Mathematics: Computation and Knowledge</td>
<td>.94</td>
<td>982</td>
</tr>
<tr>
<td></td>
<td>Cognitive: Ravens Matrices</td>
<td>.76</td>
<td>833</td>
</tr>
<tr>
<td></td>
<td>Cognitive: Vocabulary</td>
<td>.88</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td>Cognitive: Picture Completion</td>
<td>.72</td>
<td>761</td>
</tr>
<tr>
<td></td>
<td>Cognitive: General Knowledge</td>
<td>.81</td>
<td>940</td>
</tr>
<tr>
<td></td>
<td>Cognitive: Hidden Shapes</td>
<td>.89</td>
<td>1171</td>
</tr>
<tr>
<td></td>
<td>Cognitive: Jigsaws</td>
<td>.78</td>
<td>1143</td>
</tr>
</tbody>
</table>
Note. This analysis was conducted using one member of each twin pair.
Table 3: Stability of Internet Measures of Reading Comprehension, Mathematics and g from 10 to 12 Years

<table>
<thead>
<tr>
<th>Measures</th>
<th>r (95% CI)</th>
<th>N*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Comprehension: 10y PIAT<sub>rc</sub> - 12y PIAT<sub>rc</sub></td>
<td>.57 (.53-.60)</td>
<td>1405</td>
</tr>
<tr>
<td>Mathematics: 10y Mathematics - 12y Mathematics</td>
<td>.66 (.63-.69)</td>
<td>1206</td>
</tr>
<tr>
<td>General Cognitive ability: 10y g – 12y g</td>
<td>.66 (.62-.69)</td>
<td>987</td>
</tr>
</tbody>
</table>

Note. PIAT_{rc} is a measure of reading comprehension; g = general cognitive ability. * N refers to the number of individuals with complete data at both years. The N value for g is lower than for reading and math because it requires children to have complete data for four tests at each age, and in the 12 year battery it is in part B, which children are only advised to complete on a broadband connection.
Table 4: Validity: Correlations Between Internet and In-Person Testing

<table>
<thead>
<tr>
<th>Measures</th>
<th>r (95% CI)</th>
<th>N*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Comprehension (PIAT<sub>rc</sub>)</td>
<td>.80 (.40-.91)</td>
<td>30</td>
</tr>
<tr>
<td>Reading Comprehension (GOAL)</td>
<td>.52 (.17-.77)</td>
<td>29</td>
</tr>
<tr>
<td>Reading Fluency</td>
<td>.81 (.57-.92)</td>
<td>29</td>
</tr>
<tr>
<td>Mathematics</td>
<td>.92 (.83-.97)</td>
<td>30</td>
</tr>
</tbody>
</table>

* N refers to the number of individuals with complete data.
Table 5: Concurrent Validity: Correlations Between Internet Measures and Teacher Ratings of Reading and Mathematics

<table>
<thead>
<tr>
<th>Measures</th>
<th>r (95% CI)</th>
<th>N *</th>
</tr>
</thead>
<tbody>
<tr>
<td>10y Reading: NC vs. Internet</td>
<td>.42 (.39-.44)</td>
<td>4271</td>
</tr>
<tr>
<td>12y Reading: NC vs. Internet</td>
<td>.45 (.40-.49)</td>
<td>1182</td>
</tr>
<tr>
<td>10y Mathematics: NC vs. Internet</td>
<td>.50 (.48-.53)</td>
<td>3894</td>
</tr>
<tr>
<td>12y Mathematics: NC vs. Internet</td>
<td>.56 (.52-.60)</td>
<td>1088</td>
</tr>
</tbody>
</table>

Note. NC = National Curriculum teacher reports. * N value is given for individuals with complete data for both the internet measures and teacher ratings.