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Processing of anisotropic data in the ττ -p domain: I—Geometric
spreading and moveout corrections

Mirko van der Baan∗

ABSTRACT

Stacking of seismic data is conventionally done in the
time-offset domain. This has the disadvantage that geo-
metric spreading must be removed before true-amplitude
processing can be attempted. This inconvenience arises
since wave motion in the time-offset domain is deter-
mined by spherical waves. Plane waves in layered media,
on the other hand, are not subject to geometric spread-
ing. Hence, processing of both isotropic and anisotropic
data in such media benefits from first applying a plane-
wave decomposition such as a proper τ -p transform. The
resulting τ -p gathers can be flattened and stacked over
slowness. Subsequent time differentiation is needed to
counter the loss of high frequencies during stacking. This
approach has the advantage that the geometric spread-
ing is removed without prior knowledge of the actual
(an)isotropic velocity field and without any need to pick
traveltimes or moveout velocities. Subsequent moveout

corrections naturally require knowledge of the velocity
field.

The proposed methodology is exact for 3D data volumes
and arbitrary anisotropy in laterally homogeneous media
or for 2D acquisition lines over 1D, isotropic media or over
1D, transversely isotropic media with vertical axis of sym-
metry (VTI). It relies on the same principles as more con-
ventional geometric spreading corrections and time-offset
stacking. In many respects, it is even more flexible. For in-
stance, geometric spreading has been correctly removed for
all present wave modes and types simultaneously (primary,
multiple, pure-mode, and converted waves), and nonhyper-
bolic moveout resulting from isotropic layering is also taken
into account. In addition, head waves may now contribute
constructively to the stacked section. Moreover, both mul-
tiple elimination and predictive deconvolution are straight-
forward and known to yield very good results in the τ -p
domain. The resulting stacked section can then be used for
any poststack processing such as time migration.

INTRODUCTION

Amplitudes of seismic data are affected by a number of fac-
tors, including geometric spreading, interface reflection and
transmission losses, source and receiver effects (coupling, di-
rectivity), attenuation, and multiples. True-amplitude process-
ing requires that at least the principal effects of these factors be
understood and accounted for. O’Doherty and Anstey (1971)
qualitatively discuss several of these effects and identify geo-
metric spreading as one of the most important factors.

This paper develops a simple methodology to remove geo-
metric spreading of both isotropic and anisotropic media that
does not require major changes to the conventional process-
ing stream. For instance, it should still be possible to perform
a velocity analysis in the t-x domain if desired. I show that
this can be done by first applying a plane-wave decomposition
(PWD) on the data. Individual techniques of the proposed τ -p
methodology rely on the same approximations as their coun-
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terparts in the t-x domain. In some respects they are even less
restrictive.

Processing of isotropic data already benefits from initially
applying a PWD such as a τ -p transform (Treitel et al., 1982).
Plane waves in laterally homogeneous media are not subject to
geometric spreading, whereas spherical waves are. Hence, no
geometric spreading correction need be applied for pure-mode
P–P-waves in an isotropic, laterally homogeneous medium af-
ter a PWD (Wang and McCowan 1989; Dunne and Beresford,
1998). As a matter of fact, this is true for all wave modes and
types (i.e., pure-mode and converted waves, and primary re-
flections and multiples). Furthermore, multiple elimination is
mathematically easier to implement in the τ -p domain [e.g.,
Radon-based demultiple techniques; see, e.g., Yilmaz (2001)].
Predictive deconvolution also yields better results after a PWD
(Treitel et al., 1982). In addition, it is possible to stack traces in
the τ -p domain (Stoffa et al., 1981, 1982). However, whereas
traces are stacked over offset after a conventional t-x moveout
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correction, they are stacked over slowness after a τ -p moveout
correction. Subsequent time differentiation is required to com-
pensate for loss of resolution which occurs during the stacking
process.

Stacking in the τ -p domain has the further advantage that
nonhyperbolic moveout resulting from isotropic layering is ac-
counted for—contrary to the conventional t-x NMO correction
which is valid strictly for short-spread data (Taner and Koehler,
1969). Furthermore, reflections do not cross in the τ -p domain,
and traveltime triplications (wavefront folding) are unfolded.
Both τ -p and t-x NMO corrections can handle the effect of a
single dipping layer as long as pure-mode data are sorted in
the common midpoint (CMP) domain. However, both break
down in the presence of more complicated moderate to strong
lateral inhomogeneities. Stacking and processing in the τ -p
domain therefore has several potential advantages over the
conventional t-x approach.

An additional advantage for anisotropic media is that after
a PWD we only need to deal with plane waves, which are de-
scribed by phase velocities instead of group velocities. Phase
velocities are substantially less complex than the corresponding
group velocities and directly result from the Christoffel equa-
tion. Hence, the mathematical description of wave propagation
effects in, for instance, the τ -p domain is substantially simpler
than in the t-x domain. This has consequences for anisotropic
moveout corrections applied in the τ -p domain.

The application of a PWD therefore has considerable advan-
tages over t-x–based spreading corrections since the latter re-
quire knowledge of the anisotropy parameters in the first layer
and traveltime picks of major reflectors plus the first and sec-
ond derivatives of the traveltimes with respect to offset (Ursin,
1990; Zhou and McMechan, 2000). In addition, the latter of-
ten lose their accuracy for offset–depth ratios beyond one be-
cause of uncertainties in the traveltimes (Zhou and McMechan,
2000). Most importantly, however, correction techniques based
on normalized relative spreading in the t-x domain, such as
the approaches of Newman (1973), Ursin (1990), and Zhou
and McMechan (2000), “cannot simultaneously compensate
for both primary and multiple reflections if these are charac-
terized by different rms velocities. As a general rule, primary
reflections will incur greater amplitude loss due to divergence
than will multiple reflections occurring at similar record times.
The effect of this is to increase the significance of multiples, par-
ticularly in prospect areas where velocity gradients are steep”
(Newman, 1973, p. 484). Similarly, superposed converted waves
on an assumingly clean pure-mode section also cause havoc.
Neither drawback applies on the PWD methodology proposed
here. Finally, all techniques based on the approach of Newman
(1973) and Ursin (1990) also assume the presence of lateral
homogeneity (i.e., horizontal layering).

In this paper, I demonstrate that geometric spreading cor-
rections are not necessary after a PWD in a laterally homoge-
neous medium with arbitrary anisotropy and 3D data volumes
in general and for 2D data lines in a 1D, isotropic, or trans-
versely isotropic with vertical axis of symmetry (VTI) medium
in particular. This is true for any seismic wave type and mode,
including converted waves and multiples. First, the relation be-
tween τ -p transforms, plane-wave decompositions, and geo-
metric spreading is discussed. Since an inverse τ -p transform
would effectively undo the geometric spreading correction, I
then give expressions to correct for anisotropic moveout in the

τ -p domain for both pure-mode and converted waves. Finally,
I show some synthetic and real data examples.

GEOMETRIC SPREADING CORRECTION

Spherical versus plane waves

Amplitudes of spherical waves in the t-x domain decrease
with time t and propagation distance r even in a homoge-
neous space since the same amount of energy is spread out
over an ever-increasing wavefront. In a homogeneous isotropic
medium, the wavefronts originating from a point source are
spheres yielding a 1/r amplitude decrease. However, the same
wavefront may be very different from a sphere in a homoge-
neous anisotropic medium. For instance, the resulting wave-
fronts of P-waves in an elliptically anisotropic medium are
ellipses, and SV -waves in VTI media may exhibit kinks and/or
cusps (i.e., wavefront folding). As a consequence, amplitudes
do not attenuate evenly along the wavefront, and the geomet-
ric spreading depends on the propagation direction. Geomet-
ric spreading corrections therefore require knowledge of the
elastic parameters. The presence of horizontal interfaces dis-
torts the wavefronts even further, yielding more complex cor-
rections (Newman, 1973; Ursin, 1990; Zhou and McMechan,
2000). After geometric spreading correction, a second correc-
tion is required to remove the effect of the initial source radi-
ation pattern, which need not be isotropic either (e.g., vertical
vibrator).

A plane wave in a homogeneous medium is not distorted
with increasing propagation distance/time. The energy density
within each plane wave remains constant—even in the case of
anisotropy. Hence, no geometric spreading correction need be
applied after a PWD. Amplitudes must be corrected for the
initial source radiation only. This remains true for horizontally
propagating plane waves in laterally homogeneous, stratified
media, although strictly speaking we are no longer dealing with
plane waves but with waves characterized by a specific horizon-
tal slowness.

A mathematical explanation can be found in the Appendix.
As a quick justification, however, note that reflectivity meth-
ods use the same principle. All quantities are computed using
plane waves, whereupon an inverse PWD then produces the de-
sired exact seismograms without the need for any subsequent
corrections for geometric spreading (Fryer and Frazer, 1984).
Hence, a PWD removes the geometric spreading for all wave
modes and types simultaneously without further work.

Plane-wave decompositions and τ -p transforms

The appropriate type of PWD depends on the source type
(point or line source, explosion or vibrator), the medium (ax-
isymmetric or not), and the data volume (3D volume or 2D
line). For incomplete data volumes (e.g., a 2D line), a proper
PWD is still possible under specific conditions.

I express the transient plane waves in terms of the intercept,
or vertical, time τ and the horizontal slownesses px and py

along the x- and y-axes, respectively.

Three-dimensional data volume and point source.—For a
point source (e.g., a perfect explosion or air gun) and a com-
plete 3D data volume, a so-called τ -px -py transform yields a
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perfect PWD for arbitrary anisotropy which may vary con-
tinuously or abruptly with depth. The transformed section
u(τ, px , py) is obtained from the original data u(t, x, y) by
means of an integration over different slant planes, i.e.,

u(τ, px , py) =

∫ ∫

u(τ + px x + py y, x, y) dx dy, (1)

with τ = t − px x − py y. Equation (1) is a proper slant stack in
the sense that data are integrated (summed) over a slant plane
described by a specific intercept time τ and slope (px , py). A
uniform plane in t-x-y space is transformed to a point in τ -px -
py space. The τ -px -py transform produces, as a consequence,
a maximum output if a slant plane is tangent to a reflection
moveout curve. In this sense, the τ -px -py transform is a con-
tact transformation (Phinney et al., 1981). A hyperboloidal
t(x, y) moveout curve maps onto an ellipsoidal τ (px , py) curve.
Nonhyperboloidal t(x, y) moveout curves map onto anellip-
soidal τ (px , py) curves. To minimize aliasing, the data volume
unfortunately requires a very good spatial distribution with
both offset and azimuth before geometric spreading correc-
tions by means of a PWD become possible, thereby limiting
the applicability of this approach.

Two-dimensional data line and point source.—For a point
source and a 2D line of data, the conventional τ -px trans-
form (the conventional or Cartesian slant stack) does not yield
a proper PWD since it neglects the fact that energy actually
spreads out in three dimensions whereas the integration (sum-
mation) is only over a single coordinate axis. A proper τ -px -py

transform cannot be implemented because the data volume is
incomplete. If we assume, however, that the medium exhibits
rotational symmetry around the vertical axis, then the 2D data
line is identical in all directions. The data can then be rotated
over all azimuths, thereby yielding again a complete 3D data
volume. PWDs based on this assumption are equivalent to the
so-called cylindrical τ -pr transforms in their diverse numer-
ical implementations (Chapman, 1981; Brysk and McCown,
1986; Wang and Houseman, 1997). Therefore, we can auto-
matically correct for the spherical divergence in a 1D axisym-
metric medium by means of a PWD without prior knowledge
of the underlying velocity model. Both laterally homogeneous,
isotropic, and VTI media exhibit axisymmetry for all seismic
wave modes and types.

Two-dimensional data line and line source.—By using a per-
fect line source of infinite length, waves are forced to propagate
in a 2-D plane perpendicular to the source since the wavefield
is invariant along the source direction. This remains true even
for converted waves. Hence, application of a conventional τ -px

transform (for a line source in the y-direction) yields a perfect
PWD for arbitrary anisotropy. The conventional τ -px trans-
form is given by

u(τ, px ) =

∫

u(τ + px x, x) dx, (2)

with τ = t − px x . A uniform line in t-x space is transformed to a
point in τ -px space, and a hyperbolic t(x) moveout curve maps
onto an elliptic τ (px ) curve (Phinney et al., 1981; Schultz, 1982).

Unfortunately, actual seismic sources are better described
by a point source than a line source. On the other hand, for an

axisymmetric medium, it is possible to transform point-source
data to equivalent line-source data by means of lateral filtering
(Wapenaar et al., 1992). After lateral filtering, the application
of a conventional τ -px transform [equation (2)] yields the
desired PWD. The advantage of lateral filtering is that the in-
tegration coefficients depend on offset only and can by applied
on all time samples within a trace simultaneously, thereby
yielding a very efficient integration algorithm. Wapenaar et al.
(1992) also outline the required integration procedures for
vibroseis data with horizontal sources (e.g., nine-component
data). Special treatment for these sources is required because
horizontal point forces break the rotational symmetry around
the vertical axis.

Therefore, geometric spreading can be removed in laterally
homogeneous media in a straightforward way by a PWD with-
out any knowledge of the underlying velocity model. Restric-
tions on the symmetry type of anisotropy that can be handled
depend in practice only on the acquisition geometry and data
volume (three dimensional or two dimensional). The subse-
quent moveout correction and stacking must also be done in the
τ -p domain since an inverse τ -p transform would reconstruct
the geometric spreading. Naturally, knowledge of the underly-
ing velocity model is required for the moveout corrections.

MOVEOUT CORRECTIONS AND STACKING IN

THE ττ -p DOMAIN

Moveout corrections and NMO stretch

To compute the moveout corrections in the τ -p domain, we
first need an expression for the τ (p) curves. In the following, I
use τ (p) to denote τ (px , py), τ (pr ), or τ (px ), respectively, de-
pending on the appropriate free parameter and τ -p transform.
The radial slowness pr is defined by (p2

x + p2
y)1/2.

Van der Baan and Kendall (2003) show that the interval
1τi (p) curve in each layer i is given by

1τi

1τ0,i
=

v̀0,i v́0,i

v̀0,i + v́0,i
[q̀z,i + q́z,i ]

=
v̀0,i v́0,i

v̀0,i + v́0,i

[

(

v̀−2
ph,i − p2

r

)1/2
+

(

v́−2
ph,i − p2

r

)1/2
]

. (3)

The total τi (p) curve consists of a summation over all interval
1τi (p) curves, i.e.,

τn(p) =

n
∑

i=1

1τi (p). (4)

In expression (3), q̀z,i and q́z,i represent the vertical slowness
of, respectively, the down- and upgoing plane waves in layer i ,
v̀ph,i is the phase velocity of the downgoing wave, and v̀0,i is the
associated vertical plane-wave velocity. Equation (3) is valid
in a laterally homogeneous earth for all seismic modes (i.e.,
P , SV , SH), including any converted waves and for arbitrary
anisotropy. For pure-mode waves propagating in anisotropic
layers with a horizontal symmetry plane (e.g., VTI anisotropy),
expression (3) simplifies to (Van der Baan and Kendall, 2002)

1τi = 1τ0,i
v0,i

vph,i

[

1 − p2
r v

2
ph,i

]1/2
. (5)
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This equation is reminiscent of the elliptical equation for in-
terval 1τi (p) curves in isotropic media (Schultz, 1982). Hence,
a hyperbolic moveout curve in t-x space maps onto an ellip-
tic moveout curve in τ -p space. Furthermore, nonhyperbolic
t(x) moveout curves yield anelliptic τ (p) curves (Van der Baan
and Kendall, 2002, 2003). Up- and downgoing waves of identi-
cal mode have the same phase velocity in VTI media because
of the presence of a horizontal symmetry plane. The acute and
grave accents on the phase velocity vph,i (px , py) are therefore
omitted in expression (5).

To describe the τ (p) curves, we now only need expressions
for the phase velocities in terms of the horizontal slowness, i.e.,
v̀ph,i (px , py) and v́ph,i (px , py) for down- and upgoing waves,
respectively. Van der Baan and Kendall (2002 and 2003) derive
both exact and reduced-parameter expressions for the phase
velocities in transversely isotropic media with a horizontal axis
of symmetry (HTI) and for VTI media. The reduced-parameter
expressions are needed to render the problem of anisotropy–
parameter estimation more unique and thereby more stable. It
was shown that P-waves in VTI media are well described by

ṽ2
P (pr ) ≈ α2

n

1 − 2ηα2
n p2

r

1 − 2ηα2
n p2

r − 2ηα4
n p4

r

, (6)

with αn the P-wave stacking velocity and η an anisotropy pa-
rameter. Expression (6) is not a good approximation to the
exact P-wave phase velocities unless used in combination
with equations (3) and (5) describing the form of the τ (p)
curves and v0,i = αn,i . In addition, the expression is unstable
for slownesses beyond the maximum horizontal slowness, i.e.,
for pr > α−1

n (1 + 2η)−1/2.
Furthermore, for SV -waves in VTI media,

ṽ2
SV (pr ) ≈ β2

n

−1 + 2σ
(

β2
n p2

r − 1
)

+
{

(

− 1 + 2σ
(

β2
n p2

r − 1
))2

+ 8σβ4
n p4

r

}1/2

4σβ4
n p4

r

, (7)

with βn the SV -wave stacking velocity and σ an anisotropy pa-
rameter. Contrary to equation (6), expression (7) is a first-order
approximation. Hence, it works best for small anisotropy (i.e.,
small σ ). Equation (6), on the other hand, describes the kine-
matic behavior of the P-waves and therefore provides very

Figure 1. Moveout correction in the τ -p domain. A t-x CMP gather (a) is mapped to the τ -p domain (b). Reflections no longer cross
and the triplication is unfolded. A moveout correction is then done by flattening the τ -p curves (c) and stacking over slowness. This
amounts to linearly stretching the sequence 1τi (p) to a length equal to the interval zero-intercept time 1τ0,i . Thus, a point at τ (p)
is moved downward to τN M O (p) after moveout correction.

accurate results even for large anisotropy (i.e., for large η).
If the denominator in equation (7) approaches zero, ṽSV con-
verges to βn(1 + 2σ )−1/2. Furthermore, v0,i = βn(1 + 2σ )−1/2 in
expressions (3) and (5).

The anisotropy parameters η and σ can be expressed in terms
of the Thomsen parameters δ and ε (Thomsen, 1986; Tsvankin
and Thomsen, 1994; Alkhalifah and Tsvankin, 1995), and
they equal zero for either isotropic or elliptically anisotropic
media.

The required anisotropy parameters and stacking velocities
for the moveout corrections can be estimated in a variety of
ways. For instance, they can be obtained using modified Taylor
series expressions and a semblance analysis (Alkhalifah, 1997)
or by directly picking and fitting moveout curves in the τ -p do-
main (Van der Baan and Kendall, 2002). The former method
tends to be simpler in practice, while the latter is more accu-
rate on good-quality data. However, the two approaches can
also be combined. The moveout curves can be estimated in
the t-x domain using either a semblance analysis or by picking
traveltimes. Next, a modified Taylor series curve is fitted to the
estimated moveout curve. The fitted curve is then transformed
to the τ -p domain where the required anisotropy parameters
are estimated (Wookey et al., 2002). The latter method has
the advantage that velocities and anisotropy parameters can
be estimated quite conveniently without the need to introduce
any radical changes to the conventional processing stream of
picking velocities in the time-offset domain.

Note, however, that large trade-offs exist between the
obtained stacking velocities and anisotropy parameters unless
large offset–depth ratios are available (x/z > 2) (Alkhalifah,
1997; Wookey et al., 2002). On the other hand, this is unim-
portant if we only wish to flatten the gathers, that is, if exact

knowledge of the underlying anisotropy parameters is less
relevant.

Similar to the conventional t-x domain approach, a move-
out correction in the τ -p domain amounts to flattening the
τ (p) curves. However, contrary to an t-x moveout correction,
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the τ (p) curves are moved downward with intercept time. On
the other hand, reflections do not cross in the τ -p domain, and
triplications (cusps) are unfolded (Figure 1). Hence, theoreti-
cally at least, it becomes possible to stack triplications in this
domain. In practice, the NMO stretch is often too large unless
triplications occur near the vertical axis. In the latter case we
would first deal with the unusual phenomenon of wavelet com-
pression.

If the stacking velocities and anisotropy parameters are as-
sumed to be constant within each individual layer, then a move-
out correction in the τ -p domain amounts to linearly stretch-
ing each interval time sequence 1τi (p) to a length equal to the
zero-offset interval intercept time 1τ0,i (Figures 1b and 1c).
Hence, NMO stretch (Dunkin and Levin, 1973) occurs in both
the t-x and τ -p domains. In the latter domain, it is given by

stretchi (p) =
1τ0,i

1τi (p)
, (8)

and ranges therefore from one [0%] to infinity for conven-
tional situations. Values less than one (wavelet compression)
only occur if a triplication is centered around the vertical axis.
For isotropic media, it is quite simple to express this equation
directly in terms of the zero-offset traveltime t0,i , the offset
(x, y), and the rms velocity. This is much harder for anisotropic
media, although it remains straightforward to compute the ac-
tual stretch using formula (8) while correcting for the moveout
layer by layer.

From a comparison of Figures 1b and 1c, one can easily de-
duce how the moveout-corrected intercept time τN M O (p) is
computed for a given intercept time τ (p). However, as a re-
sult of the stretching and the possible occurrence of gaps in
the time sequence, it is better to calculate the original inter-
cept time τ (p) corresponding to a given τN M O (p). Thus, within
layer i ,

τ (i)(τN M O,i ) = τi−1 +
(τN M O,i − τ0,i−1)

stretchi
. (9)

Within each layer, τN M O,i (p) ranges from τ0,i−1 to τ0,i , and
τ (i)(p) ranges from τi−1(p) to τi (p). The last two intercept times
define the lower and upper bounds within layer i [equation (4)].
Hence, τ -p domain-based moveout correction is analogous to
layer stripping in that it is done layer by layer and for each slow-
ness separately. Note that expressions (8) and (9) are valid for
arbitrary anisotropic strength and symmetry.

Some important differences exist between NMO stretch in
the t-x and τ -p domains. Equation (8) clearly indicates that
the actual NMO stretch varies from layer to layer, indepen-
dent of the elastic parameters in the shallower layers. Hence,
while in one particular layer the NMO stretch may exceed
a predefined threshold, this is not necessarily true for the
deeper layers. Examples include the presence of velocity re-
versals (i.e., low-velocity layers) and near cusps of SV -waves
in strongly anisotropic media (i.e., between inflection points
on the slowness sheets). Unfortunately, this complicates the
implementation.

The band-limited nature of the data should also be taken into
account while applying a mute. A time taper of approximately
the principal period of the reflections needs to be applied
while muting the data beyond a predefined amount of stretch.

It remains naturally possible to apply a mute after moveout
correction to remove any unwanted artifacts, including NMO
stretch.

Stacking

Stacking in the time-offset domain is a very simple process
since it involves only a horizontal summation of amplitudes
of moveout-corrected data umo(t, x, y) over all available off-
sets and azimuths. Intuitively, we would expect that stacking
in the τ -p domain involves a horizontal summation over slow-
ness (Stoffa et al., 1981, 1982). However, stacking over offset
is a partial forward τ -p transform where we map the moveout-
corrected data onto intercept times corresponding to zero hor-
izontal slowness. Similarly, stacking over slowness includes
many aspects of an inverse τ -p transform. Hence, we need to
apply time differentiation to compensate for the loss of resolu-
tion attributable to the stacking in analogy with proper inverse
τ -p transforms. It is not a complete inverse transform because
the integration over varying intercept times is left out—that is,
we recover the zero-offset stacked trace only. Furthermore, it
does not reconstruct the geometric spreading because of the
moveout corrections and because it is an incomplete transform.
Again, the actual procedure depends on the data volume.

Three-dimensional data volume.—Stacking over offset of
3D data is mathematically described by

ustack(t,x,y)(t) =

∫ ∫

umo(t, x, y) dx dy. (10)

Inspection of expressions (1) and (10) clearly shows that the
latter corresponds to a partial forward τ -px -py transform where
we compute the zero-slowness trace only.

The inverse τ -px -py transform for a 3D data volume is given
by (Chapman, 1981; Brysk and McCown, 1986)

u(t, x, y) = −
1

4π2

d2

dt2

∫∫

u(t − px x − py y, px , py) dpx dpy .

(11)

The double time differentiation arises from the change of vari-
ables in the inverse Fourier transform [see expression (A-2)]
and is required to compensate for the enhancement of low-
frequency amplitudes during stacking (Phinney et al., 1981).

If stacking in the t-x-y domain corresponds to a partial for-
ward τ -px -py transform to compute the zero-slowness trace,
then stacking in the τ -px -py domain corresponds to calculating
the zero-offset trace using a partial inverse τ -px -py transform.
Therefore, the correct stacking equation is

ustack(τ,px ,py)(τ ) = −
1

4π2

d2

dτ 2

∫∫

umo(τ, px , py) dpx dpy,

(12)

where the double time differentiation plays an identical role as
before. It only needs to be applied once on every stacked trace.

Two-dimensional data line.—Stacking of 2D data is mathe-
matically described by

ustack(t,x)(t) =

∫

umo(t, x) dx . (13)
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A comparison with equation (2) reveals that we are dealing
with a partial forward Cartesian τ -px transform to derive the
zero-slowness trace. Stacking 2D data does not try to emulate
a 3D stack response by invoking axisymmetry of the data. This
would lead to a weighting factor equal to the offset x in the
integration (13)—analogous with the zero-slowness forward
cylindrical τ -pr transform (Brysk and McCowan, 1986). On
the contrary, it assumes the presence of a line source. As a con-
sequence, we only need to deal with the inverse τ -px transform
given by (Chapman, 1981; Brysk and McCowan, 1986)

u(t, x) = −
1

2π

d

dt
H

∫

u(t − px x, px ) dpx , (14)

regardless of whether we have line or point source data. Hence,
the correct expression for stacking over slowness is

ustack(τ,px )(τ ) = −
1

2π

d

dτ
H

∫

umo(τ, px ) dpx . (15)

The Hilbert transform H causes a 90◦ phase rotation of the
data and corrects for the phase rotation introduced by the time
differentiation. Again, both operators need to be applied on
stacked traces only and compensate for loss of resolution dur-
ing stacking.

The time variable in the stacked traces ustack(t,x) and ustack(τ,px )

[expressions (13) and (15)] simultaneously equal the arrival
time t and the intercept time τ . Both stacked sections can
be directly compared. In practice, the two stacked traces are
highly similar but not identical—even if the geometric spread-
ing of the t(x) trace has been corrected accurately. Some dif-
ferences occur, for instance, because the head waves map onto
the τ (p) moveout curves. They therefore contribute construc-
tively to the amplitudes of the τ (p) stacked traces, whereas
this is not the case for the conventional t(x) stacked traces.
The same remark holds for stacked traces resulting from 3D
data volumes [expressions (10) and (12)]. The advantages of
τ -p domain processing lie in the automatic removal of geo-
metric spreading and in the fact that the τ -p transform acts as
a dip filter, thereby limiting the influence of several types of
noise.

EXAMPLES

Synthetic data example

First, a synthetic example is considered. This particular
three-layer model is used in Van der Baan and Kendall (2002,
2003) and is composed of an uppermost isotropic layer (αn,1 =

2 km/s, βn,1 = 1 km/s), an anisotropic shale (VTI), and again
an isotropic layer (αn,3 = 4 km/s, βn,3 = 2 km/s). Each layer
has a thickness of 1 km and a constant density of 2 g/cm−3.
Underneath the three-layer model is an isotropic half-space
(αn,4 = 5 km/s, βn,4 = 2.5 km/s, density = 2.5 g/cm−3). The elas-
tic parameters of the anisotropic shale are taken from Thomsen
(1986) and are displayed in Table 1. Figure 4 in Van der Baan
and Kendall (2003) displays the slowness and wave sheets of
the anisotropic shale.

The synthetic sections are created by means of generalized
ray tracing (Fuchs and Müller, 1971) extended to VTI media

using the methodology for computing reflection and transmis-
sion coefficients outlined in Fryer and Frazer (1984), combined
with analytical expressions for the stress and displacement vec-
tors given by Fryer and Frazer (1987). Generalized ray tracing
involves a partial ray expansion combined with an integration
over real slowness (Chapman and Orcutt, 1985). It leads to ex-
act waveforms, including phase changes and head waves, and
has the advantage over reflectivity methods that solely specific
predefined arrivals are computed. In this case only the primary
reflections and their head waves are calculated.

Figure 2a shows the three primary P-P reflections and the
first head wave resulting from an explosive point source. A
gradual phase rotation is visible in the first reflection after it
splits from the head wave around 1.5 km. Figure 2b displays
the same data transformed to the τ -p domain by first apply-
ing lateral filtering and then a Cartesian τ -px transform. The
head wave has mapped onto a single point—namely, the critical
slowness of the first reflection (p = 0.27 s/km). This explains the
strong increase in the amplitude at this point. Similar sudden
increases of the amplitudes in the τ (p) moveout curves of the
other reflections are not visible because the head waves were
not yet present in the limited-offset shot gather (Figure 2a).
Longer offsets would have been needed to detect and map
them into the τ -p gather.

To demonstrate that the geometric spreading has indeed
been automatically corrected, I compare the zero-offset trace
after a t-x–based geometric spreading correction and the zero-
slowness trace in Figure 2b after time differentiation. The
resulting zero-slowness trace should be equal to the zero-
incidence total reflection coefficients (including transmission
effects) convolved with the source wavelet. The resulting zero-
offset trace equals to first order the same convolution of total
reflection coefficients and source wavelet. Small discrepancies
may occur because neighboring points on the reflectors (and
thereby neighboring reflection coefficients) also influence the
amplitude recorded at zero incidence on account of the Fresnel
zone.

Figure 3 displays the resulting zero-offset and zero-slowness
traces. The geometric spreading has been corrected using ex-
pressions in Zhou and McMechan (2000). The two traces are
nearly identical, indicating that the geometric spreading has in-
deed been removed for the τ (p) traces near zero slowness. Only
some minor differences occur. The small wavelets around the
first and second reflections are caused by integration artifacts
in the way the synthetics are created. They map onto different
points in τ -p space and are therefore absent in the τ (p) trace.
The high-frequency oscillations around the third reflection are
from the time differentiation and can be removed by a simple
high-cut frequency filter.

Table 1. Elastic parameters of the shale used in the numerical
examples. All values are taken from Thomsen (1986).

Parameter Value

α0 3.048 (km/s)
β0 1.490 (km/s)
ε 0.255
δ −0.050
η 0.339
σ 1.276
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As a second test, I extract the total reflection coefficients
along the τ (p) curves in Figure 2b and compare them with
the theoretical ones. The latter are computed using the ap-
proach described in Fryer and Frazer (1984, 1987). Figure 4 dis-
plays both the extracted and exact total reflection coefficients.
The two are again highly similar, indicating that the geometric
spreading of all arrivals in the τ -p domain has indeed been cor-
rected automatically at all slownesses. The abrupt change in the
reflection coefficient of the first reflection around p = 0.27 s/km
is a result of the head wave being mapped to approximately a
single point. Similarly, the drop-off of the recovered reflec-
tion coefficients of the other reflections at larger slownesses is
because of the finite lateral extent of the synthetic shot gather,
as explained previously.

As a final demonstration that τ -p domain stacking is a pow-
erful tool, I create a synthetic SV -wave shot gather. A fictitious
explosive point source is used with an isotropic radiation pat-
tern for the SV -waves. Figure 5a contains the resulting t(x)
gather for the primary pure-mode reflections and their head
waves. A comparison with Figure 2a shows that the behavior
of pure-mode SV -waves is significantly more complex than that
of pure-mode P-waves. Several polarity reversals are visible,
and each reflection gives rise to two head waves: a head wave
that propagates as a P-wave along the interface and another
one that propagates as an SV -wave. These separate, for in-
stance, from the first reflection around offsets of 1 and 2.5 km,
respectively. Finally, a triplication is visible in the second re-
flection around 2.5 km. For reference, Figure 1a displays the
ray theoretical t(x) reflection moveout curves.

Figure 2. (a) P–P primary reflections plus head wave for the considered synthetic model. The amplitudes are
scaled with time squared for display purposes. (b) Resulting τ -p gather after lateral filtering and a conventional
τ -px transform. The head wave has mapped onto a single point and can therefore be stacked.

While the actual time-offset gather looks surprisingly com-
plex, the resulting τ (p) gather after lateral filtering and the τ -px

transform is reassuringly simple (Figures 1b and 5b). Again, all
head waves map onto single points. We can clearly distinguish

Figure 3. Comparison of the zero-offset trace after a t-x–based
geometric spreading correction and the zero-slowness trace of
the τ -p gather after time differentiation. The two traces are
nearly identical, indicating that the geometric spreading in the
τ -p domain has been removed for small slownesses. No Hilbert
transform is applied since the 90◦ phase rotation is already
included in the lateral filtering technique.
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the three individual reflections because events no longer over-
lap and the triplication is unfolded. Now, we can stack the trip-
lication, and the head waves can contribute to the stacked sec-
tions, thereby potentially increasing stack quality.

In practice, it may be difficult to stack the triplication far be-
yond the first inflection point in the τ -p domain (i.e., beyond

Figure 4. Exact and extracted total reflection coefficients from
the τ -p gather. Their high similarity demonstrates that the geo-
metric spreading has been correctly removed for all slownesses.

Figure 5. (a) SV –SV primary reflections plus head waves for the same synthetic model. Note the triplication in
the second reflection near 2.5 km. Amplitudes have again been scaled with time squared for display purposes.
(b) Resulting τ -p gather after lateral filtering and a τ -px transform. Reflections no longer cross, the triplication
has been unfolded, and head waves are mapped onto single points. This gather, is much simpler than the original
t-x gather, and both the triplication and the head waves can now contribute constructively to the stacked section.
Compare with Figures 1a and 1b, which display the ray theoretical t(x) and τ (p) moveout curves.

the first cusp in the time-offset domain) because of the NMO
stretch. Indeed, the interval intercept time 1τi (p) quickly di-
minishes beyond this point (compare Figures 1b and 5b with
Figure 1c). In addition, for this particular model, the reflection
coefficients between the two inflection points are very small,
thereby limiting the final contribution to the stacked section
even further.

Nonetheless, we can conclude that stacking in the τ -p do-
main is a very powerful tool. The geometric spreading of all
wave modes and types is automatically removed, nonhyper-
bolic moveout resulting from layering is taken into account,
reflections no longer cross, triplications are unfolded, and even
head waves can contribute constructively to the stacked sec-
tions. In addition, the τ -p transform acts as a dip filter, thereby
limiting the influence of certain types of noise such as surface
waves.

Real data example

For this real 2D data example, I use a data set acquired in a
relatively flat part of the Western Canadian sedimentary basin
using a 5.5-km static spread with a group interval of 20 m and
a shot interval of 80 m (Kendall and Pullishy, 2002). The trace
spacing in the CMP gathers was very irregular. As a conse-
quence, the CMP-sorted data after lateral filtering were domi-
nated by aliasing artifacts. The proposed processing methodol-
ogy was therefore applied on the common-shot gathers instead
of attempting to solve this inconvenience by means of trace
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interpolation with corresponding problems. This renders the
described techniques less ideal for the particular data set in
question. Nevertheless, it still serves as a good illustration of
its applicability and as a real data comparison.

The processing stream was kept basic. It consisted of a
top mute to remove head waves and other linear events in
the far offset, band-pass filtering to remove ground roll and
high-frequency noise, f -x spatial-prediction filtering to in-
crease the S/N ratio, and minimum-phase predictive decon-
volution to boost the frequency content. Refraction statics
were also applied. The resulting t-x stacked section after ge-
ometric spreading correction is displayed in Figure 6a. The
technique of Ursin (1990) was used to remove the geometric
spreading.

Next, lateral filtering was applied on the processed gathers
before geometric spreading corrections, the resulting data were
transformed to the τ -p domain and stacked. Finally, time dif-
ferentiation was applied on the stacked traces to compensate
for the loss of frequency content during stacking. The antialias-
ing filter of Moon et al. (1986) was applied to reduce aliasing
in the τ -p transform. Figure 6b displays the final result. The
same isotropic velocity model was used to obtain both stacked
sections. Some reflectors displayed small amounts of nonhy-
perbolic moveout. However, this was most prominent after the
NMO stretch cut-off and therefore was neglected.

A comparison of Figures 6a and 6b shows highly similar
stacked sections. The individual reflectors have approximately

Figure 6. Comparison of stacking techniques on real data. (a) Conventional t-x stacked section after geometric
spreading correction. (b) The τ -p stacked section after PWD to remove spherical divergence. The two stacked
sections are highly similar except at small two-way traveltimes. The τ -p section has here a higher S/N ratio
because the τ -p transform acts as a dip filter. The maximum stretch mute was limited to 50% in both cases.

the same strength in both stacked sections, indicating that ge-
ometrically spreading has been correctly removed in both ap-
proaches. However, the relative strength of, in particular, the
first few reflectors would have been quite different if the head
waves had not been muted out in the far offset. The overall
quality of both stacked sections is identical except for the up-
permost part. The quality of the τ (p) stacked traces is slightly
higher here because the τ -p transform acts as a dip filter,
thereby removing some remnant surface wave energy that still
contaminates the t(x) stacked traces. The ringing in the 36th
stacked trace resulting from some bad traces has been reduced
for the same reason.

DISCUSSION

The described methodology is in many ways more flexible
than the conventional approach of removing geometric spread-
ing and stacking amplitudes in the time-offset domain. The geo-
metric spreading of all wave modes and types is automatically
and jointly removed, nonhyperbolic moveout resulting from
layering is taken into account, reflections no longer cross, tripli-
cations are unfolded, and even head waves can contribute con-
structively to the stacked sections. In addition, the τ -p trans-
form acts as a dip filter, thereby limiting the influence of certain
types of noise such as surface waves.

Both the PWD and the conventional geometric spreading
corrections rely on the presence of a laterally homogeneous
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earth. The real earth is not one dimensional. However, this
problem is reduced by applying the proper τ -p transform
on CMP or common conversion-point sorted data (Wapenaar
et al., 1992).

An inconvenience of the PWD approach is that a good spa-
tial distribution with both azimuth and offset is an absolute
prerequisite for the method to work for 3D acquisition geome-
tries. Otherwise, the data will be dominated by aliasing artifacts
after a PWD. For 2D receiver lines a good regular distribution
with offset is needed. In addition, the method requires that the
medium be axisymmetric. That is, the method here is limited
to 1D media (isotropic or VTI). If the actual medium deviates
from these conditions, then the method will most probably still
yield a good first-order correction.

Some high-frequency noise may be introduced by the re-
quired time differentiation of the stacked traces, particularly
for short traces. A simple high-cut frequency filter will remove
the undesired artifacts in most cases. However, if significant
noise is introduced by the time differentiation, a 90◦ phase ro-
tation may suffice for a comparison with a 2D t(x) stacked
section. This comes, however, at the expense of some loss in
high-frequency content.

Both τ -p and t-x moveout corrections can handle exactly
the effect of a single dipping layer as long as data are sorted
in the CMP domain. However, both break down in the pres-
ence of more complicated moderate-to-strong lateral inhomo-
geneities. Stacking and processing in the τ -p domain therefore
has several potential advantages over the conventional t-x ap-
proach. It relies otherwise on the same assumptions as more
conventional techniques.

CONCLUSIONS

Plane waves in laterally homogeneous media are not subject
to geometric spreading. Hence, the geometric spreading can
be removed simultaneously for all wave modes and types with-
out any prior knowledge of the actual underlying velocity field
by applying a plane-wave decomposition. The required plane-
wave decomposition, i.e., τ -p transform, depends on the actual
acquisition geometry and source type. Subsequent moveout
correction and stacking is also done in the τ -p domain since
an inverse τ -p transform would reconstruct the geometric-
spreading correction. The proposed methodology is exact for
dense 3D data volumes and arbitrary anisotropy in laterally
homogeneous media or for 2D data lines in a 1D, isotropic, or
VTI medium. The resulting stacked section can be used for any
poststack processing such as time migration.
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APPENDIX

PLANE WAVES, GEOMETRIC SPREADING,

AND PROPER ττ -p TRANSFORMS

Geometric spreading of spherical waves.—The relative ge-
ometric spreading of a wavefront is computed by consider-
ing the relative changes over time in the area spanned by a
ray tube. If we assume that the energy remains constant over
time (i.e., no attenuation, reflection, or transmission losses),
then the same amount of energy is spread out over an ever-
increasing area for an expanding wavefront. An absolute value
for the geometric spreading is obtained by normalizing the
relative spreading using the velocity around the source, i.e.,
with the initial curvature. This idea is used by Newman (1973)
and Ursin (1990) to compute their expressions for the ge-
ometric spreading in the t-x domain in a laterally homoge-
neous, isotropic medium and can be traced back to Gutenberg
(1936).

Plane-wave decompositions and ττ -p transforms.—To
demonstrate that a proper τ -p transform is a plane-wave de-
composition and that the resulting plane waves are not subject
to geometric spreading in a laterally homogeneous medium, I
consider the particle displacement field u(t, x, y, z) as caused
by a point source at an arbitrary position and assume that it is
the solution to the linear wave equation (i.e., finite amplitude
waves in a noiseless environment).

First, a forward 3D Fourier transform over time and posi-
tion is applied on the wavefield as recorded on a plane de-
fined by z = zr . The change of variables kx = ωpx and ky = ωpy

is used, with ω the circular frequency and kx and ky the hori-
zontal wavenumbers. This leads to

u(ω, px , py, zr )

=

∫ ∫ ∫

u(t, x, y, zr )e−iω(px x+py y−t) dx dy dt. (A-1)

Using the same change of variables, the inverse Fourier trans-
form is defined by

u(t, x, y, zr ) =
1

(2π)3

∫ ∫ ∫

u(ω, kx , ky, zr )

× ei(kx x+ky y−ωt) dkx dky dω

=
1

(2π)3

∫ ∫ ∫

ω2u(ω, px , py, zr )

× eiω(px x+py y−t) dpx dpy dω. (A-2)

Physically, equation (A-2) can be interpreted as a superposi-
tion of monochromatic plane waves, with wavefronts defined
by kx x + ky y − ωt = constant or px x + py y − t = constant .
The Fourier expansion coefficients u(ω, kx , ky, zr ) and
u(ω, px , py, zr ) are weighting functions that determine the con-
tribution of each plane wave to the complete elastic wavefield.
These plane waves are purely horizontally propagating since
the vertical slowness qz is absent in the integration.
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To demonstrate that a proper τ -p transform is a plane-
wave decomposition, I apply an inverse Fourier transform over
frequency on equation (A-1), change the order of integra-
tion, and use the equality

∫

exp[iω(t − px x − py y − τ )] dω =

δ(t − px x − py y − τ ), where δ represents the Dirac delta func-
tion. This leads to (Chapman, 1981)

u(τ, px , py, zr ) =

∫ ∫ ∫ ∫

u(t, x, y, zr )

× e−iω(px x+py y−t) dx dy dte−iωτ dω

=

∫ ∫

u(τ + px x + py y, x, y, zr ) dx dy. (A-3)

Expression (A-3) [equation (1)] is therefore a proper PWD for
a 3D wavefield recorded as a result of a point-source excita-
tion because the forward Fourier transform [equation (A-1)]
is already a PWD. However, these are not monochromatic but
transient plane waves because of the inverse Fourier transform
over frequency. We can also deduce from expression (A-3) that
u(τ, px , py, zr ) are the expansion coefficients of horizontally
propagating plane waves. In a similar way, we can demonstrate
that the τ -px and τ -pr transforms are proper PWDs for 2D
data lines recorded from a line and point source, respectively
(Chapman, 1981).

Geometric spreading of plane waves.—The resulting plane
waves are not subject to geometric spreading in laterally ho-
mogeneous media because these waves are propagating hori-
zontally. The shape of these plane wavefronts are determined
by Snell’s law. In particular, their angle with the vertical axis in,
respectively, the x-z and y-z planes is defined by sin θx = pxvph

and sin θy = pyvph . From Snell’s law we can also deduce that
px and py are constant in such a medium. Hence, θx and θz

only depend on the depth coordinate and remain constant with
time. This is true irrespective of the actual shape of the plane
wavefront and therefore of the actual velocity model present.
Hence, simply put, plane waves in laterally homogeneous me-
dia are not subject to geometric spreading because the shape
of the plane waves is laterally invariant and does not change
over time, thus retaining a constant energy density or at least
distribution. Furthermore, no assumptions have been made
about the type and mode of the wavefront. Hence, a proper
τ -p transform simultaneously removes the geometric spread-
ing of all types and modes of waves (i.e., primary or multiple
and pure-mode or converted waves) in laterally homogeneous
media without prior knowledge of the actual underlying veloc-
ity model.

Some extra remarks need to be made. The term plane waves
is misleading in that these waves are only planar in homoge-
neous media. The term quasi-plane would be more appropriate
but is omitted for brevity. Likewise, the quasi-spherical instead
of spherical t-x waves would be more justified.

The receivers can be located on any plane z = zr , that is, they
are not confined to be on the earth’s surface and can lie, for
instance, on the ocean bottom. However, the plane of receivers
needs to be horizontal (or more generally interface parallel).
This indicates, for instance, that the geometric spreading of data
recorded in a VSP experiment with the receivers in the bore-

hole cannot be corrected in a straightforward manner using the
methodology described here.
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