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An Algorithm for Determining the Output Frequency
Range of Volterra Models With Multiple Inputs

Hua-Liang Wei, Zi-Qiang Lang, and Stephen A. Billings

Abstract—A new algorithm for determining the output fre-
quency range and the frequency components of Volterra models
under multiple inputs is introduced for nonlinear system analysis.
For a given Volterra model, the output frequency components
corresponding to a multi-tone input can easily be calculated using
the new algorithm.

Index Terms—Generalized frequency response functions
(GFRF), nonlinear systems, output spectrum, Volterra models.

I. INTRODUCTION

O
NE important aspect of system analysis in the frequency
domain is the requirement to investigate the relationship

between the system input frequencies and the output frequency
behaviour. For linear systems, the output frequency function

is related to the input frequency spectrum by the
system frequency response function via the simple linear
relationship . This simple basic result
provides the foundation for all linear system analysis and de-
sign in the frequency domain. In this case, the input frequen-
cies pass independently through the system, that is, an input at a
given frequency produces at steady state an output at the same
frequency and no energy is transferred to or from any other fre-
quency components. The system frequency response function

itself alone can totally characterize a given linear system.
For nonlinear systems, however, this is not true. It has been ob-
served that the output frequency components of nonlinear sys-
tems are much richer compared to the corresponding input fre-
quencies. The input frequencies pass in a coupled way through a
nonlinear system, that is, an input at given frequencies may pro-
duce quite different output frequencies. This is quite different
from the case for linear systems where the output frequency
range is identical in steady state to that of the inputs. This makes
it difficult to give a general explicit expression connecting the
input and output frequencies for most nonlinear systems.

One of the most useful representations for weakly nonlinear
systems is the Volterra model. Foundations of this class of
models can be found in [1]–[4], where most significant early
work in this area has been summarized in detail. One prop-
erty of the Volterra model is that the output frequency range
can analytically be determined for some specific inputs, and
several explicit algorithms are available for this purpose [2],
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[5]–[10]. In [2] a non-iterative method was proposed by intro-
ducing the concept of “frequency-mix vector,” to determine,
in an enumerative way, the output frequency components of a
Volterra model driven by multitone inputs. But this method can
only be used to effectively calculate the output frequencies of
low-order nonlinear functions driven by multiple inputs, where
the number of fundamental input components is not large. For
a case where the number of the fundamental input components
is large, the determination of the output frequencies becomes
very complex and makes the relevant implementation very
difficult, if not impossible. An iterative algorithm was given
in [8], but the expression of the algorithm is not compact,
and the construction of relative matrices becomes complicated
when high-order submodels are involved and the number of
fundamental input components is large.

This study presents a new and much simpler algorithm for
the determination of the output frequency components for
Volterra models under multitone inputs. As will been seen, the
new proposed algorithm is very useful for the determination of
the output frequency components of arbitrary-order submodels
in any given Volterra model.

II. GENERALIZED FREQUENCY RESPONSE

FUNCTIONS FOR NONLINEAR SYSTEMS

It is well known that the input–output relationship of a wide
class of nonlinear systems can be approximated in the time do-
main by the Volterra functional series [1]–[4]

(1)

where the system output is expressed as a sum of the re-
sponse of parallel subsystems, each of which is related to
both the system input and an th-order kernel. The output
of the th-order nonlinear subsystem, , is characterized by
an extension of the familiar convolution integral of linear sys-
tems theory to higher dimensions

(2)

where the th-order kernel or th-order impulse response

is so called because this reduces to the linear
impulse response function for the simplest case . By
introducing the concept of the th-order associated function
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[11] and then taking the multidimensional Fourier transform of
the associated function, yields from (2)

(3)

where is the input spectrum defined as the Fourier trans-
form operator. is the th-order transfer

function or th-order generalized frequency response function

(GFRF) defined as

(4)

Following [9] and [12], it can easily be shown that

(5)

By making a change of variables

(6)

Equation (5) becomes the equation shown at the bottom of the
page, where

(8)

From (1) and (7)

(9)

Therefore, the system output frequency response or output spec-
trum to a given general input is

(10)

where is the effective frequency domain of the th-order
output frequency function . The family
in (8) was referred to as the input–output frequency domain in
[11]. The output spectrum can therefore be referred to
as the th-order output frequency (response) function or output

spectrum. For a physical interpretation of (5) and (8), see [8],
[11]. Note from the variable transform (6) that the input–output
frequency domain is restricted to . The
valid frequency range of the output spectrum can therefore be
determined provided that the input frequencies are known.

III. DETERMINING OUTPUT FREQUENCIES

UNDER MULTIPLE INPUTS

This section presents a useful result on calculating the output
frequencies of nonlinear systems which can be described by the
Volterra series.

A. Description of Output Frequencies

As a simple example, consider a simple case, where a non-
linear system is driven by a sinusoidal signal

(11)

Substituting (11) into (2), yields [12], [13]

(12)

From (12), the input to the th-order submodel contains
only one single principal frequency component , the output
of the th-order submodel , however, contains many fre-
quency components distributed at

. For example, for the linear submodel of the nonlinear
system (1), the output frequencies include ; for the 2nd-
order nonlinear subsystem, the output frequencies will appear
at 0 and .

(7)
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For a general case, where the input is a summation of multiple
sinusoidal waves

(13)

with , , , , the output of the
th-order submodel can be calculated to be [8]

(14)

where

otherwise
(15)

Following [8], the th-order output frequency function
can be expressed as

(16)

The output frequency components of the th-order submodel
will be much richer compared with the input frequency

components since each frequency component determined by
the combination with
might appear in the output frequency domain. An important
point is that these possible output frequency components can be
determined beforehand once the frequency components in the
multiple input are given.

B. An Algorithm for Determining the Output Frequencies

It is observed that the output frequency components of non-
linear systems are much richer compared to the corresponding
input frequencies. The input frequencies will pass in a coupled
way through a nonlinear system, that is, an input at given fre-
quencies may produce quite different output frequencies. There-
fore, energy may be transferred to or from other frequency com-
ponents. This is quite different from the case for linear sys-
tems where the output frequency range is identical in steady
state to that of the input. It would be difficult to give a gen-
eral explicit expression connecting the input and output frequen-
cies for all nonlinear systems. However, for some specified in-
puts, explicit algorithms are available to determine the effective
frequency range for arbitrary-order output frequency response
functions. In [8], an algorithm to compute the frequency range
of the th-order output frequency function defined by
(7) and (8).

It can be noted, however, that the existing algorithms are com-
plicated in either the expression of the formulae or the iteration
and calculation procedure. This may not be convenient for prac-
tical applications. Motivated by this observation, this study pro-
poses a much improved and compact recursive algorithm for

calculating the effective frequencies of arbitrary-order output
frequency functions. The new algorithm is derived and formu-
lated in an iterative manner that is significantly different from
that of the existing algorithms. An important advantage of the
new algorithm is that it is very simple in form, quite easy to cal-
culate, and produces exactly the same results as those produced
by existing algorithms.

From the variable transform (6) and the derivations of (7), (8)
and (16), the input and output frequencies for the th-order sub-
system with a multiple input of the form (13) will be constrained
by

(17)

This will be used to determine the frequency range of the
th-order output frequency function. For convenience of de-

scription, denote

(18)

For the simplest case of , it is clear that the effective
frequency range of the output spectrum is

.
In order to determine the effective frequency range for

the case of , consider the following combinations of two
frequency components

...

...

...

(19)

This can be expressed in a vector form as

... (20)

where , . The symbol

“ ” denotes the Kronecker product, which is defined for two
vectors and as

(21)

For a given vector , let denote a set
whose elements are formed by the entities of in the sense
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that . It can easily be proved that
all the different entities of the vector are identical to all the
effective frequency components of the second-order output fre-
quency function . Note that some entities in the vector

may be the same. Therefore, is redundant for determining
the effective frequency components of .

In general, the effective frequency components of the
th-order output frequency function can be calculated

using the recursive algorithm below:
Algorithm 1: Assume that a nonlinear system is excited by

a multiple input signal of the form (13) with funda-
mental frequency components, . The effective
frequency components of the th-order output frequency func-
tion can be determined by searching all the different entities of

, which is defined as

(22)

(23)

(24)

where indicates the number of entities in the
vector , and

(25)

Proof of Algorithm 1: Assume that all the different entities
of the vector are identical to all the effective frequency com-
ponents of the th-order output frequency function . Let

, where . All the possible

frequency components for the th-order output frequency
function can then be determined by inspecting the
following combinations:

...

...

...

(26)

Similar to (20), the above equation can be expressed in a vector
form as

... (27)

This is just (23). Therefore, Algorithm 1 can be used to deter-
mine the effective frequency range for the arbitrary-order output
frequency function . Note that some entities in are

the same and is often redundant for determining the effec-
tive frequency components of the th-order output frequency
function .

It is known that the positive and negative frequencies are sym-
metrical about the origin, therefore only the non-negative fre-
quencies need to be calculated. It can easily be shown that the
non-negative frequency components of the th-order output fre-
quency function can be calculated using the recursive
algorithm below:

Algorithm 2: Assume that a nonlinear system is excited by

a multiple input of the form (13) with fundamental fre-

quency components, . The non-neg-

ative frequency components of the th-order output frequency

function can be determined by searching all the different enti-

ties of , which is defined as

(28)

(29)

(30)

where is defined as in (20), is defined by (25), and is

a set whose elements are composed by all the different entities

of the vector by taking absolute values.

Algorithm 2 can be proved in the same way as Algorithm 1.

The recursive algorithm is very simple and quite easy to im-

plement using vector-oriented software tools. For the case of

, (29) becomes

...

...

...

...

(31)

Clearly, the absolute values of all different entities of the vector

are identical to all the non-negative frequency components

of the second-order output frequency function .

IV. EXAMPLES

Two examples are given below to illustrate the performance

and efficiency of the proposed algorithm.

Example 1: Consider the following nonlinear finite impulse

response (NFIR) model [14]

(32)

Let the input signal be given below

(33)

where , , . This is the case

of , , , . Without any
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Fig. 1. Frequency response of the cubic Volterra model given by (32) and (33).

direct calculation of the Fourier transform for the output ,

it can be determined using Algorithm 2 that the non-negative

output frequencies (in hertz) of the model given by (33) are: {1,

2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 21}. This theoretical result

can easily be verified by calculating the Fourier spectrum of the

output signal , which is shown in Fig. 1, and where all the

14 different frequencies can clearly be observed.

Example 2: Consider the following nonlinear model:

(34)

Let the input signal be given below

(35)

where , , , , , and .

This is the case of . Whilst the algorithm proposed in [8]

can be used to calculate the output frequency components, the

expression and construction of the relevant matrices required by

the algorithm are very complex for the three nonlinear submodels

in (34). The method in [2] for this problem involves constructing

a total of 364, 1365, and 4368 “frequency-mix” vectors of length

12, for the three submodels, respectively. No algorithms are

available to automatically produce these required frequency-mix

vectors, from which all the distinct output frequencies can be

determined. Using the proposed algorithm, however, all the

output frequencies for the three submodels can easily be calcu-

lated in an iterative way. For example, based on Algorithm 1, the

total number of all distinct output frequencies (either positive or

non-positive), for the three submodels , , and ,

was calculated to be 87, 129, and 171, respectively. The total

time for calculating all the frequencies of the three submodels

was about 0.41 sec, where the algorithm was implemented using

Matlab (R14) on a Sun-2500 workstation (1.28 GHz). The output

frequencies for the three submodels are plotted in Fig. 2, where

only non-negative frequencies are shown.

Fig. 2. Output frequency components for the model given by (34) and (35):
(a) for the third-order function u (t), (b) for the forth-order function u (t),
and (c) for the fifth-order function u (t).

V. CONCLUSION

A new algorithm has been introduced to determine the output
frequency components for the Volterra class of nonlinear sys-
tems with multitone inputs. The main advantage of the new al-
gorithm, compared with existing algorithms, is that it is very
compact and simple in form, and thus is quite easy to imple-
ment using vector and matrix-oriented software tools. This will
greatly facilitate the determination of effective output frequen-
cies of any Volterra models.
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