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Abstract 

This paper is concerned with the development of a new system identification based 
approach for pulsed eddy current non-destructive evaluation and the use of the new 
approach in experimental studies to verify its effectiveness and demonstrate its potential in 
engineering applications.   

 

1. Introduction 

Non-destructive Evaluation (NDE) techniques have been widely used in many engineering 
areas [1].  Particularly, eddy current NDE has been used for the inspection of defects in 
metals for decades.   An effective NDE system should be able to detect whether a defect has 
appeared in a structure, classify a detected defect into a particular category, and even 
quantify the defect details such as location, size and orientation.  

Conventional eddy current NDE uses a single frequency sinusoidal as the input signal to 
excite inspected structures. Pulsed eddy current NDE is a new technique recently developed 
which, instead of using a single frequency sinusoidal, uses a pulsed coil excitation for 
structural inspection. A pulsed excitation is composed of a wide spectrum of frequency 
components, and consequently allows simultaneous inspection to different depths because 
the depth of penetration into an inspected structure by the eddy current is dependent on the 
frequencies of excitation. This enables the detection and characterisation of defects at the 
surface and sub-surface of structures. All eddy current NDE techniques depend on using an 
interpretation technique to analyse the structural response to the applied excitation and 
translate the response signal from eddy current sensors into meaningful information 
regarding defects, defect categories and quantitative characterisation. However, the pulsed 
eddy current NDE needs effective interpretation techniques for the NDE community [4]. In 
order to overcome this difficulty, recently many researchers propose to use advanced signal 
processing techniques such as Principal Component Analysis (PCA), Independent 
Component Analysis (ICA) and Wavelet etc to interpret the eddy current sensor response [1, 
2] and classify defects by feature extraction. All of these latest analysis methods are based 
on the differential signal between the measured eddy current sensor response and a 
reference which is normally the eddy current sensor response measured in a defect free 
condition. Because the flaws and conductivity and dimensional changes in inspected 
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structures can produce the changes of this differential signal, the differential signal based 
NDE methods have been widely used in NDE community to detect and categorise defects in 
structures.   

In the present study, the difficulty with an effective interpretation of the response signal in 
pulsed eddy current NDE is addressed from a totally different but novel perspective. Instead 
of analysing the differential signal as conducted in almost all available techniques, we 
propose to apply the system identification approach to establish a transfer function model 
for inspected structures from the measured eddy current sensor response to the pulsed coil 
excitation, and to use the model parameters to reflect the changes of the structural 
characteristics due to, e.g., flaws and conductivity and dimensional changes.  Compared 
with the widely used differential signal, the structural model parameters can not only 
provide a more compact description for the structural characteristics but can also better 
reveal the real mechanism which dominates the structural dynamic behaviours including the 
eddy current sensor response to a pulsed coil excitation. The proposed system identification 
method has potentials for not only local but global defect identification such as defect sizing 
and location, which can be extended for bridging the gap of structural health monitoring and 
NDE. 

In addition to the use of the system identification approach to determine the characteristics 
of structure integrity in terms of the parameters of an identified transfer function model, in 
this paper, we also propose to use Fisher Discriminant Analysis (FDA) and Fisher 
Discriminant functions for defect pattern classification [5]; FDA is not only a powerful 
dimensionality reduction technique for feature extraction but also takes into account the 
information between defect classes when determining a lower-dimensional representation. 
After the identified transfer function model for an inspected structure has been obtained, 
FDA is applied to the identified transfer function model parameters to reduce the dimension 
of the parameter vector used to represent the structure characteristics so as to minimise the 
rate of misclassification, and then Fisher Discriminant Functions for all available defect 
classes are used to perform defect pattern classification.  

In order to evaluate the performance of this proposed new NDE approach, the approach is 
applied to analyse experimental test results on two sets of aluminium specimens, each set 
consisting of specimen of three different defects. The results of the experimental data 
analyses sufficiently verify the effectiveness of the new technique, and demonstrate that the 
new system identification based pulsed eddy current NDE approach has great potential in 
engineering applications.   

2  System identification 

System Identification is a technique in system and control engineering for establishing the 
mathematical model of systems or structures from experimental data. When a system or 
structure is excited by an input signal, the response of the system or structure to the input 
excitation is called output, which is generally determined by both the input and the dynamic 
characteristics of the system or structure. A mathematical model of a system or structure 
can be determined from the input and output data using a system identification technique, 
and used to represent the system or structure’s dynamic behaviours, and the parameters of 
the mathematical model or functions of these parameters can be used to represent different 
features of the system’s  or structure’s characteristics. 
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For example, consider the case where the relationship between the input and output of a 
system or structure can be described by a second order differential equation as follows 
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where )(ty  and )(tu  represent the  output and input of the system  or structure respectively, 
and 1a , 2a , 1b , and 2b  are the parameters of the differential equation model, which define 
the system or structure’s dynamic  characteristics.  In the frequency domain, the differential 
equation model (1) can be written as 
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 to yield an transfer function based input output  model description as 
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In Equations (2) and (3),  s  is the Laplace operator, )(sy  and )(su  are the Laplace 
transform of  )(ty  and )(tu  respectively, and )(sH  is the transfer function of system (1). 

Given the input )(tu  and output response )(ty  of system (1), such as, e.g., a pulsed input 
and its corresponding response, the parameters of the system can be determined  using a 
system identification technique known as Prediction error method [7]. The idea of this 
method is to use an optimisation method to solve the following problem: 
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where T is the time period over which the response signal y(t) to the input u(t)  is measured, 

2121
ˆ,ˆ,ˆ,ˆ bbaa  represent the estimates of the system parameters, and )(ˆ ty  is the solution to 

the differential equation  
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Denote the solution to the optimisation problem (4) as *
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or its corresponding transfer function model  
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can be used to represent the system or structure’s dynamic behaviours, and the estimated 
model parameters *

2
*
1

*
2

*
1

ˆ,ˆ,ˆ,ˆ bbaa  or functions of them  can be  used to represent different 
features  of the characteristics of the system or structure described by Equation (1). 

 

3 Fisher Discriminant Analysis and Fisher Discriminant functions [5] 

Fisher discriminant analysis (FDA) and fisher discriminant functions are the methods 
associated with pattern classification. The typical pattern classification system assigns an 
observation vector to one of several classes via three steps which are feature extraction, 
discriminant analysis, and maximum selection.  The feature extraction step is to increase the 
robustness of the pattern classification system by reducing the dimensionality of the 
observation vector in a way that retains most of the information discriminating amongst the 
different classes.  Using the information in the reduced-dimensional space, the discriminant 
analysis evaluates, for each class, the value of a discriminant function which is defined as 
the posteriori probability of an observation vector belonging to a class, and quantifies the 
relationship between the observation vector and the class.  Finally the step of maximum 
selection assigns the observation vector to a class for which the discriminant analysis result 
reaches the maximum.   

FDA is a very effective feature extraction/dimensionality reduction technique, which takes 
into account the information between the classes and has advantages over other methods 
such as Principal Component Analysis (PCA) for fault diagnosis. Fisher Discriminant 
functions are a specific discriminant function associated with the results of FAD for 
discriminant analysis.  

Define n as the number of observations in a training data set, m as the number of 
measurement variables for each observation, p as the total number of classes the 
observations belong to in the training data set, and jn  as the number of observations in the 
jth class, j=1,…,p. Represent the vector of measurement variables for the ith observation as 

ix , i=1,…,n. 

The FDA based feature extraction is conducted based on two ( mm × ) matrices which are 
within-class-scatter matrix wS  and between-class-scatter matrix bS  generated from a 
training data set as follows. 

∑
=

=
p

j
jw SS

1

          (8) 

where 



 5 

( )( )Tjiji
x

j xxxxS
ji

−−= ∑
∈χ

        (9) 

jχ  is defined as the set of vectors ix  which belong to the class j, and ∑
∈

=
jix

i
j

j x
n

x
χ

1  

( )( )Tjj

p

j
jb xxxxnS −−= ∑

=1

                  (10) 

where ∑
=

=
n

i
ix

n
x

1

1 . 

From wS  and bS  evaluated from (8)-(10), at most p-1 nonzero eigenvectors kw , k=1,…,p-1, 
of the generalized eigenvalue problem 

kwkkb wSwS λ= ,    1,...,1 −= pk             (11) 

can be determined using any software package  that does matrix manipulations such as 
MATLAB.  In (11), kλ  denotes the eigenvalue associated with kw , which indicates the 
degree of overall separability among the classes by projecting the data onto kw .  

Let 

],,,[ 121 −= pp wwwW L          (12) 

Then, given a new observation data vector x , the FDA is conducted by performing the 
linear transformation  

xWz T
p=            (13) 

to transform  the data x  in m-dimensional space to the data z in (p-1)-dimensional space for 
the purpose of a more effective discriminant analysis. 

More specifically speaking, FDA first computes the matrix pW  using equations (8)-(12) 
such that training data nxx ,,1 L  from p classes are optimally separated when projected into 
the p-1 dimensional space as i

T
pi xWz = , ni ,...,1= . Then, for any new observation data x , 

the same linear transformation defined by the matrix pW  is applied as given by (13) to 
produce a low dimensional observation z .  The low dimensional observation z can then be 
used by p Fisher discriminant functions, which quantify the relationship between the new 
data represented by x or z with each of the available p classes, to perform discriminant 
analysis. 

These Fisher discriminant functions are given by 
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where j
T
pj xWz = , and jp  is the a priori probability for class j,  j=1,…,p.   

In the end, the new observation x or z will be assigned to class *j  such that  

)(max)(
},...,1{

* zgzg jpjj ∈
=          (15) 

following the principle of maximum selection in the last step of pattern classification. 

4.  A system identification based approach for pulsed eddy current NDE  

As an experimental data based modelling approach, the system identification has been 
widely used in various science and engineering areas for establishing mathematical models 
for systems and/or structures in order to understand system/structure’s behaviours, to 
predict system/structures’ responses to different inputs, and even to perform automatic 
control of system/structures based on an established mathematical model description. 
Pattern classification using PDA and Fisher Discriminant functions is a well established and 
very effective technique for fault diagnosis given observation vectors consisting of 
measurements which reflect the working conditions of systems or structures under 
inspection.  

Eddy current NDE system consisting of an excitation coil, metal sample and magnetic 
detector (coil or magnetic sensors) can be considered as a system [8]. Considering the 
capability and advantage of the system identification in revealing the characteristics of 
systems and structures and in dealing with noises and measurement errors, and the 
effectiveness of PDA and Fisher Discriminant functions in conducting pattern classification, 
a system identification based approach for pulsed eddy current NDE is proposed in the 
present study. The basic procedure of this approach is:  

(1) Use a system identification technique to establish a transfer function model for the 
inspected systems or structures from a pulsed coil excitation and the measured eddy current 
sensor response, and use the estimated parameters for the transfer function model to reflect 
the system or structure’s characteristics. 

(2) Use FDA to extract the significant features of inspected systems or structures from the 
estimated transfer function model parameters, and assign the inspected system or structure 
into a class representing a particular working or defective condition using the procedures of 
Fisher discriminant analysis and maximum selection 

To implement this approach, a training process needs first to be conducted. This involves:  

(a) Testing the specimens of inspected systems or structures with different defects 
and/or under different working conditions using a pulsed coil excitation. 
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(b) Establishing a transfer function model from each excitation and corresponding 
response. 

(c) Performing the operations in equations (8)-(11), where ix  represents the transfer 
function parameter estimates obtained from the ith excitation and corresponding 
response, i=1,…,n,  to determine the linear transformation matrix pW .  

Matrix pW  obtained in step (c) above will then be used to perform Fisher discriminant 
analysis on new data sets.  

Assume that in total n sets of excitation and response data collected for NDE tests on 
specimens representing p different defective and/or working conditions are available for the 
training process, and there are jn  sets of excitation and response data representing the jth 
(j=1,…,p ) defective and/or working condition in the training data.  Then, by denoting the 
transfer function model parameters estimated from the ith set of excitation and response data 
as  

 [ ]imii xxx ,,1 L=   i=1,…,n 

where m represents the number of the model parameters,  equations (8)-(11) can be used to 
determine the result from the training process that is the linear transformation matrix 

],,,[ 121 −= pp wwwW L . Figure 1 illustrates this training process and shows schematically 
how the FDA linear transformation matrix pW can be obtained from the pulsed coil 
excitation based tests on the specimens representing p different defective and/or working 
conditions. 

Modelling using 
system identification 

Modelling using 
system identification 
 

Modelling using 
system identification 
 

Pulsed excitation 
and response data  1 

Pulsed excitation and 
response data  2 
 

Pulsed excitation 
and response data  n 
 

…      …      …          …          …     …     …    …        … 

Model parameter 
vector x1 

Model parameter 
vector x2 

Model parameter 
vector xn 

Equations 
(8) and (9) 

Equation  
(10) 

WS  

bS  

Equation 
(11) 

pW  

Figure 1   The generation of FDA linear transformation matrix from training data 

 

After the linear transformation matrix ],,,[ 121 −= pp wwwW L  for FDA has been obtained 
from the training data, the system identification based approach for pulsed eddy current 



 8 

NDE can be applied on-line as shown in Figure 2 to determine the defective or working 
condition of an inspected system or structure from the system or structure’s response to a 
pulse excitation. The pulsed excitation and the corresponding eddy current sensor response 
measured from the system or structure are first used to determine a transfer function model 
of the system or structure. Then the FDA is applied to extract the features of the system or 
structure from the estimated transfer model parameters. Finally, the maximum selection 
process is applied to the results evaluated from p Fisher discriminative functions, and the 
class of defective or working condition that corresponds to the maximum Fisher 
discriminative function value is assigned to the system or structure under inspection.  

It is well-known that the defective or working conditions of systems or structures are 
essentially determined by the systems or structural integrity characteristics. For example, in 
metal structures, these conditions are determined by microstructures, surface form and 
roughness, natural crack, residual stress beyond tradition discontinuity crack, and corrosion 
etc many factors.  Conventional NDE techniques depend directly on sensor measurement 
signals to perform analysis and to conduct pattern classification. However, any direct 
measurement from NDE oriented tests can only reflect these material characteristics 
indirectly, and the measurement results also unavoidably prone to the effects of 
measurement errors and noises. For example, although the distinctive advantage of pulsed 
eddy current NDE is that the measured signal covers a wide range of spectrum so as to be 
able to reflect defects of different depths, the unavoidable high frequency noise effects on 
the measured wideband signals may not be negligible and may consequently impair the 
NDE results.  

 

 

 

 

 

 

 

In order to solve these problems with conventional NDE techniques especially the problems 
caused by noises, many advanced signal processing based techniques have recently been 
proposed by researchers. In contrast with conventional NDE techniques and these recent 
advanced signal processing based methods, the new system identification based pulsed eddy 
current NDE approach does not perform the NDE analysis directly using eddy current 
sensor measurements. Instead, the new approach conduct the NDE analysis based on the 
features extracted from the parameters of an identified transfer function model of the 
inspected system or structure via a FDA operation. Because the system or structure’s 
dynamic behaviours are uniquely defined by the model parameters, these parameters should 
be more directly related to the system or structure’s characteristics than direct sensor 
measurements, and the features extracted from the estimated model parameters via FDA 
should consequently provide a much clearer picture relating to the physical properties of 

 

Modelling 
using system 
identification 

Pulsed excitation 
and response 
data from 
inspected system 
or structure 

System or 
structure 
model 
parameter x Equation 

(13) 

Equation (14) 
where j=1 

Equation (14) 
where j=2 

M

M  

Equation (14) 
where j=p 

FDA  
result 
z 

 
 
Maximum 
Selector 

M

M  

Class # 

 Wp 
determined 
from training 
process  

g1(z) 

g2(z) 

gp(z) 

Figure 2 On-line implementation of the system identification based pulsed eddy current NDE 
approach   
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concern by field engineers.  In addition, because most system identification methods are 
capable to deal with noise and measurement errors, the effects of noise and measurement 
errors on the analysis results can also be significantly reduced. 

In order to evaluate the performance of the proposed novel NDE approach, the analysis of 
the experimental data collected from eddy current NDE tests on two sets of specimens 
under different defective conditions has been conducted.  Details of the experimental setup, 
the specimens that were tested, and the analysis results are given in the following sections. 

5 Experimental setup, tested specimens, and experiments on the 
specimens 

Figure 3 illustrates schematically the experimental setup for conducting the NDE tests in the 
present study.  A pulse signal u(t) is generated by a PC to excite the coil and generate pulse 
eddy current inside a tested specimen. A GMR (Giant Magnetoresistive) probe placed on 
top of the specimen receives the EM (electromagnetic field transient) signal and produces 
the sensor response y(t) to the pulsed excitation.  

Two sets of aluminium specimens have been tested. In the first specimen set, there are three 
specimens belonging to three defective classes, which are no defect, 20mm surface slot 
defect, and 40mm surface slot defect. In the second specimen set, there are in total 23 
specimens: 12 specimens belong to the defective class of metal loss to the extent of between 
2 and 10mm; 5 specimens belong to the defective class of surface slot to the extent of 2, 4, 6, 
8 mm; and 6 specimens belong to the defective class of sub-surface slot to the extent of 2, 4, 
6, 8 mm. The sample detail can be found in [1].    

 

 

Figure 3 The experimental setup for the conducted NDE tests 

y(t) 

y(t) 

u(t) 
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In the experimental tests on the first set of specimens, all specimens were excited by a 
pulsed signal u(t) ten times with a pulse magnitude being 50mA, 100mA, 150mA, 200mA, 
250mA, 300mA, 350mA, 400mA, 450mA, and 500mA, respectively. These excitations and 
their corresponding responses were sampled at the frequency 100KHz to produce, in total, 
30 sets of excitation and response (input and output) data.  Only signals obtained over the 
excitation range between 200mA and 400mA were used for analysis due to the linear 
relationships between excitations and responses over this range as indicated by the 
estimated value for K shown in Figure 4. Thus, in total, 15 sets of input output data are 
available. Of the 15 sets of input output data, three from defect free specimen (Data sets 
1,2,3), three from 20 mm surface slot defect specimen (Data sets 4,5,6), and three from 40 
mm surface slot defect specimen (Data sets 7,8,9) were used as the training data sets, and 
the rest (Data sets 10-11 from defect free specimen, Data sets 12-13 from 20mm surface slot 
defect specimen, and Data sets 14-15 from 40 mm surface slot defect specimen) were used 
as new data to evaluate the performance of the proposed approach in classifying the 
specimen conditions represented by these data into corresponding classes. 
 

The experimental tests on the second set of specimens were conducted such that all the 23 
specimens were excited once by the pulsed signal u(t) with the magnitude of 500mA. The 
excitations and corresponding responses were sampled at the frequency of 1MHz to produce, 
in total, 23 sets of input and output data. Of the 23 sets of input output data, ten from metal 
loss defect specimens (Data sets 1-10), three from surface slot defect specimens(Data sets 
11-13), and four from sub-surface slot defect specimen (Data sets 14-17) were used as the 
training data sets, and the rest, which are two from metal loss (Data sets  18,19), two from 
surface slot (Data sets 20,21), and two from sub-surface slot (Data sets 22, 23) were used as 
new data to evaluate the performance of the proposed approach in classifying the specimen 
conditions represented by these data into corresponding classes. 

6. The results of  experimental data analysis 

6.1  Analysis results for the first set of aluminium specimens 

For the first set of specimens, after some initial trios, the transfer function model of the form  
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21 ++
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sTsT
sKsH τ

        (16) 

was used for the system identification based modelling process. The transfer function in 
(16) can be further written as  
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indicating that the transfer function model is the same as that in (3) with 
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212 / TTKb =  



 11 

]/)[( 21211 TTTTa +=  
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Figure 4 shows the thirty sets of  21 ,,, TTK τ  estimated using the system identification 
approach from the data collected from the ten NDE tests on the first set of three specimens.  
From the nine sets of the estimated 21 ,,, TTK τ  for training, a )24( ×  dimensional FDA 
linear transformation matrix is worked out using the procedure described in Section 3 as 

] [ 213 wwWWp ==         (18) 
 
where 

Tw ]002-3.0493e  006,-2.6161e- 006,-6.7705e  005,-1.0861e- [1 =  

Tw ]002-1.9953e  005,-1.1709e  006,-3.8760e  005,-2.7970e- [2 =    
        

Denote the estimated 21 ,,, TTK τ  from the ith of the fifteen sets of input output data used 

for analysis as )(ˆ),(ˆ),(ˆ),(ˆ
21 iTiTiiK τ , i=1,…,15. Then, using the results for training, 

)(ˆ),(ˆ),(ˆ),(ˆ
21 iTiTiiK τ ,i=1,…,9, nine (p-1)=(3-1)=2 dimensional FDA vectors are generated 

as 
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Figure 5 shows the 9 FDA vectors and indicates very clearly that the FDA analysis 
separates the 9 vectors into three different regions ( )3()1( zz −  in region I,  )6()4( zz −  in 
region II, and  )9()7( zz − in region III) in the two dimensional FDA space, each 
representing one class of defective condition.  

Of the 15 sets of 21 ,,, TTK τ  estimated, nine are used for training as described above; the 

remaining six, which are )(ˆ),(ˆ),(ˆ),(ˆ
21 iTiTiiK τ , i=10,…,15,  are used as new data  to 

evaluate the performance of the proposed new NDE approach.  The mappings of these six 
sets of new data  into the two dimensional FDA space are given by 
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,   i=10,…,15.       (20) 
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The )(iz , i=10,…,15, thus obtained are also shown in Figure 5, indicating that every set of 
new data has been correctly placed into the region which represents its corresponding 
defective class.  This observation is in fact consistent with the results from the fisher 
discriminant functions (14) based maximum selection, which are obtained as follows.  

Evaluate  

)]
1

1ln[det(
2
1)ln())(()

1
1())((

2
1))(( 33

1
33 WSW

n
pzizWSW

n
zizizg j

T

j
jjj

T

j

T
jj −

−+−
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           (21) 

for i=10,…,15 and j=1,2,3, where 3/1=jp , j=1,2,3 and jjj Snz ,, , j=1,2,3, are determined 

from the 9 training data sets of   )(ˆ),(ˆ),(ˆ),(ˆ
21 iTiTiiK τ , i=1,…,9.  The results are shown in 

Table 1.  

Clearly the maximum selection procedure assigns the new data into correct classes. The 
analysis on the experimental data from the first set of specimens therefore verifies the 
effectiveness of the proposed new NDE approach.  

 

 

Table 1  The results obtained from Fisher Discriminant Function based maximum selection 
for the first set of specimens 

Number of 
the test data 
set i 

))((1 izg  ))((2 izg  ))((3 izg  class assigned  
by maximum 
selection 

10 -5.4700e+000   -9.6381e+001  -2.3092e+003 fault free 

11  -2.8143e+000  -2.6326e+002  -1.7910e+003 fault free 

12  -7.0659e+001   1.3497e+000  -6.7972e+002 20mm surface 
slot defect (fault 
1) 

13  -7.9285e+001  -4.4152e+000  -5.5145e+002 20mm surface 
slot defect (fault 
1) 

14  -4.4192e+002  -1.3031e+003  -1.6444e+002 40mm surface 
slot defect (fault 
2) 

15  -2.7755e+002  -1.1377e+000 1.2530e+000 40mm surface 
slot defect (fault 
2) 
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6.2 Analysis results for the second set of aluminium specimens 

For the second set of specimens, again after some initial trios, the transfer function model of 
the form  

2)(21

~
)(

sTsT
KsH

ωωξ ++
=        (22) 

was used for the system identification based modelling process. Rewriting (22) as 
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indicates that the transfer function model is the same as that in (3) with 
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2
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Figure 6 shows the 23 sets of  KT ~,,ξω  estimated using the system identification approach 
from the data collected from the NDE tests on the second set of 23 specimens.  From the 17 
sets of the estimated KT ~,,ξω for training, a )23( ×  dimensional FDA linear transformation 
matrix is worked out using the procedure described in Section 3 as 

]~,~[~~
213 wwWWp ==          (24) 

 
where 
 

]000+1.0000e- 004,-3e003,-2.564-7.0211e- [~
1 =w  

]000+1.0000e  003,-1.9129e  004,-3.5674e [~
2 =w  

Denote the estimated KT ~,,ξω  from the ith set of training data as )(~̂),(ˆ),(ˆ iKiiT ξω , 

i=1,…,17. Then, using )(~̂),(ˆ),(ˆ iKiiT ξω , i=1,…,17, seventeen (p-1)=(3-1)=2 dimensional 
FDA vectors are generated as 

















=

)(~̂
)(ˆ
)(ˆ

~)(~
3

iK
i
iT

Wiz T ξ
ω

  i=1,…,17       (25) 
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Figure 7 shows the 17 FDA vectors and indicates again very clearly that the FDA analysis 
separates the 17 vectors into three different regions ( )13(~)11(~ zz −  in region II,  

)17(~)14(~ zz −  in region III, and  )10(~)1(~ zz −  in region I) in the two dimensional FDA 
space, each representing one class of defective condition.  

Of the 23 sets of KT ~,,ξω  estimated, seventeen are used for training as described above; the 

remaining six, which are )(~̂),(ˆ),(ˆ iKiiT ξω , i=18,…,23,  are used as new data  to evaluate 
the performance of the proposed new NDE approach.  The mappings of these six sets of 
new data into the two dimensional FDA space are given by 

















=

)(~̂
)(ˆ
)(ˆ

~)(~
3

iK
i
iT

Wiz T ξ
ω

,   i=18,…,23.       (26) 

As seen from Figure 7, putting )(~ iz , i=18,…,23, thus obtained into the two dimensional 
FDA space shows  that every set of new data has again been correctly placed into the region 
which represents its corresponding defective class.  By using the fisher discriminant 
functions (14) based maximum selection on the test data sets, it can be obtained that 

)]~~~
1~

1ln[det(
2
1)~ln()~)(~()~~~

1~
1()~)(~(

2
1))(~( 33

1
33 WSW

n
pzizWSW

n
zizizg j

T

j
jjj

T

j

T
jj −

−+−
−

−−= −  

i=18,…, 23 and j=1, 2, 3 

where 3/1~ =jp , j=1,2,3 and jjj Snz ~~,~
, , j=1,2,3, are determined from the 17 training data 

sets of  )(~̂),(ˆ),(ˆ iKiiT ξω , i=1,…,17. The results are shown in Table 2.  

Obviously the maximum selection procedure assigns the new data into correct classes, 
indicating that the analysis on the experimental data from the second set of specimens also 
verifies the effectiveness of the proposed new NDE approach.  
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Table 2 The results obtained from Fisher Discriminant Function based maximum selection 
for the second set of specimens 

Number of 
the test data 
set i 

))(~(1 izg  ))(~(2 izg  ))(~(3 izg  class assigned  
By maximum 
selection 

18 -4.6459e+000   -8.0691e+001  -9.2112e+000 Metal loss 

(fault 1) 

19  -4.4589e+000  -8.0281e+001  -1.0021e+001 Metal loss 

(fault 1) 

20  -7.73076e+001   -1.2645e+001  -1.4266e+001 Surface slot 
(fault 2)  

21  -9.8851e+001  -8.9346e+000  -2.1742e+001 Surface slot  
(fault 2) 

22  -6.5990e+000  -2.7955e+001  -6.2565e+000 Sub surface 
slot (fault 3) 

23  -1.8580e+001  -7.2449e+001 -5.9447e+000 Sub surface 
slot (fault 3) 
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Figure 4. System identification results for the first set of specimens 
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Figure 5.FDA vectors evaluated for both the training and testing data  for the first set of 

specimens  

/ 4 0/ 04 1/ 14
/

1

3
w ,3 Sv

hmot s.nt sot s

/ 4 0/ 04 1/ 14
0

0-4

1

hmot s.nt sot s

/ 4 0/ 04 1/ 14
0-23

0-25

0-27
J

hmot s.nt sot s

c` s̀ 0
c` s̀ 1
c` s̀ 2

 

Figure 6. System identification results for the second set of specimens  
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Figure 7 FDA vectors evaluated for both the training and testing data for the second set of 
specimens  

 
 
5. Conclusions 

Non-destructive evaluation (NDE) techniques including eddy current NDE have had wide 
applications in different engineering areas.  All eddy current NDE techniques depend on the 
analysis of the response to an applied excitation to determine the defective or working 
conditions of inspected system or structures. The existing techniques for this analysis are 
based on the differential signal between the measured eddy current sensor response and a 
reference, which is normally the eddy current sensor response measured in a defect free 
condition.  

In the present study, a novel technique for the analysis of the system or structural response 
of pulsed eddy current NDE has been developed. Instead of using the difference signal, a 
system identification method is applied to establish a transfer function model for inspected 
systems or structures, and the identified transfer function model parameters are used to 
reflect the system or structural characteristics.  

Compared with the widely used differential signal based analysis, the transfer function 
model parameters provide a more compact description for the system or structural 
characteristics, can better reveal the real mechanisms which dominates the system or 
structural dynamic behaviours, and are more robust to the effects of measurement errors and 
noise.  In addition, the new approach also uses powerful Fisher Discriminant Analysis 
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(FDA) and associated Fisher Discriminant functions for the identified transfer function 
model parameter based defect pattern classification. This ensures the information in the 
training data sets regarding defective or working classes can be sufficiently used in the 
evaluation of the working conditions of new data sets. 

The new approach extended from system engineering has been applied to analyse 
experimental NDE test results on two sets of aluminium specimens. The results verify the 
effectiveness of the new technique, and demonstrate the potential of the new approach in 
engineering applications.  This approach will be investigated for defect quantification of 
structural integrity and structural health monitoring. 
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