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We examine two mechanisms that have been put forward to explain the selection of quasipatterns
in single and multi-frequency forced Faraday wave experiments. Both mechanisms can be used to
generate stable quasipatterns in a parametrically forced partial differential equation that shares some
characteristics of the Faraday wave experiment. One mechanism, which is robust and works with
single-frequency forcing, does not select a specific quasipattern: we find, for two different forcing
strengths, a 12-fold quasipattern and the first known example of a spontaneously formed 14-fold
quasipattern. The second mechanism, which requires more delicate tuning, can be used to select
particular angles between wavevectors in the quasipattern.

PACS numbers: 47.54.Bd, 47.20.Ky, 61.44.Br
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I. INTRODUCTION

The Faraday wave experiment consists of a horizontal
layer of fluid that develops standing waves on its sur-
face as it is driven by vertical oscillation with amplitude
exceeding a critical value; see [1, 2] for surveys. Fara-
day wave experiments have repeatedly produced new pat-
terns of behaviour requiring new ideas for their explana-
tion. An outstanding example of this was the discovery of
quasipatterns in experiments with one frequency [3] and
two commensurate frequencies [4]. Quasipatterns do not
have translation order, but their spatial Fourier trans-
forms have 8, 10 or 12-fold (or higher) rotational order.

Two mechanisms have been proposed for quasipat-
tern formation, both building on ideas of Newell and
Pomeau [5]. One applies to single frequency forced Fara-
day waves [6] and has been tested experimentally [7].
Another was developed to explain the origin of the two
length scales in superlattice patterns [8, 9] found in two-
frequency experiments [10]. The ideas have not been
tested quantitatively, but have been used qualitatively to
control quasipattern [1, 11] and superlattice pattern [12]
formation in two and three-frequency experiments.

One aim of this paper is to demonstrate that both
proposed mechanisms for quasipattern formation are vi-
able. In order to claim convincingly that we understand
the pattern selection process, we have designed a partial
differential equation (PDE) and forcing functions that
produce a priori the particular patterns of interest:

∂U

∂t
= (µ + iω)U + (α + iβ)∇2U + (γ + iδ)∇4U

+ Q1U
2 + Q2|U |2 + C|U |2U + iRe(U)f(t)(1)

where f(t) is a real-valued forcing function with pe-
riod 2π, the pattern U(x, y, t) is a complex-valued func-
tion, µ < 0, ω, α, β, γ and δ are real parameters, and
Q1, Q2, C are complex parameters. The PDE has multi-
frequency forcing and shares many of the characteristics

of the real Faraday wave experiment, but has an eas-
ily controllable dispersion relation and simple nonlinear
terms. In particular, the linear stability of the trivial
solution reduces to the damped Mathieu equation, with
subharmonic and harmonic tongues, the nonlinear terms
allow three-wave interactions, and there is a Hamiltonian
limit (µ = α = γ = 0, Q2 = −2Q̄1 and C = −C̄).

One issue, which we do not address here, is the dis-
tinction between true and approximate quasipatterns,
as found in numerical experiments with periodic bound-
ary conditions. Owing to the problem of small divisors,
there is as yet no satisfactory mathematical treatment of
quasipatterns. (This issue is discussed in detail in [13].)
In spite of this, the stability calculations described be-
low, which are in the framework of a 12-mode ampli-
tude expansion truncated at cubic order, prove to be
a reliable guide to finding parameter values where ap-
proximate quasipatterns are stable. The fact that stable
12-fold quasipatterns are found where expected demon-
strates that this approach provides useful information.

With advances in computing power, we are able to go
to larger domains and longer integration times to obtain
very clean examples of approximate quasipatterns, going
further than previous numerical studies [14]. In addi-
tion, we report here the first example of a spontaneously
formed 14-fold quasipattern.

II. PATTERN SELECTION

Resonant triads play a key role in the understanding of
pattern selection mechanisms. Consider a two (or more)
frequency forcing function of the form

f(t) = fm cos(mt + φm) + fn cos(nt + φn) + ..., (2)

where m and n are integers, fm and fn are amplitudes,
and φm and φn are phases. We consider m to be the
dominant driving frequency, and focus on a pair of waves,
each with wavenumber km satisfying the linear dispersion



2

relation Ω(km) = m/2. These waves have the correct nat-
ural frequency to be driven parametrically by the forc-
ing f(t). We write the critical modes in traveling wave
form z1e

ik1·x+imt/2 and z2e
ik2·x+imt/2. These waves will

interact nonlinearly with waves z3e
ik3·x+iΩ(k3)t, where

k3 = k1 + k2 and Ω(k3) is the frequency associated
with k3, provided that either (1) the same resonance
condition is met with the temporal frequencies, i.e.,
Ω(k3) = m

2 +m
2 , or (2) any mismatch ∆ = |Ω(k3)−m

2 −m
2 |

in this temporal resonance condition can be compensated
by the forcing f(t). The first case corresponds to the
1 : 2 resonance, which occurs even for single frequency
forcing (fn = 0), and the second applies, e.g., to two-
frequency forcing with the third wave oscillating at the
difference frequency: Ω(k3) = |m − n| and ∆ = n. Note
that in both cases, the temporal frequency Ω(k3) deter-
mines the angle θ between the wave-vectors k1 and k2 via
the dispersion relation (figure 1), and therefore provides
a possible selection mechanism for certain angles in the
spatial Fourier spectrum being enhanced or suppressed.
Selecting an angle of 0◦ (figure 1a) is a special case.

The nonlinear interactions of the modes can be under-
stood by considering resonant triad equations describing
small-amplitude patterns, which take the form

ż1 = λz1 + q1z̄2z3 + (a|z1|2 + b|z2|2)z1 + · · ·
ż2 = λz2 + q1z̄1z3 + (a|z2|2 + b|z1|2)z2 + · · · (3)

ż3 = λ3z3 + q3z1z2 + · · · ,

where all coefficients are real, and the dot refers to
timescales long compared to the forcing period. The
quadratic coupling coefficients qj are O(1) in the forcing
in the 1 : 2 resonance case, and O(|fn|) in the difference
frequency case. For other angles θ between the wavevec-
tors k1 and k2 we expect qj ≈ 0 because the temporal
resonance condition for the triad of waves is not met.
Here we are assuming that the z3-mode is damped when
λ goes through zero (λ3 < 0), so z3 can be eliminated
via center manifold reduction near the bifurcation point
(z3 ≈ q3z1z2

|λ3|
), resulting in the bifurcation problem

ż1 = λz1 − (|z1|2 + Bθ|z2|2)z1

ż2 = λz2 − (|z2|2 + Bθ|z1|2)z2 , (4)

where we have rescaled z1 and z2 by a factor of 1/
√

|a|
and assumed that a < 0. Here Bθ = b/a + q1q3

a|λ3|
includes

the contribution from the slaved mode z3, and depends
on the angle θ between the two wavevectors k1 and k2.

The function Bθ has important consequences for the
stability of regular patterns. Within the context of (4),
stripes are stable if Bθ > 1, while rhombs associated with
a given angle θ are preferred if |Bθ| < 1. By judicious
choice of forcing frequencies, we have some ability to con-
trol the magnitude of Bθ over a range of angles θ [9],
which allows the enhancement or suppression of certain
combinations of wavevectors in the resulting patterns, de-
pending on the sign of q1q3. Alternatively, if we choose
forcing frequencies that select an angle of 0◦, then this
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FIG. 1: (a) If the dispersion relation satisfies Ω(2km) =
2Ω(km), then two modes with wavenumber km and aligned
wavevectors k1 = k2 (inner circle) resonate in space and
time with a mode with k3 = 2k1 (outer circle). (b) With
two-frequency forcing, consider two modes with wavevec-
tors k1 and k2, with the same wavenumber km, and with
Ω(km) = m/2 (middle circle). The nonlinear combination of
these two waves can, in the presence of forcing at frequency n
(outer circle), interact with a mode with wavevector k3 (inner
circle), provided k3 = k1 + k2 and Ω(k3) = |m − n|.

can lead to a large resonant contribution: a can become
large [6]. This causes the rescaled cross-coupling coeffi-
cient Bθ to be small over a broad range of θ away from
θ = 0. (As θ → 0, it can be shown that Bθ → 2.)

III. RESULTS

We present parameter values that demonstrate that
the two mechanisms are viable methods of predicting pa-
rameter values for stable approximate quasipatterns.

The dispersion relation of the PDE (1) is Ω(k) =
ω − βk2 + δk4. With single-frequency forcing, we choose
m = 1, and a spatial scale so that modes with k = 1 are
driven subharmonically: Ω(1) = 1

2 . To have 1 : 2 reso-
nance in space and time, we impose Ω(2) = 1, which leads
to ω = 1

3 + 4δ and β = − 1
6 + 5δ. We choose δ = 0, small

values for the damping coefficients µ, α and γ, and or-
der one values for the nonlinear coefficients. We solve the
linear stability problem numerically to find the critical
value of the amplitude f1 in the forcing function, and use
weakly nonlinear theory [15] to calculate Bθ (figure 2a).
This curve has B0 = 2, but Bθ drops away sharply, and
is close to zero for θ ≥ 30◦, for the reasons explained
above. We use Bθ at 30◦, 60◦ and 90◦ and find that,
within the restrictions of a 12-mode expansion, 12-fold
quasipatterns are stable.

A numerical solution of the PDE (1) forced at 1.1 times
the critical value is shown in figure 3a, in a square do-
main with periodic boundary conditions, of size 30 × 30
wavelengths, with 5122 Fourier modes (dealiased). The
gray-scale corresponds to the real part of U(x, y, t) at
an integer multiple of the forcing period. The timestep-
ping method was the fourth-order ETDRK4 [16], with 20
timesteps per period of the forcing. The solution is an
approximate quasipattern: the primary modes that make
up the pattern are (30, 0) and (26, 15) and their reflec-
tions, in units of basic lattice vectors. These two wavevec-
tors are 29.98◦ apart, and differ in length by 0.05%. The
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FIG. 2: Bθ for the two cases. (a) single frequency forcing with
1 : 2 resonance. The parameter values are ω = 1

3
, β = − 1

6
,

δ = 0, µ = −0.005, α = 0.001, γ = 0, Q1 = 3 + 4i, Q2 =
−6 + 8i, C = −1 + 10i, m = 1, φ1 = 0 and f1 = 0.024002.
(b) multi-frequency (4, 5, 8) forcing, with ω = 0.633975, β =
−1.366025, δ = 0, µ = −0.2, α = −0.2, γ = −0.15, Q1 = 1+i,
Q2 = −2 + 2i, C = −1 + 10i, f4 = 0.53437, f5 = 0.76316,
f8 = 1.49063, φ4 = 0, φ5 = 0 and φ8 = 0. The + symbol is
the result of a separate calculation.

amplitudes of the modes differ by 0.5%. The initial con-
dition was not in any invariant subspace, and the PDE
was integrated for 160 000 periods of the forcing. How-
ever, when we increase the forcing to 1.3 times critical,
we find that the 12-fold quasipattern is unstable and is
replaced (after a transient of 50 000 periods) by an ap-
proximate 14-fold quasipattern (figure 3b). In this case,
the modes are (30, 0), (27, 13), (19, 23) and (7, 29), dif-
fering in length by 0.5% and having angles within 1.5◦ of
360◦/14. The amplitudes differ by about 10%.

The second method of producing quasipatterns in-
volves the weakly damped difference frequency mode,
and is more selective, but also requires some fine-tuning
of the parameters. In order to use triad interactions to
encourage modes at 30◦, we choose m = 4, n = 5 forcing,
setting Ω(1) = 2, and requiring that a wavenumber in-

volved in 30◦ mode interactions (k2 = 2−
√

3) correspond
to the difference frequency: Ω(k) = 1. One solution is
ω = 0.633975, β = −1.366025 and δ = 0. Twelve-fold
quasipatterns also require modes at 90◦ to be favoured,
and for these choices of parameters, Ω(

√
2) is 3.37. Al-

though this is not particularly close to 4, we can use 1 : 2
resonance (driving at frequency 8) to control the 90◦ in-
teraction. The resulting Bθ curve (figure 2b) shows pro-

nounced dips at 30◦ and 90◦ as required. Again, B30, B60

and B90 are used to show that, within a 12-amplitude
cubic truncation, 12-fold quasipatterns are stable, this
time between 0.9995 and 1.0095 times critical. Squares
are also stable above 1.0015 times critical.

A numerical solution of the PDE (1) at 1.003 times
critical is shown in figure 3c, in a periodic domain 112×
112 wavelengths (integrated using 15362 Fourier modes).
This solution was followed for over 10 000 forcing periods.
The larger domain allows an improved approximation to
the quasipattern: the important wavevectors are (112, 0)
and (97, 56), which are 29.9987◦ apart and differ in length
by 0.004%. The amplitudes of these modes differ by 1%.
A similar pattern was also found in a 30 × 30 domain,
with the same modes as in figure 3a.

IV. DISCUSSION

We investigated two quasipattern formation mecha-
nisms for Faraday waves within a single PDE model of
pattern formation via parametric forcing, and demon-
strated viability of both mechanisms. One uses 1 : 2 res-
onance in space and time to magnify the self-interaction
coefficient a and thereby, on rescaling, diminish the cross-
coupling coefficient Bθ for angles greater than about 30◦,
which leads to “turbulent crystals” [5]. Within this
framework, it is not clear why regular 8, 10, 12 or 14-fold
quasipatterns, or indeed any other combination of modes,
should be preferred (although Zhang & Viñals [6] pro-
posed that quasipatterns minimizing a Lyapunov func-
tion should be favoured). The mechanism is robust (the
patterns are found well above onset), and requires only
single frequency forcing. A dispersion relation that sup-
ports 1 : 2 resonance in space and time is needed.

The existence of 14-fold (and higher) quasipatterns has
been suggested before [6, 13, 17], but we have presented
here the first example of a spontaneously formed 14-fold
quasipattern that is a stable solution of a PDE. Examples
where 14-fold symmetry is imposed externally have been
reported in optical experiments [18]. The Fourier spectra
of 12-fold and 14-fold quasipatterns are both dense, but
those of 14-fold quasipatterns are much denser, owing
to the difference between quadratic and cubic irrational
numbers [13]. This difference may have profound conse-
quences for their mathematical treatment.

The second mechanism uses three-wave interactions in-
volving a damped mode associated with the difference of
the two frequencies in the forcing to select a particular
angle (30◦ in the example presented here). Using differ-
ent primary frequencies, or altering the dispersion rela-
tion, allows other angles, or combinations of angles, to be
selected. The advantage is that a forcing function can be
designed to produce a particular pattern. On the other
hand, the strongest control of Bθ occurs for parameters
close to the bicritical point, which limits the range of
validity of the weakly nonlinear theory used to compute
stability. This issue will be pursued elsewhere.

We are grateful for support from NSF (DMS-0309667)
and EPSRC (GR/S45928/01). We are also grateful to
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FIG. 3: (a) With parameter values as in figure 2a, in a domain 30 × 30 wavelengths, and forced at 1.1 times the critical
amplitude, we find a subharmonic 12-fold quasipattern. (b) At 1.3 times critical, the 12-fold quasipattern is unstable and is
replaced by a 14-fold quasipattern. (c) With parameter values as in figure 2b and with (f4, f5, f8) set at 1.003 times their
critical values, we find a harmonic 12-fold quasipattern in a 112 × 112 domain (only a third is shown).
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