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Model-driven development – using languages such as UML and BON – often makes use of multiple
diagrams (e.g., class and sequence diagrams) when modelling systems. These diagrams, presenting
different views of a system of interest, may be inconsistent. A metamodel provides a unifying
framework in which to ensure and check consistency, while at the same time providing the means
to distinguish between valid and invalid models, i.e., conformance. Two formal specifications of
the metamodel for an object-oriented modelling language are presented, and it is shown how to
use these specifications for model conformance and multi-view consistency checking. Comparisons
are made in terms of completeness and the level of automation each provide for checking multi-
view consistency and model conformance. The lessons learned from applying formal techniques
to the problems of metamodelling, model conformance, and multi-view consistency checking are
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1. INTRODUCTION

Modelling languages such as UML 2.0 [Object Management Group 2003b] and BON
[Walden and Nerson 1995] form the basis of model-driven approaches to building
software systems. The Model-Driven Architecture (MDA) initiative of the OMG
[Object Management Group 2003a] makes modelling languages the primary tool of
developers in all stages of the systems engineering process, whether carrying out
requirements engineering, system modelling, deployment, implementation, testing,
or transformation. The modelling languages used during model-driven development
must be carefully designed, supportable and supported by tools, and understand-
able and explainable to developers and domain experts.

A modelling language is typically described using one or more metamodels [Ob-
ject Management Group 2003b], which are used to define the syntax of the language,
the well-formedness constraints it must obey, and the semantics of the language’s
constructs. Most often, metamodels are constructed to represent abstract syntax
and well-formedness constraints, though some efforts are beginning to appear on
metamodels of language semantics [Xactium 2006] and concrete syntax [Fondement
and Baar 2005].

Metamodelling is now accepted as a critical part of the design of modelling lan-
guages [Evans et al. 2005]: without a precise, consistent, and validated metamodel
specification, it is difficult to explain a language, build tools to support it, and
produce consistent and unambiguous models. The importance of metamodelling is
reflected in the literature – e.g., the recent workshop on metamodelling for support
of MDA [Evans et al. 2003] – the substantial effort placed in reengineering the
metamodel of UML for version 2.0 [Object Management Group 2004b], the empha-
sis on metamodelling in Eclipse, via the Eclipse Modelling Framework [Budinsky
et al. 2003], and the focus of the EU Integrated Project MODELWARE, wherein
metamodelling pervades all aspects of the project. Metamodelling is also widely
accepted as a non-trivial task, especially for industrial-strength languages, which
have large and complex syntaxes and semantics, and often make use of multiple
cross-cutting views. A view is a description that represents a system from a partic-
ular perspective (e.g., system architecture, behaviour, contract, deployment), and
thus includes a subset of the system’s elements (e.g., modules). A view is often
represented using a separate diagram, e.g., class diagrams for structure, communi-
cation diagrams for system behaviour (though standards such as IEEE 1471 [IEEE
2000] do not require this). Consider, for example, the simple system model pre-
sented in Fig. 1, which illustrates two commonly used views, each represented using
a separate diagram.

On the left is a class diagram in BON syntax and on the right is a dialect of UML
2.0 communication diagrams. These represent the same system but from different
perspectives: the architectural and the behavioural. A third view, represented by
contracts, is also included in the left diagram; these contracts represent additional
information about the services provided by classes and the conditions under which
they can be used. It is important for developers to know – and be able to check –
that these views do not contain any contradictory information before attempting
to implement them. In this particular example, there are two inconsistencies that
need to be detected: a routine that does not exist (in end room) is called, and a
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current_room
?

!

move_player(p:PLAYER;r:ROOM)

is_end_room: BOOLEAN

MAZE_GAME

ROOM

players:SET[..]

rooms:SET[..]

is_free: BOOLEAN
set_occupied

r/=Void and r.is_free

current_room = r

move_to(r:ROOM)

PLAYER

(a)

3 set_occupied

MAZE_GAME

ROOM
(r)

PLAYER
(p)

1

2

3

4

Scenario: Moving a player to a new (valid) room

1 move_player(p,r)

2 p.move_to(r)

4 in_end_room

(b)

Fig. 1. Diagrams presenting a multi-view model

precondition is not true before a routine is called. We return to this example later,
in Section 4. More complex and realistic examples showing the value of multi-view
consistency checking are discussed in, e.g., [MODELWARE 2005].

The contribution of this paper is a comparison of two metamodelling approaches
that can be used to detect inconsistencies like the ones contained in Fig. 1. The
approaches differ in terms of their completeness (i.e., the kinds of inconsistencies
that can be detected) and the level of automation provided. We make this more
precise in the next subsection.

1.1 Model conformance and multi-view consistency checking

The presence of a clearly specified, understandable, tool-supported metamodel for a
modelling language makes it feasible to carry out model conformance and multi-view
consistency checking (MVCC). A metamodel captures the syntax and semantics of
all the modelling concepts in a language (e.g., concepts such as classes, objects, pro-
cedures, processes, documents, and services) and thus provides the context needed
for expressing well-formedness constraints for models and on multiple views. With
model conformance, it is checked that a model satisfies the constraints captured in
the metamodel, i.e., that the model is indeed a valid instance of the metamodel.
With MVCC, it is shown that two or more diagrams, each presenting a different
view, do not contradict each other according to a set of (meta-level) rules. As
we shall see shortly, it is possible to unify the definitions of MVCC and model
conformance checking.

The constraints encoded in a metamodel in turn lead us to a precise definition
of model conformance and multi-view consistency as follows.

Formally, model conformance – i.e., checking that a model satisfies the well-
formedness constraints of a language – and multi-view consistency checking can be
defined as follows. Let L be a modelling language, and MM a metamodel for L. Let
M be a model, expressed in the language L. MM consists of a set of constraints,
which can conceptually be partitioned into those capturing the abstract syntax of
L, and the semantics of L, i.e., MM =̂ SYNTAX ∪SEM . The semantic constraints
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can, conceptually, be partitioned into those that define the semantics of a single
view (e.g., class diagrams in UML) and those that define the consistency of multiple
views1. Thus, if v1 and v2 are views expressible in language L, then

SEM =̂ ∀ v1 ∈ L • SVC (v1) ∧

∀ v1, v2 ∈ L | v1 6= v2 • MVC (v1, v2)

where SVC (v1) is the set of semantic constraints on the view v1, and MVC (v1, v2)
is the set of semantic constraints on the two views v1, v2.

The notion of model M conforming to the metamodel MM is defined as follows.

conforms(M ,MM ) =̂ ∀ c ∈ MM • M sat c

i.e., the model M satisfies each well-formedness constraint c of the metamodel MM .
Note that if the model M consists of two or more views (e.g., a class diagram and
a statechart in UML) then conforms(M ,MM ) will establish that (a) M conforms
to the metamodel and (b) the views are mutually consistent.

Of course, steps (a) and (b) can be separated – i.e., the definitions of conformance
and multi-view consistency can be constructed independently, and this may be use-
ful in specifying the behaviour of separate conformance and consistency checking
tools. Our definition suggests that – for metamodel-based approaches – it is ap-
propriate to unify the notions of model conformance and multi-view consistency,
at least conceptually2. It also implies that mathematical techniques can play a
substantial role in these processes.

In practice, a variety of different views are used in model-driven development
[Object Management Group 2004b] Most widespread are the views presented by a
variety of UML 2.0 diagrams: class diagrams (i.e., a structural view), state charts
(i.e., a behavioural view pertaining to the properties of a single class or object),
communication diagrams (i.e., a behavioural view pertaining to the properties of
more than one object), and executable code. Class contracts – e.g., pre- and post-
conditions of routines of a class – can also be considered as views, though they
are not usually represented using diagrams, and are often integrated within other
views (e.g., in Catalysis [D’Souza and Wills 1998] and in BON). As well, different
versions of the same kind of diagram can be perceived as presenting different views
of a system which must be consistent. Conceptually, there is no difference between
multi-view consistency checking when applied to different kinds of diagrams versus
different versions of diagrams, and similar techniques can be used for each, e.g.,
see [MODELWARE 2005]. However, additional model management problems exist
when dealing with different versions of models, such as the need to carry out model
merging. We do not discuss this related topic further in this paper.

Most of the previous work on metamodel-based multi-view consistency – dis-
cussed in Section 2 – has focused on class diagrams and state charts, and very
little has examined the use of contracts – i.e., pre- and postconditions on messages
appearing in sequence diagrams – unlike the work in this paper. Contracts are

1In practice, separating single view and multi-view consistency constraints may be challenging,
but in principle it is possible, and moreover it offers a discipline for constructing languages.
2Additional techniques will likely be needed for non-MVCC, e.g., for checking consistency between
refinement steps in MDA [Object Management Group 2003a; Paige et al. 2005].
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of increasing importance in model-driven development – they are supported by a
number of languages and methodologies, such as UML 2.0 and Catalysis, as well as
the recent Architecture Analysis and Design Language (AADL) standard [Society
of Automotive Engineers 2005], which makes use of a contract annexe for improving
the precision of modelling, and improving capabilities for analysis. As such, it is
important to address their impact on multi-view consistency checking.

1.2 Aims of this paper

This paper contributes a detailed comparison of using two different (tool-supported)
approaches for metamodelling, model conformance, and multi-view consistency
checking, including contracts. The work applies to any modelling language – such
as UML 2.0 with OCL and BON – that supports views presented by class dia-
grams and communication diagrams, and that also supports use of contracts for
capturing detailed behaviour of objects. In particular, we contribute techniques
and comparisons of approaches used for handling the consistency issues raised by
using contracts in the diagrams. By including contracts we implicitly introduce a
third view, that which describes the behaviour of classes of objects.

We have focused on these views because they present more challenges – partic-
ularly when considering contracts – than other views, and also because there is
less related work. There is nothing in the approaches presented and compared in
this paper that prevent them being extended to additional views (e.g., deployment,
business rules). The extension process may be made easier by having a clear un-
derstanding of how to construct metamodels and carry out consistency checking for
the structural and behavioural views discussed earlier.

We present this synthesis in order to suggest guidelines and recommend practices
on the development of modelling languages. Our aim is to provide pragmatic advice
to users and developers of modelling languages on useful ways in which to carry
out metamodelling and metamodel-based conformance and multi-view consistency
checking in a practical, tool-supported way, based on the use of formal techniques.
This advice in turn could influence decisions on the techniques used to construct
and validate metamodels, and language designs, in the future.

To this end, we compare and contrast two approaches to metamodelling for
object-oriented languages: one approach uses the PVS specification language [Owre
et al. 1999], while the second uses Eiffel [Meyer 1992] as a specification language,
i.e., we make use of Eiffel’s declarative specification techniques, particularly agents
(discussed in Section 2) for expressing metamodels. Both approaches also sup-
port model conformance checking. The two languages used for metamodelling and
checking in these approaches – theorem proving and object-oriented programming,
respectively – are very different and have advantages and disadvantages, which we
attempt to draw out in our discussion. We choose PVS as it is representative as
state-of-the-art in theorem proving technology. We choose Eiffel as it is representa-
tive of state-of-the-art executable object-oriented languages that support contracts;
an alternative to Eiffel might be Spec# [Microsoft 2006], but it is still under devel-
opment.

We use these metamodel specifications to carry out a comparison of two ap-
proaches to metamodel-based multi-view consistency checking, and describe the
advantages and disadvantages of the approaches. We particularly focus on the
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lessons learned in terms of the completeness of the approaches – i.e., does the ap-
proach support all elements of the modelling language in full? – and in terms of
the level of automation offered in checking the conforms relation, i.e., for carrying
out conformance and multi-view consistency checking.

It is important to note that when comparing the two approaches to metamod-
elling, we are not attempting a like-for-like comparison, i.e., attempting to use the
same approach to metamodelling in both PVS and Eiffel. Instead, we will con-
sider best practices with each technology, focusing on the typical way in which an
engineer might use PVS or Eiffel for metamodelling, model conformance, and multi-
view consistency checking. Since the approaches offered are – as one would expect
– quite different, we will need to identify criteria in order to have a common basis
for comparison. These will be precisely specified in Sections 3 and 4; an informal
summary of the criteria that will be used is in Table I. There is a level of subjectiv-
ity in comparisons involving these criteria; the aim of the comparison is to provide
general guidance on how to construct metamodels, as well as select metamodelling
languages and multi-view consistency checking approaches.

—Understandability: the extent to which the descriptions used are understandable to a rea-
sonably experienced software engineer who has modelling language, but not necessarily formal
methods, experience.

—Correctness: the extent to which metamodel descriptions have been checked against their
specifications.

—Completeness: the extent to which all features of the modelling language (including multi-
view consistency constraints) are supported in the metamodelling approach.

—Maintainability: the extent to which the descriptions support extension, refactoring, and
wholesale modification.

—Tool construction: the extent to which tools are available to support producing the descrip-
tions.

—Tool-based V&V: the extent to which tools are available to assist in verifying and validating
the descriptions.

—Automation in MVCC: the extent to which multi-view consistency checking can be carried
out automatically.

Table I. Criteria for comparison of metamodelling and MVCC approaches

We are not aiming at a comprehensive overview of the field; in particular, we do
not consider all aspects of consistency checking in the domain of the MDA. We omit
refinement-based consistency in MDA, though many of the techniques in this paper,
we claim, can be extended to handle this; see [Paige et al. 2005] for more details
on this. Further, we are focusing on metamodel-based techniques, since these are
critical and widely used in the model-driven development community, rather than
fully considering the problems of model conformance and consistency.

The comparisons will be carried out using the BON modelling language [Walden
and Nerson 1995] as an exemplar (see Section 2). BON is concise enough so as to
convey and cover all of the language within this paper. BON provides three views:
a static view presented by class diagrams, a dynamic view presented by a dialect of
collaboration diagrams, and a behavioural view presented using contracts (pre- and
postconditions of routines, plus invariants of classes). Contracts effectively subsume
the information that is often presented using state diagrams (e.g., in UML 2.0) in
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some modelling languages. Contracts are widely used in object-oriented program-
ming and are also used via OCL in UML 2.0. However, while contracts increase
the expressiveness of a modelling language, they introduce additional challenges for
metamodelling and multi-view consistency checking. Integrating support for con-
tracts into metamodelling and MVCC approaches is one of the key contributions
of this paper. While our arguments and presentation are framed in terms of BON
and its diagrams, they can easily be generalized to apply to UML as well, as we
discuss in Section 2.

We start with an overview of BON, and also describe other related recent work
in metamodelling and multi-view consistency checking. As well, we relate BON to
UML in order to broaden the scope of the work; we summarise the key differences
between BON and UML. We then describe two approaches to metamodelling and
model conformance for BON, and compare and contrast the results. The meta-
models are next used in two approaches to multi-view consistency checking. At key
points while presenting the metamodels and techniques, we briefly explain how the
techniques could apply to UML as well. A summary of our findings and a discussion
conclude the paper.

2. BON AND RELATED WORK

2.1 BON

BON [Walden and Nerson 1995] is an object-oriented method, consisting of a mod-
elling language and development process for building reliable systems. It is sup-
ported by a number of tools, including Visio and EiffelStudio. Its language has
been designed to work seamlessly and reversibly with Eiffel: BON diagrams can
automatically be produced from Eiffel code; and Eiffel code can be generated from
BON diagrams. There are three main parts to BON’s language. The first, class
interfaces, is demonstrated with an example in Fig. 2(a).

The name of the class is at the top of of Fig. 2(a). The middle section is made
up of features (attributes or routines). Routines are either functions (returning a
value) or procedures (effecting state changes), and may have preconditions (denoted
using a ? in a box, which are assertions that must be true before any call to the
routine) and postconditions (denoted using a ! in a box, which are assertions that
must be true after the routine body has executed). At the bottom of the class is
its invariant, a set of assertions that must be true before and after each client call
to a function or procedure. Assertions are written in BON’s first-order dialect of
predicate logic, which includes propositions, universal and existential quantifiers,
type interrogation, and reference types (along with the usual arithmetic and boolean
operators and values).

The second part of BON is the class diagram notation. Class diagrams consist
of classes organized in clusters (drawn as a dashed rounded rectangle in Fig. 2(b)),
which interact via two kinds of relationships.

—Inheritance: Inheritance defines a subtype relationship between child and one
or more parents. The inheritance relationship is drawn between classes CHILD
and ANCESTOR in Fig. 2(b), with the arrow directed from the child to the
parent class. In this figure, classes have been drawn in their compressed form, as
ellipses, with interface details hidden. Inheritance can also be drawn so that the
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spouse.spouse=Current;

p=Current

spouse : CITIZEN
children, parents : SET[CITIZEN]

single : BOOLEAN

Result <-> (spouse=Void)!

divorce

? single

name, sex, age : VALUE

not

single and (old spouse).single

single or
parents.count=2;

children∀c ∃ p c.parents

!

CITIZEN

invariant

∈∈

(a) Citizen interface

ANCESTOR

CHILD

SUPPLIER

AGGREGATE

CLUSTER

(b) BON relationships

Fig. 2. BON syntax for interfaces and relationships

source or target is a cluster (a set of one or more classes or other clusters), e.g.,
as drawn between AGGREGATE and CLUSTER in Fig. 2(b). In this particular
example, the inheritance arrow indicates that AGGREGATE inherits behaviour
from one or more classes in CLUSTER.

—Client-supplier: there are two client-supplier relationships, association and
aggregation. Both relationships are directed from a client class to a supplier
class; the relationship has an optional label. With association the client class has
a reference to an object of the supplier class. With aggregation the client class
contains an object of the supplier class. The aggregation relationship is drawn
between classes CHILD and AGGREGATE in Fig. 2(b), whereas an association
is drawn from ANCESTOR to class SUPPLIER.

The third part of BON’s language is dynamic diagrams (similar to communication
diagrams in UML 2.0). The syntax for these diagrams is very similar to UML; it is
used to depict objects, messages sent between objects, and sequencing information,
where a message corresponds to a potential routine call on a target object. An
example is shown in Fig. 3. Rectangles represent objects, while dashed arrows
represent messages. Four objects are anonymous in Fig. 3, whereas object outer is
of class GROUP . Each message has a number that is cross-referenced to a scenario
box; this box indicates the routine that is bound to the message and which is
invoked when the message is received by the target. Messages are sent (and hence
routines invoked) in the order indicated by the message numbers. When a message
is received, and before its corresponding routine is invoked, the precondition of this
routine should be true; note that this is not guaranteed, but it must be checked (e.g.,
by the sender of the message). Typically such diagrams are not used to capture
exceptional behaviour (e.g., what a system does if a precondition fails on sending a
message) but exceptions can be described in a similar way to other scenarios (e.g.,
by adding additional messages).
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SQUARE

CIRCLE

SET

ROOTGROUP
(outer)

1

2

4

3

Fig. 3. BON dynamic diagram

2.1.1 BON, UML, and domain-specific modelling. BON was chosen as the lan-
guage of discourse in this paper because of its size and conciseness, and also because
of its integrated support for contracts. However, the lessons and observations made
in this paper apply to UML 2.0 as well, and also to domain-specific modelling
languages, such as the aforementioned AADL. To help clarify this, we now briefly
contrast BON with UML and domain-specific modelling.

BON is equivalent to a profile of UML 2.0, consisting of a subset of class di-
agrams, the Object Constraint Language (OCL), and communication diagrams.
BON purposely omits all other diagrams to maintain semantic coherence [Walden
and Nerson 1995; Meyer 1997].

BON class diagrams are equivalent to UML class diagrams, omitting UML aggre-
gation (which is inexpressible in BON). BON provides a single concept – the class
– which subsumes UML’s interface, abstract class, and class. BON uses stereo-
types on classes to denote variants of the general-purpose class concept; this allows
specification of interface-like concepts. BON supports only a small set of fixed
stereotypes, unlike UML. Aggregation is omitted because it cannot be mapped di-
rectly into a programming language [Walden and Nerson 1995]; UML composition,
by contrast, can be mapped into Eiffel’s expanded types, or C++’s variables, and
is supported in BON via its “aggregation” notation (this is admittedly confusing,
but the short of it is that BON aggregation is equivalent to UML composition).

BON dynamic diagrams are semantically equivalent to UML 2.0 communication
diagrams, omitting guards. UML’s concept of guards are subsumed in BON within
the contracts of individual routines. Constraints on repetition of messages in UML
are expressed either using routine contracts, or by using multi-messages (i.e., mes-
sages that are sent to multiple objects simultaneously); the former is preferred. A
syntactic novelty with BON dynamic diagrams is that it provides precise rules for
flattening or expanding collections of messages using clusters; this is helpful for
improving the readability of diagrams.

BON’s contract language is very similar to OCL 2.0, though there are some dif-
ferences in the type systems (BON does not provide direct equivalents to many of
OCL’s built-in types). BON is also based on two-valued predicate logic, whereas
OCL supports three-valued logic. OCL also provides mechanisms for relating con-
straints with UML state charts. A detailed comparison of the contract languages is
outside of the scope of this paper, but the reader is referred to [Paige and Ostroff
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1999a; Spencer 2005]. The former contrasts BON with UML and OCL in detail,
while the latter implements a substantial subset of OCL using Eiffel’s contract
language (which is effectively a subset of BON).

BON can also be viewed as a domain-specific modelling language for Eiffel. BON
has been designed to (a) be useful for visually representing substantial parts of Eiffel
programs, and (b) so that each BON concept maps seamlessly and reversibly to an
Eiffel concept (i.e., each concept in BON has a direct equivalent in Eiffel). This
makes it straightforward to implement code generators and reverse engineering tools
for BON, but it raises questions about using BON for analysis, as it omits a number
of modelling constructs that UML provides. However, the BON contract language
(a dialect of first-order predicate logic) is considered suitably rich and expressive as
to mitigate for the (visual) modelling constructs omitted from the language [Walden
and Nerson 1995].

2.2 Eiffel

Eiffel is an object-oriented programming language [Meyer 1997]; it provides con-
structs typical of the object-oriented paradigm, including classes, objects, inheri-
tance, associations, composite (“expanded”) types, generic (parameterised) types,
polymorphism and dynamic binding, and automatic memory management. It has
a comprehensive set of libraries – including data structures, GUI widgets, and
database management system bindings – and the language is integrated with .NET.

A short example of an Eiffel class is shown in Fig. 4. The class CITIZEN in-
herits from PERSON (thus defining a subtyping relationship). It provides several
attributes, e.g., spouse, children which are of reference type (spouse refers to an ob-
ject of type CITIZEN , while children refers to an object of type SET [CITIZEN ]);
these features are publicly accessible (i.e., are exported to ANY client). Attributes
are by default of reference type; a reference attribute either points at an object on
the heap, or is Void. The class provides one expanded attribute, blood type. Ex-
panded attributes are also known as composite attributes; they are not references,
and memory is allocated for expanded attributes when memory is allocated for the
enclosing object.

The remaining features of the class are routines, i.e., functions (like single, which
returns true iff the citizen has no spouse) and procedures (like divorce, which
changes the state of the object). These routines may have preconditions (require

clauses) and postconditions (ensure clauses). Finally, the class has an invariant,
specifying properties that must be true of all objects of the class at stable points
in time, i.e., before any valid client call on the object. In writing the invariant
of CITIZEN we have used Eiffel’s agent notation. Agents are a way to encapsu-
late operations in objects; the operation can then be invoked on collections (e.g.,
a set or linked list) when necessary. Two built-in agents in Eiffel are for_all and
there_exists, which can be used to implement quantifiers over finite data struc-
tures. In this example, one agent is used in the class invariant: for_all iterates
over all elements of children and returns true if its body – applied to each element
– returns true. The body is a boolean expression which returns true iff the current
citizen is a child of one of its parents. In other words, the agent expression is true
iff all children have links to their parents.

Other facilities offered by Eiffel but not demonstrated here include dynamic dis-
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class CITIZEN inherit PERSON

feature {ANY}

spouse: CITIZEN

children, parents: SET[CITIZEN]

blood_type: expanded BLOOD_TYPE

single: BOOLEAN is

do Result := (spouse=Void)

ensure Result = (spouse=Void)

end

set_spouse(s:CITIZEN) is do spouse := s end

feature {BIG_GOVERNMENT}

divorce is

require not single

do spouse.set_spouse(Void); spouse := Void end

ensure single and (old spouse).single

end

invariant

single or spouse.spouse = Current;

parents.count <= 2;

children.for_all((c:CITIZEN):BOOLEAN

do Result := c.parents.has(Current) end);

end -- CITIZEN

Fig. 4. Eiffel class interface

patch, multiple inheritance, and static typing. We refer the reader to [Meyer 1992]
for full details on these and other features.

2.2.1 Eiffel as a formal specification language. Eiffel is a wide-spectrum lan-
guage [Meyer 1997; Paige and Ostroff 1999b; 2004] suitable for both programming
and lightweight formal specification. It has been designed to support seamless de-
velopment, where one language is used throughout the development process. Eiffel
is not a small language, but a subset of it can be identified and applied for for-
mal specification. An Eiffel formal specification is written using only the following
constructs.

—Classes and class interfaces (containing routine signatures and attributes).

—Local variables of routines.

—Boolean expressions (including agents)

—Routine calls of the form o.f , where o is a variable or attribute, and f a routine.

—Assignment statements in routine bodies.

—Sequential composition of routine calls and assignment statements.

—Preconditions and postconditions of routines, and class invariants.
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All other Eiffel constructs are excluded. This subset is roughly similar to the subset
identified in the Eiffel Refinement Calculus [Paige and Ostroff 2004], which allows
Eiffel formal specifications to be refined to programs. A formal semantics for these
constructs can be found in [Paige and Ostroff 2004].

2.3 Overview of the BON metamodel

The BON metamodel was specified in BON itself in [Paige and Ostroff 2001], keep-
ing with the approaches followed in the UML community. We give a summary of
the metamodel in this section, focusing on the key components and packages. This
metamodel will be used for comparing different approaches in later sections.

Fig. 5 contains an abstract depiction of the BON metamodel. BON models are
instances of the class MODEL. Each model has a set of abstractions. The two
clusters, representing abstractions and relationships, will be detailed shortly.

ABSTRACTIONS RELATIONSHIPS

MODEL
abs: SET[..]

Fig. 5. The BON metamodel, abstract architecture

The class MODEL possesses a number of features and invariant clauses that will
be used to capture the well-formedness constraints of BON models. These features
are depicted in Fig. 6, which shows the interface for MODEL. We will not provide
all the details of the individual clauses of the class invariant of MODEL, though
examples will be considered in the following sections.

The relationships cluster describes the four basic BON relationships (including
messages between objects), as well as constraints on their use. The details of the
cluster are shown in Fig. 7.

invariant

disjoint_clusters;

unique_abstraction_names;

objects_typed;
parameters_named;
labels_unique;

covariant(f1,f2:FEATURE):BOOLEAN
closure:SET[INHERITANCE]

invariant_strengthened;
unique_root_class;
single_inst_of_root;

rels: SET[RELATIONSHIP]
NONE

MODEL

primitives
model_covariance;

no_inheritance_cycles;

no_bidirectional_aggregations;

Fig. 6. Interface of class MODEL
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STATIC_RELATIONSHIP*

CLIENT_SUPPLIER*

label: STRINGinvariant
source /= target

invariant
source /= target

source++, target++: STATIC_ABSTRACTION source++, target++: DYNAMIC_ABSTRACTION

RELATIONSHIP*

source, target: ABSTRACTION

MESSAGE+

INHERITANCE+

AGGREGATION+ ASSOCIATION+

Fig. 7. The relationships cluster

Covariant redefinition3 is used in Fig. 7 to capture well-formedness conditions,
e.g., that inheritance can connect only static abstractions.

Invariants are written on classes representing inheritance and aggregation rela-
tionships to express that these relationships cannot be self-targeted.

The abstractions cluster describes the abstractions that may appear in a BON
model. It is depicted in Fig. 8.

ABSTRACTION is a deferred class: instances of ABSTRACTION s cannot be
created. Classification is used to separate all abstractions into two subtypes: static
and dynamic abstractions. Static abstractions are CLASSes and CLUSTERs. Dy-
namic abstractions are OBJECT s and OBJECT CLUSTERs. Clusters may con-
tain other abstractions according to their type, i.e., static clusters contain only
static abstractions.

The features cluster describes the notion of a feature that is possessed by a class.
Features have optional parameters, an optional precondition and postcondition,
and an optional frame. The pre- and postcondition are assertions. Query calls may
appear in assertions; the set of query calls that appear in an assertion must be
modelled in order to ensure that the calls are valid according to the export policy
of a class. Each feature will thus have a list of accessors, which are classes that
may use the feature as a client. A call consists of an entity (the target of the call),
a feature, and optional arguments. The frame is a set of attributes that the feature
may modify. Fig. 9 depicts the cluster.

3Covariant redefinition allows types to be replaced by descendents in a child class; this applies
to both the types of parameters and the type of function result. This is permitted in both BON
and Eiffel. It should be contrasted with no-variance in Java, and partial covariance (for function
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contains+:SET[ABSTRACTION]

contains+:SET[ABSTRACTION]class:CLASS

contains+:
SET[ABSTRACTION]

invariant
invariant

contents:SET[..]

DYNAMIC_ABSTRACTION*

CLUSTER+

OBJECT+ OBJECT_CLUSTER+

ABSTRACTION*

invariant
source_is_current

STATIC_ABSTRACTION* contents:SET[..]

rels++:SET[MESSAGE]

contains*:SET[ABSTRACTION]
rels: SET[RELATIONSHIP]

rels++:SET[STATIC_RELATIONSHIP]

no_self_containment
no_self_containment

FEATURESclient_features,
features: SET[..]

add_client_features;
calls_are_queries;
no_name_clashes;
is_deferred_class;
deferred /= root;

deferred /= effective;
valid_class_inv;

feature_unique_names;
valid_static_rels;

invariant
all_names:SET[STRING]
redefined:SET[FEATURE]

external, root : BOOLEAN
deferred, effective, persistent,
super(f:FEATURE):FEATURE
parents: SET[CLASS]
rename_class
renamings:SET[RENAMING]
calls_in_inv:SET[CALL]

ASSERTION
invariant: DOUBLE_STATE_
contains+:SET[ABSTRACTION]

valid_pre_calls;

CLASS+

valid_post_calls;
valid_frames;

inv_consistency;
contract_consistency;

Fig. 8. The abstractions cluster

2.3.1 Summary. This subsection has summarised the BON metamodel, primar-
ily to illustrate that the BON language – while smaller than UML – still provides
useful modelling constructs and is non-trivial from a metamodelling perspective.
This (semiformal) summary attempts to promote understandability by diagram-
matically expressing well-formedness constraints, and by allowing projection of ab-
stract views of the metamodel. In this sense, this mimics the approach taken in the
OMG to metamodelling UML.

The main disadvantage with specifying the BON metamodel in BON directly is
that the language’s semantics is not fully and formally defined (parts of the language
are formalised in [Paige and Ostroff 1999b]), and there are as of yet no tools that can
be used to directly check the correctness of the invariants and assertions contained
within the classes. This criticism only partly applies to the UML 2.0 metamodel:
while a full formal semantics for UML 2.0 does not yet exist, the fact that UML 2.0

results only) in C++.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Metamodel-Based Model Conformance and . . . · 15

PARAMETER

name: STRING

type: CLASS

parameters:LIST[..]

calls_in_post: SET[..]
calls_in_pre,

args:LIST[..]

FEATURE*

pre: SINGLE_STATE_ASSERTION
post: DOUBLE_STATE_ASSERTION

o: OBJECT
name: STRING

e

deferred /= effective;
parameters_unique;

calls_are_queries;

invariant
frame:SET[QUERY]
rename(s:STRING)
accessors: SET[CLASS]
name: STRING

deferred, effective,
redefined: BOOLEAN

DIRECT_CALL+ CHAINED_CALL+

isvalid+(c:CLASS):BOOLEAN isvalid+(c:CLASS):BOOLEAN

v

ENTITY

COMMAND+
Result: CLASS
no_contract:BOOLEAN

attribute_or_function
invariant

QUERY+

f:FEATURE
isvalid*(c:CLASS):BOOLEAN

invariant

CALL*

feature_exists

Fig. 9. BON metamodel, features cluster

is defined in terms of MOF, and there are tools that partly support MOF, means
that partial checking of the UML metamodel can be carried out automatically.

Given the lack of formal semantics and the need to use translation to obtain
verification and validation capabilities, the value of using BON to express its meta-
model directly is circumscribed. A second, related disadvantage is that it is difficult
to use the metamodel, as specified, to carry out multi-view consistency checking –
again because of a lack of formal semantics and automated tool support. A final
disadvantage is that it is difficult to validate and verify the metamodel expressed
directly in BON. The advantage of using BON (or other visual languages) to ex-
press metamodels is that the results are generally more easily understood than
other representations.

2.4 Related work on OO metamodelling and multi-view consistency checking

Our focus in this paper is specifically on metamodelling and consistency checking in
the domain of object-oriented and systems modelling, and this guides our overview
of related work. There has been much recent related work on OO metamodelling,
and on using these metamodels to carry out conformance checking and checking
the consistency of multiple views. More general work on consistency, e.g., for
requirements [Finkelstein et al. 1994], for handling and managing inconsistency
using model checking [Chechik et al. 2003] and general XML-based tool support
[Gryce et al. 2002] is discussed elsewhere and is outside our scope.

Work on OO metamodelling has been dominated by work on UML. This work
can generally be categorized into that which presents semi-formal approaches to
metamodelling – e.g., using UML 2.0 itself [Object Management Group 2004b],
the Meta-Object Facility [Object Management Group 2004a], or even other semi-
formal modelling languages such as BON [Paige and Ostroff 2001] – and that based
on formal approaches to metamodelling, e.g., using Object-Z to specify the UML
metamodel [Kim and Carrington 2004], PVS [Paige et al. 2003b], OCL [Object Man-
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agement Group 2004b], XMF-Mosaic [Xactium 2006], MML [Clark et al. 2001a],
Executable UML [Mellor and Balcer 2002], and the template-based approaches to
specification in Z [Amalio et al. 2004]. The semi-formal modelling work tends to
be more complete (in terms of supporting different diagrams) than the formal-
based work. The formal-based work tends to focus on supporting specific views –
e.g., class diagrams and statecharts – or proves incomplete specifications of several
views. The formal-based metamodelling work has a number of similarities to efforts
made on formal modelling of object-oriented systems, e.g., using Spec# [Microsoft
2006], JML [Leavens et al. 2005], or algebraic specification languages such as CASL
[Bidoit and Mosses 2004], though these languages are generally used to reason about
programs rather than metamodels and language definitions.

The general view in the UML community is that using a semiformal modelling
language (such as UML, or MOF) to capture a metamodel is preferable to using
formal techniques, since more developers – particularly, tool builders – will be able
to construct, interpret, and implement a metamodel expressed in UML as opposed
to, e.g., a formal language such as Z or PVS where there are substantial differences
between the domains of discourse. Even so, it is generally more difficult to reason
about and analyze metamodels that are specified using a semi-formal language like
UML. Some reasoning and analysis is possible with languages such as XMF-Mosaic
and OCL, predominantly via simulation techniques, though the former is only sup-
ported by a single tool, and the latter is frequently only supported for a subset.
The OCLE tool (discussed below) [Chiorean 2005] provides very rich support for
OCL currently, and supports the entire language. In general, for semiformal meta-
models, it is difficult to verify and validate the specifications, because of a lack of
a formal semantics, or because of limited simulation and execution mechanisms.

There is less related work on using OO metamodels for model conformance.
In part, this is because many tools for OO modelling treat the metamodel as a
specification for user interface constraints – i.e., the interface for the tool attempts
to prevent illegal models from being constructed. However, tools such as Visio
[Microsoft 2005], which allow rule checking to be turned off and on as desired,
require an explicit encoding of well-formedness rules in some form. Some specific
related work on OO metamodelling and model conformance is described below.

—The OCLE tool [Chiorean 2005] supports OCL 2.0 and UML 1.5, and provides
the means to check UML models against the metamodel constraints and more
general rules. It is a stand-alone modelling tool that can be interfaced with other
tools via XML and XMI specifications. For practical use, the tool could be used
as a back-end to a full-featured modelling tool, providing rule checking facilities
via simulation. There may be challenges in terms of linking feedback from OCLE
simulations to such a modelling tool.

—Similarly, the Kent Modelling Framework (KMF) [Akehurst et al. 2004] supports
the metamodel for OCL 2.0 and provides parsing, simulation, and execution
facilities. The framework aims to provide a full-featured, open-source package
for modelling based on UML-compatible metamodels, and conceptually can be
used for conformance and consistency checking, by specifying metamodel rules
in OCL and executing them against models.

—XMF-Mosaic [Xactium 2006] is a self-contained meta-object programming envi-
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ronment that provides, amongst other things, an implementation of the UML
metamodel. The tool can be instantiated with metamodels and thereafter sup-
ports the construction of models that conform to the metamodel. The tool sup-
ports an executable dialect of OCL – XOCL – and thus also provides the means
for checking UML diagrams against the metamodel via simulation and execu-
tion. The emphasis with XMF is tool customization based on metamodelling
techniques, as well as expressing language transformations and supporting the
QVT proposal.

—Similarly, MMT [Clark et al. 2001b], a stand-alone meta-modelling tool for MOF-
compliant languages, provides support for a subset of OCL and enables checking
instances of the metamodel against one or more rules captured in the metamodel.
MMT appears to have been deprecated by the development of XMF-Mosaic.

—The Dresden OCL toolkit [Hussman et al. 2000] supports compilation of OCL
constraints; it has been integrated in the Argo/UML tool. In principle it could
be used to help validate the UML metamodel expressed in UML and OCL.

—The KeY project [Ahrendt et al. 2005] offers an extension of the Together Con-
trolCentre case tool that provides theorem proving technology for checking OCL
constraints. As with the Dresden OCL toolkit, it could be applied to metamodel
validation.

—The USE stand-alone tool [Richters and Gogolla 2000] is an OCL simulator that
can be used to execute OCL constraints against model snapshots. Used in batch
mode, it can be applied to carry out model validation and verification. It has been
recently updated to support substantial parts of OCL 2.0, and as such can be
used for validating and testing parts of the UML metamodel. USE is distinctive
as it is one of the few pieces of work that reports on how to check models against
the metamodel using semi-automated tool support.

Work related to metamodelling and conformance checking arises in the domain of
multi-view consistency. The basic problem is to ensure that separate descriptions
of an OO system are mutually consistent, i.e., that information in one description
does not contradict information contained in a separate description.

Many solutions have been presented for this problem. The recent series of work-
shops on consistency checking in the context of UML [Huzar et al. 2002; 2003;
2004; Kuzniarz et al. 2005] demonstrate techniques that consider different system
views (particularly static and behavioural) and different lightweight and heavy-
weight techniques for implementing consistency checking. Some of these approaches
require use of specialised tools – such as xlinkit [Gryce et al. 2002], a general-purpose
rule-based tool for consistency checking documents based on XML – or mathemati-
cal languages, e.g., B [Marcano and Levy 2002] – for expressing the well-formedness
constraints that establish multi-view consistency.

Lightweight approaches to consistency checking are desirable and have been ex-
plored, but a limitation with most of these is that they are invariably incomplete,
covering parts of a language (e.g., statecharts and class diagrams in UML). The
work of Bhaduri and Venkatesh [Bhaduri and Venkatesh 2002] suggests the use of
message sequence charts and model checking for multi-view consistency checking.
They express the semantics of the object life cycle and scenario views as a labelled
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transition system, thus enabling the use of a model checker to identify inconsisten-
cies. The advantage of this approach is that the model checking will be automatic;
however, there are limitations on what can be expressed in terms of properties
and models. In an alternative approach, UML model consistency is checked via
the Sherlock tool [Sourrouille and Caplat 2002], wherein actions, models, and a
knowledge base are combined. This approach approach is particularly promising as
it also considers extensions to UML profiles that target specific problem domains.
Krishnan [Krishnan 2000] considers OCL contracts in the context of UML, and for-
malises multi-view consistency in PVS. [Krishnan 2000] requires users to formally
unroll sequencing of method calls arising in sequence diagrams, which can be very
awkward for large sequence and collaboration diagrams; an alternative approach
is presented in Section 4. Work at IBM Haifa has studied metamodel extensions
for consistency checking in the context of Rational’s XDE tool [Huzar et al. 2004].
This work is similar in scope to what we present in the next section.

A key limitation that can be identified from this work is that much of it does
not consider contracts – i.e., method pre- and postconditions – when carrying out
multi-view consistency checking; [Krishnan 2000] is an exception but is difficult
to use. Both approaches to metamodelling and multi-view consistency checking
presented in the next sections consider contracts, in different ways.

3. METAMODELLING IN PVS AND EIFFEL

We now contrast two approaches to specifying the metamodel for BON; the meta-
model was semi-formally specified in an earlier section. We contrast two formal
specifications: one written in PVS and one in Eiffel. Both these metamodels are
formal as they are specified in languages with both formal syntax and semantics,
and have tools to support checking models against the metamodel. What is inter-
esting and different about the two formal metamodels is (a) their design; (b) the
executability of the resulting spcifications and (c) their completeness. Again, we
are not attempting a like-for-like comparison of metamodel specifications: we will
construct the metamodels using the best practices available for PVS and Eiffel. As
such, some differences in terms of how well-formedness constraints are captured will
arise.

There is, of course, an issue with producing the PVS and Eiffel descriptions of
the BON metamodel – particularly, how do we show that these formal descriptions
accurately capture the metamodels and well-formedness constraints? We answer
this in two parts: first, by systematically presenting the PVS and Eiffel specifica-
tions and clearly relating them to the BON specifications in Section 2.3 (i.e., by
making the relationships between descriptions clear and obvious), and by analysing
the descriptions using the PVS theorem prover and type checker. Being able to
successfully use the PVS and Eiffel metamodels for conformance and multi-view
consistency checking gives us greater confidence (though certainly no guarantee)
of the accuracy of our descriptions. We intend, in the future, to implement the
transformations from BON to PVS and Eiffel using standardised transformation
tools, but again this is no guarantee of correctness. However, by following it we
can reduce the likelihood of introducing errors.
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3.1 Metamodel specification in PVS

The disadvantages that were apparent with the metamodel specified in BON were
primarily due to the lack of a formal semantics for the BON language. These dis-
advantages can be alleviated by using a different language with a formal semantics.
In this section, we present a formal specification of the BON metamodel in the PVS
specification language. We present the PVS version of the metamodel selectively,
and attempt to give the flavour of using PVS for this purpose. We note that PVS
is a general purpose theorem proving environment, and as such it is not tailored
for metamodelling.

3.1.1 Theory of abstractions. To express the cluster of abstractions in PVS, we
introduce a new non-empty type and a number of subtypes, effectively mimicking
the inheritance hierarchy presented in Fig. 8. A similar technique could be used for
expressing the UML 2.0 concept of Classifier [Object Management Group 2004b]
and its subtypes or implementations, if one desired to use PVS to express the
UML 2.0 metamodel. This information is declared in the PVS theory abs_names.
Note that this specification includes both static language constructs (like classes) as
well as dynamic constructs (like objects), thus supporting both class and dynamic
diagrams from BON.

abs_names: THEORY
BEGIN

ABS: TYPE+

% Static and dynamic abstractions.
STATIC_ABS, DYN_ABS: TYPE+ FROM ABS

% Instantiable abstractions
CLASS, CLUSTER: TYPE+ FROM STATIC_ABS

OBJECT, OBJECT_CLUSTER: TYPE+ FROM DYN_ABS
END abs_names

The PVS theory abstractions then uses abs_names to introduce further mod-
elling concepts as well as the constraints on abstractions that appear in models.
Further concepts that we need to model include features and entities (that appear
in calls), calls themselves, and parameters and arguments to routines. Primitive
BON classes, e.g., INTEGER, are modelled as PVS constants: objects of CLASS
type. We also define conversions so that the type checker can automatically convert
BON primitives into PVS types.

We must now describe constraints on abstractions. In the BON version of the
metamodel, these took the form of features and class invariants. In the UML 2.0
metamodel [Object Management Group 2004b], these generally take the form of
OCL constraints. In PVS, the well-formedness constraints will appear as functions,
predicate subtypes, and axioms.

For example, a number of constraints will have to be written on features. To
accomplish this, we introduce a number of functions that will let us acquire infor-
mation about a feature, such as its properties, precondition, and postcondition4.

4The approximate equivalent of this information in UML 2.0’s metamodel is contained in the
notion of Behavioural Feature, and as such a similar approach could be used to construct this
part of the UML metamodel.
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feature_pre, feature_post: [ FEATURE -> bool ]

% Properties of a feature.
deferred_feature, effective_feature, redefined_feature: [ FEATURE -> bool ]

% The set of classes that can legally access a feature.
accessors: [ FEATURE -> set[CLASS] ]

We now provide examples of axioms, which define the constraints on BON models.
The first example ensures that all features of a class have unique names (BON does
not permit overloading based on feature names or signatures).

feature_unique_names: AXIOM
(FORALL (c:CLASS): (FORALL (f1,f2:FEATURE):

(member(f1,class_features(c)) AND member(f2,class_features(c)))

IMPLIES (feature_name(f1) = feature_name(f2)) IMPLIES f1=f2))

Here is an example of specifying that an assertion is valid according to the export
policy used in a model. The axiom valid_precondition_calls ensures that: (a)
all calls in a precondition are legal (according to the accessor list for each feature);
and (b) all calls in the precondition are queries.

valid_precondition_calls: AXIOM
(FORALL (c:CLASS): (FORALL (f:FEATURE): member(f, class_features(c)) IMPLIES

(FORALL (call:CALL): member(call, calls_in_pre(f)) IMPLIES
QUERY_pred(f(call)) AND call_isvalid(f(call)))))

3.1.2 Theory of relationships. The theory of relationships mimics the Relation-
ships cluster in the BON version; it defines the three basic relationships and the
well-formedness constraints that exist in BON5. To express the relationships in
PVS, we introduce a new non-empty type and a number of subtypes. As with
abstractions, we mimic the inheritance hierarchy that was presented in Fig. 7.

rel_names: THEORY
BEGIN

% The abstract concept of a relationship.

REL: TYPE+

% Instantiable relationships.
INH, C_S, MESSAGE: TYPE+ FROM REL
AGG, ASSOC: TYPE+ FROM C_S

END rel_names

The rel_names theory is then used by the relationships theory. In BON, all
relationships are directed (or targetted). Thus, each relationship has a source and
a target, and these concepts are modelled using PVS functions.

relationships: THEORY

BEGIN
IMPORTING rel_names, abstractions

% Examples of the source and target of a relationship.
inh_source, inh_target: [ INH -> STATIC_ABS ]

cs_source, cs_target: [ C_S -> STATIC_ABS ]

5In UML 2.0 terms, this theory would be used to implement parts of the Dependency package in
the UML superstructure.
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Now we can express constraints on the functions; once again, these correspond to
invariants in BON and well-formedness constraints in OCL. We give one example
of relationship constraints: that inheritance relationships cannot be self-targeted.

% Inheritance relationships cannot be directed from an abstraction to itself.

inh_ax: AXIOM (FORALL (i:INH): NOT (inh_source(i)=inh_target(i)))

The theory of relationships is quite simple, because many of the constraints on
the use of relationships are global constraints that can only be specified when it is
possible to discuss all abstractions in a model (e.g., that there are no circularities
in a chain of inheritance relationships). Thus, further relationship constraints will
be added in the next section, where we describe constraints on models themselves.

3.1.3 The metamodel theory. The PVS theory metamodel uses the two previ-
ous theories – of abstractions and relationships – to describe the well-formedness
constraints on all BON models. Effectively, the PVS theory metamodel mimics the
structure of the BON model in Fig. 5, and captures the invariants on class MODEL.

metamodel: THEORY

BEGIN
IMPORTING abstractions, relationships

% A BON model consists of a set of abstractions.

abs: SET[ABS]
rels: SET[REL]

Now we must write constraints on how models can be formed from a set of ab-
stractions. The complete details are in [Paige and Ostroff 2001]; we present two
examples. The first constraint we write ensures that inheritance hierarchies do not
have cycles; a similar constraint, written in OCL, appears in the UML 2.0 meta-
model in [Object Management Group 2004b]. We express this by calculating the
inheritance closure, the set of all inheritance relationships that are either explicitly
written in a model, or that arise due to the transitivity of inheritance in BON.

inh_closure: SET[INH]

% Closure axiom #1: any inheritance relationship in a model is also
% in the inheritance closure.

closure_ax1: AXIOM
(FORALL (r:INH): member(r,rels) IMPLIES member(r,inh_closure))

% Closure axiom #2: all inheritance relationships that arise due to
% transitivity must also be in the inheritance closure.

closure_ax2: AXIOM
(FORALL (r1,r2:INH):

(member(r1,rels) AND member(r2,rels) AND inh_source(r1)=inh_target(r2))
IMPLIES (EXISTS (r:INH): member(r,inh_closure) AND

inh_source(r)=inh_source(r2) AND inh_target(r)=inh_target(r1)))

% Inheritance relationships must not generate cycles.

inh_wo_cycles: AXIOM
(FORALL (i:INH): member(i,inh_closure) IMPLIES

NOT (EXISTS (r1:INH): (member(r1,rels) AND i/=r1) IMPLIES
inh_source(i)=inh_target(r1) AND inh_target(i)=inh_source(r1)))

The second example is an axiom demonstrating a well-formedness constraint on
clusters: all clusters in a model are disjoint or nested (again, a similar constraint
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appears in the UML metamodel with respect to packages). The third example
shows that bi-directional aggregation relationships are forbidden; this is equivalent
to the UML metamodel constraint that bi-directional compositions are forbidden.

% All clusters in a model are disjoint.

disjoint_clusters: AXIOM
(FORALL (c1,c2:CLUSTER): (member(c1,abst) AND member(c2,abst)) IMPLIES

(c1=c2 OR empty?(intersection(cluster_contents(c1),cluster_contents(c2)))))

% No bidirectional aggregation relationships are allowed.
no_bidir_agg: AXIOM

(NOT (EXISTS (r1,r2:AGG): (member(r1,rels) AND member(r2,rels))

IMPLIES (cs_source(r1)=cs_target(r2) AND cs_target(r1)=cs_source(r2)))

3.1.4 Model conformance checking in PVS. Model conformance, i.e., checking
the sat relation in equation (1), resolves to proving a conjecture in PVS. The con-
jecture is that an encoding of a BON model (written as a set of PVS expressions)
satisfies all axioms that capture metamodel well-formedness constraints. An iden-
tical approach could be applied directly to UML model conformance, i.e., showing
that a UML model satisfies the well-formedness constraints of its metamodel. This
is illustrated by the following example. Consider the BON model in Fig. 10.

invariant
c.m

B

A

?

!

a.h and a.b.w

.....

C

NONE

a

b

c

m:BOOLEAN

w:BOOLEAN
C

A

h:BOOLEAN

Fig. 10. Model conformance checking

We show how to check that this model does not conform to the metamodel of
BON, because there is a violation of the export policy of at least one class in the
model. Note that m is a private feature of class C ; thus the call c.m in the invariant
of B is illegal. Similarly, the call a.b.w in class C is illegal in the precondition of
m, because w is accessible only to the client A. We would like to show that this
model does not conform to the BON metamodel. We will show that, as an example,
the invariant of B is not well-formed. To prove that the model is not well-formed,
we show that the class invariant for B is ill-formed, by positing that the model in
Fig. 10 cannot exist. The full conjecture contains a number of terms that are not
relevant to the proof (they can be found in [Paige and Ostroff 2000]) but which
would be included in a completely mechanical derivation of the conjecture; we only
include terms relevant to the proof in this presentation, due to space constraints.
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info_hiding: THEORY
BEGIN

IMPORTING metamodel

a, b, c: VAR CLASS
h, w, m: VAR QUERY
call1, call2, call3: VAR CALL

test_info_hiding: CONJECTURE

(NOT (EXISTS (a,b c: CLASS): EXISTS (h,w,m:QUERY):
EXISTS (call1,call2,call3: CALL):
member(c,accessors(h)) AND member(a,accessors(w)) AND

empty?(accessors(m)) AND f(call1)=h AND f(call2)=w AND
f(call3)=m AND member(call1,calls_in_pre(m)) AND

member(call2,calls_in_pre(m)) AND member(call3,calls_in_inv(b))))
END info_hiding

To prove the conjecture, we first skolemize three times, then flatten. We introduce
the axiom valid_class_invariant, and substitute class B and call call3 for the
bound variables of this axiom. We use typepred to bring the type assumptions
on m into the proof, and then one application of grind proves the conjecture
automatically. The model is therefore invalid according to the well-formedness
constraints of the metamodel.

Considerable expertise with PVS is necessary in discharging the conjecture, par-
ticularly in terms of selecting instantiation and skolem constants. However, strate-
gies can be defined to automate parts of the process, though user guidance for
selecting skolem constants is likely to always be necessary.

We should point out what happens with contracts when carrying out model con-
formance checking: all well-formedness constraints that are related to contracts are
checked. These constraints effectively check the static well-formedness of contracts,
e.g., that the assertions are syntactically well-formed, functions that are called in
contracts are accessible, etc. Nothing pertaining to dynamic (or behavioural) well-
formedness is checked; this is one of the tasks for multi-view consistency checking.

3.1.5 Summary. The advantages of expressing the BON metamodel in PVS are
as follows.

—Tool support: the PVS type checker and theorem prover can be used to verify
and validate the metamodel, particularly for consistency, but also for correctness
via proving that models satisfy the metamodel [Paige and Ostroff 2001].

—Formality: the semantics of the PVS specification of the metamodel is formally
defined, and this semantics is implemented in the PVS toolkit. This provides
stronger guarantees as to the soundness of the PVS specification, and therefore
the metamodel itself.

—Completeness: all aspects of the BON metamodel can be expressed in PVS.

The disadvantages are as follows.

—Understandability: the PVS specification is more difficult to understand than
the BON specification of the metamodel. PVS is not object-oriented, so it is more
difficult to provide an architectural view of the metamodel that omits constraint
detail. As well, the only structuring mechanism in PVS is the imports statement;
thus, PVS specifications are generally flatter than object-oriented specifications
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since much of the hierarchical structure in the metamodel presented in the pre-
vious section is captured in PVS using type hierarchies, which do not present
themselves in the overall theory structure. This can substantially impede under-
standing of large specifications – like the BON metamodel.

—V&V: validating the metamodel in PVS corresponds to encoding BON models
as PVS constants and proving that the models satisfy (or fail to satisfy) the ax-
ioms in the metamodel. This process can be partly automated, but it is certainly
not fully automatic – additional proofs in [Paige and Ostroff 2001] demonstrate
that in many instances user intervention and guidance is needed. Further exper-
iment on validation is continuing via the PVS ground evaluator, which allows
simulation.

In general, the PVS version of the metamodel should be preferred to the BON
version in terms of available automated tool support for expressing the metamodel
and validating it; and for its completeness. However, it falls short in understand-
ability and general usability. As well, there are challenges in using the PVS version
for multi-view consistency checking, which we discuss in Section 4.

3.2 Metamodel specification in Eiffel

A key advantage of the BON metamodel specified in PVS is that tools can be
used to validate and verify it. However, these tools are complex, expensive to
use, and typically require user interaction and intervention. We now present a
formal specification of the BON metamodel in Eiffel. Eiffel, while a programming
language, can also be used as a declarative specification language via its agent
technology. We illustrate this technology throughout the following section. It is
important to emphasise that we are not simply writing Eiffel programs to encode
models, metamodels, and well-formedness constraints. Rather, we use Eiffel to
declaratively specify (albeit in an executable form) these artifacts.

We do not attempt to reformulate the PVS version of the metamodel in Eiffel;
rather we will present an Eiffel specification that conforms to the best practices of
using Eiffel, and which attempts to exploit Eiffel’s existing tool support (particu-
larly compilers, debuggers, testing frameworks, and class libraries), as well as its
language facilities.

Eiffel is an object-oriented language, and as such the structure of the metamodel
specification in Eiffel will directly reflect the structure of the metamodel in BON.
This is a result of the seamless integration of BON and Eiffel that has been de-
signed in to the two languages. As we did with PVS, we present the metamodel
specification selectively, and attempt to give the flavour of applying Eiffel for this
purpose.

3.2.1 Expressing the metamodel structure. Each class in the BON diagram in
Section 3.1 is expressed directly as an Eiffel class; this is straightforward and pro-
duces a set of classes with routines, attributes, routine signatures. Each relationship
in the BON diagram in Section 3.1 is expressed directly as an Eiffel relationship
or as an attribute: BON inheritance is expressed as Eiffel inheritance, associations
are expressed as Eiffel reference attributes, and aggregations are expressed as ex-

panded attributes. Two additional elements need to be added: encoding BON
assertions (pre- and postconditions and class invariants) as Eiffel agents, and the
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second is infrastructure needed to initialise objects and provide setter and getter
routines. The user of the metamodel in Eiffel need not know about this infrastruc-
ture – a single routine call is provided to set up the objects. This infrastructure is
essential as Eiffel is a programming language and objects must have memory allo-
cated for them; by contrast, no allocation is explicitly necessary in a specification
language like PVS.

Much of this infrastructure is added as private features of class MODEL. The
added routines are as follows.

—A constructor (creation procedure) make which allocates memory for the set-
based data structures used to encode models. This constructor implements a
Factory Method [Gamma et al. 1995] which calls default constructors on each
attribute.

—Accessor and mutator routines for each attribute.

—A prepare routine which ensures that all data structures are initialised. This
routine is invoked by the user after they have constructed their model, i.e., when
they desire to test the metamodel and check conformance. It effectively provides
a Facade for initialising the model, hiding the infrastructure required by Eiffel
from the user. This routine in turn invokes a number of private routines that set
up different data structures for use in conformance and consistency checking.

Additional attributes were added as private features in order to simplify some agent
expressions; see [Paige et al. 2004] for some details.

3.2.2 Expressing assertions. This is the most challenging part of expressing the
metamodel in Eiffel, and requires capturing BON assertions using Eiffel agents6.
BON’s assertion language is more expressive than Eiffel (because in BON quantifiers
can be written on arbitrary domains, whereas in Eiffel agents must be applied to
finite data structures). In general, to translate a BON assertion into Eiffel, we
can introduce a model of BON’s SET type, following [Meyer 2003]. However, given
that the BON metamodel makes use of finite sets, and the metamodel assertions are
computable, all assertions in the BON version of the metamodel can be translated
to Eiffel. Assertions are expressed as follows.

—Each invariant clause in a class in the BON metamodel is translated to a boolean-
valued function in Eiffel. For example, the clause no inh cycles in class MODEL
in the BON diagram is translated to a boolean function in the Eiffel class model,
and a call to the function appears in the invariant for MODEL.

—Each pre- and postcondition is encoded as a predicate agent. Thus, the Eiffel
class representing a ROUTINE includes two attributes, as follows.

pre : PREDICATE [ROUTINE ,TUPLE [ANY ]]

post : PREDICATE [ROUTINE ,TUPLE [ANY ,ANY ]]

The precondition is encoded as a predicate agent that takes a tuple, consisting
of the state of the agent, as argument. The state includes arguments for the

6Obviously we could encode assertions indirectly and programmatically, but we choose to use
agents so as to make it easier to validate that the agent expressions correctly implement the
original BON assertions.
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routine, as well as any attributes used by the routine. The postcondition takes a
pre- and poststate as arguments.

—Each occurrence of the quantifiers ∀ or ∃ in BON is translated to the Eiffel agent
for_all or there_exists, respectively. (In general, each BON assertion must
be computable to translate to Eiffel.)

—Bound variables introduced in postconditions and invariants to represent inter-
mediate state are instead represented using local variables (we show an example
shortly). These local variables are local to an agent, and as such are not accessible
or visible to clients of a routine, thus preserving encapsulation.

We provide three examples of metamodel constraints: the constraint establishing
cycle-free inheritance graphs in a class diagram; the constraint expressing that there
are no bidirectional aggregations, and the constraint establishing model covariance,
i.e., that any redefined routines that appear in the class diagram modify the routine
signatures covariantly (as required by Eiffel and BON). The first two constraints
appear in the UML metamodel (as discussed in Section 3.1), but the third does not
and is distinctive of BON.

3.2.3 No cycles in the inheritance graph. In the BON metamodel, this was cap-
tured by defining a private attribute, closure, which contains the transitive closure
of the graph defined by inheritance relationships in the class diagram. The same
approach is used in Eiffel. The invariant in Eiffel class MODEL includes a call to
the boolean routine shown in Fig. 11. This should be contrasted with the PVS
specification of the same constraint in Section 3.2.

no_inheritance_cycles: BOOLEAN is

do

Result := closure.for_all((i1:INHERITANCE): BOOLEAN -- iterate over closure once

do

Result := closure.for_all((i2: INHERITANCE): BOOLEAN -- iterate over closure twice

do

-- return true iff two selected inheritance relationships do not

-- form a cycle

Result := not (i1.source=i2.target and i1.target=i2.source)

end)

end)

end

Fig. 11. Invariant: no cycles in the inheritance graph

In this invariant there are two agents iterating over the closure set. The final
Result line in the second (inner) agent says that it is not the case that there are two
inheritance relationships where the source of one is the target of the other (and vice
versa). If this condition is violated for any pair of classes in the closure, there is a
cycle. This is a declarative, rather than operational, specification of the cycle-free
property.

The closure set is calculated by an invocation of the prepare routine. In this
routine, an additional agent iterates across the set of all inheritance relationships
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and adds any implicit inheritance relationships that arise due to transitivity to the
closure set.

3.2.4 No bidirectional aggregations. This constraint is similar to the one found
in UML on part-of relationships, i.e., that an object cannot recursively contain
itself. The specification in Eiffel is as shown in Fig. 12.

no_bidirectional_aggregations: BOOLEAN is

do

-- iterate over aggregations in model

Result := not aggregations.there_exists((a1: AGGREGATION): BOOLEAN

do

-- iterate over aggregations in model again

Result := aggregations.there_exists((a2: AGGREGATION): BOOLEAN

do

-- return true iff the two selected aggregations are different

-- but form a loop

Result := (a1/=a2) implies

(a1.source=a2.target and a1.target=a2.source)

end)

end)

end

Fig. 12. Invariant: no bidirectional aggregations

This constraint has a structure similar to that in Fig. 11. It requires two agents
iterating over the set of all aggregations, this time applying a function to check
if there are any cycles in the aggregation graph. Note that this time a transitive
closure operation does not need to be applied since aggregations in BON are not
transitive.

3.2.5 Model covariance. The last example is more complex and shows how to
capture the covariant redefinition concept in Eiffel using agents. Recall covariant
redefinition from [Meyer 1992]. Consider the following routine in a class A:

r(x : X ) : Y

and suppose r is redefined (overridden) in class B which is a descendent of A. The
new signature of r in B is

r(x : U ) : W

For the redefinition to be valid in BON, class U must be a (not necessarily proper)
descendent of X and W must be a (not necessarily proper) descendent of Y . We
capture this as follows in Eiffel. First, we define a routine subtype which, given
two classes, returns true iff the second is a subtype (a descendent) of the first.
This can be easily expressed using an agent iterating over the transitive closure of
the inheritance graph. We can then define a routine covariant as in Fig. 13. The
routine returns true iff the second argument covariantly redefines the first.

The definition of covariant appears to be complex, but can be easily explained.
The first line generates an anonymous integer sequence and iterates across it using
an agent. The agent checks that each pair of parameters in the feature arguments
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covariant(f1: FEATURE; f2:FEATURE): BOOLEAN is

require f1/=Void and f2/=Void;

local q1, q2: QUERY

do

-- iterate over all parameters of the feature

Result := (1|..|f1.parameters.count).for_all((i:INTEGER): BOOLEAN

local c1, c2: CLASS

do

-- select the i-th parameters from the two features

c1 ?= f1.parameters.i_th(i).item(2);

c2 ?= f2.parameters.i_th(i).item(2);

if(c1/=Void and c2/=Void) then

-- check that the second parameter is a subtype of the first

Result := subtype(c1,c2)

end

end);

-- if the features are functions (with return types) then

-- check that the return types are covariantly redefined.

q1 ?= f1;

q2 ?= f2;

if(q1/=Void and q2/=Void) then

Result := Result and subtype(q1.q_result,q2.q_result)

end

end

Fig. 13. Routine: covariant redefinition specified in Eiffel

are covariant, and then, if the feature is also a query (tested by the assignment at-
tempts) it is tested whether the result type of the functions is covariantly redefined.

This function can then be used in a class invariant of MODEL, which checks that
each redefined feature of each class is covariantly redefined. Note that this must
be a property of the MODEL, and not the metaclass CLASS , as it requires access
to the inheritance graph: a routine may covariantly redefine another routine from
an indirect parent. To express this invariant, we use an agent that iterates across
the set of all classes in MODEL, pulling out each redefined feature. It then checks
that the redefinition obeys the covariance specification in Fig. 13.

3.2.6 Model conformance in Eiffel. The obvious way to carry out model con-
formance checking in Eiffel is to simulate a model against the metamodel encoding
presented above. Thus, a BON model is encoded in Eiffel as a reference structure
(consisting of objects and references between objects), and, once constructed, the
metamodel rules are executed to determine whether the reference structure is a
valid instantiation of the metamodel. If a rule evaluates to false then the run-time
system of Eiffel will inform the user as to which well-formedness rule has failed.

It is most convenient – though not required – to encode the model using a unit
test and unit testing framework. This allows multiple models to be encode simul-
taneously and run automatically. The testing framework that we use, ETest, also
provides documentation facilities indicating which well-formedness rules have failed
(if any) and where. It is important to note that the model conformance checking
process is fully automated in Eiffel.
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Fig. 14. Model conformance example: cycles in inheritance graph
.

Consider Fig. 14, which shows a class diagram possessing a cycle in its inheritance
graph (labels are for reference only). This model is not well-formed and should
violate the invariant no inheritance cycles of class MODEL.

By encoding the model as a unit test, we can easily simulate the model against the
metamodel to show that it is not well formed. This will give as a fully automated
way to check the sat relation in equation (1). An excerpt from the unit test that
can be used to simulate the BON model in Fig. 14 against the metamodel is shown
in Fig. 15.

CLASS VALIDATE_METAMODEL inherit UNIT_TEST creation make

feature ANY

make is

do -- initialise and prepare report end

no_inh_cycles: BOOLEAN is

local a,b,c: E_CLASS; i1, i2, i3: INHERITANCE; m: MODEL

do

create a.make("A"); create b.make("B"); create c.make("C");

-- generate additional model elements here

m.add_class(a); m.add_class(b); m.add_class(c);

m.add_inheritance_rel(i1); m.add_inheritance_rel(i2);

m.add_inheritance_rel(i3);

-- initialise infrastructure and data structures

m.prepare; Result := true;

end

end -- VALIDATE_METAMODEL

Fig. 15. Unit test for metamodel validation

The unit test in no_inh_cycles can be explained as follows. First, entities for
each element of the model are declared and created; relevant attributes of these
entities are then populated – e.g., the name of each class, the source and target of
each inheritance relationship. These elements are all added to the model m, and a
call to m.prepare constructs the infrastructure for the model. On this call, the clause
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no inheritance cycles fails, with an object configuration showing (for example) that
the transitive closure of the graph contains an inheritance relationship from B to
A and also from A to B .

Executing the unit test generates a run-time exception which is caught by the
exception handling facilities built into ETest. This result is documented in the
HTML report generated by ETest.

Once again, static well-formedness constraints related to contracts (e.g., that
assertions are syntactically well-formed) are checked during model conformance
checking. No behavioural well-formedness is checked at this stage. We discuss this
in more detail in Section 4.

3.2.7 Summary. The advantages of using Eiffel for expressing the BON meta-
model are as follows.

—Understandability: the structure of the Eiffel system is directly mapped from
the semi-formal specification of the metamodel in BON – i.e., it is class-based.
Eiffel tools can be used to project different views of the Eiffel system, e.g., to
hide class interface details, so that only the structure of the metamodel – i.e.,
classes and relationships – can be viewed.

—Tool support: standard programming tools can be used to construct, execute,
verify, and validate the metamodel, e.g., compilers, IDEs, class libraries, debug-
gers, and unit testing frameworks. The feedback provided during construction
and verification is familiar to programmers, and as such a new conceptual model
of development does not need to be learned.

—Testing: the metamodel is easy to test, using standard unit, regression, and
system-level techniques. In this particular case, the ETest unit testing frame-
work was applied. This framework, tailored to testing in Eiffel, made it possible
to target specific well-formedness constraints in the metamodel for testing, and
identified failures of specific constraints during the testing process.

The disadvantages to using Eiffel are listed below.

—Implementation detail: it is necessary to include implementation detail in
the Eiffel version, specifically for initialising data structures (i.e., object alloca-
tion and cloning), all of which can be omitted in the BON and PVS versions.
Fortunately, much of this detail can be hidden using Eiffel’s information hiding
facilities, but it is necessary to include it: someone using the metamodel can ig-
nore this implementation detail, but someone wanting to change the metamodel
(or develop a new metamodel) will need to use it.

—Completeness: all well-formedness constraints in the BON metamodel can be
expressed in Eiffel, though one tiny subset of them – consisting of four constraints
– must be slightly restricted. The restriction arises with capturing contracts, i.e.,
pre- and postconditions of routines. The Eiffel version of the metamodel does
capture contracts – using predicate agents to encode each contract – but these
are restricted to the expressiveness constraints of Eiffel itself, i.e., the contracts
must be computable and expressible within Eiffel’s boolean expression syntax.
Thus, for example, BON quantifiers over arbitrary types cannot be expressed in
Eiffel. In general, this is not a substantial restriction for metamodelling, because
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agents can be used to capture quantified expressions over finite structures, but
it does mean that the PVS version of the metamodel expresses more.

This raises the question of whether a language used for metamodelling should
be more expressive than the languages being metamodelled. Clearly there are
tradeoffs: while PVS is more expressive than BON (and Eiffel) and can capture
all constraints, it does not provide fully automated model conformance checking
or type checking, where Eiffel does. The question must be answered in the context
of how the metamodel is intended to be used.
We will return to the issue of encoding contracts in the next section, when we
discuss multi-view consistency checking. It is here that one of the key distinctions
between using PVS and Eiffel becomes apparent.

3.3 Overall Comparison

While difficult to objectively compare all aspects of the metamodels presented
above, we attempt a comparison in terms of the factors described above, and present
a relative comparison. The results are summarised in the table below; we include
the specification of the BON metamodel from Section 2.3 for completeness and
interest.

Quality Factor Metamodelling approach

BON PVS Eiffel

Understandability • • • • • • •

Correctness • • • • ••

Completeness • • • • • • ••

Maintainability • • • • • • •

Construct via tools • • • • ••

V&V via tools • • • • • • •

Table II. Informal comparison of metamodelling approaches (•=least, • • •=most)

The comparisons are relative and a substantial degree of subjectivity is inherent
in the matrix. However, the table is meant to provide a coarse-grained comparison
of the approaches, so as to give metamodellers some approximate guidance. The
quality factors for comparison are, in more detail, as follows.

—Understandability: the degree to which the metamodel specification is com-
prehensible to a suitable experienced tool builder and metamodel user. Under-
standability assumes a reasonable amount of expertise in modelling, not formal
methods or metamodelling. Clearly, the BON version of the metamodel will be
understandable to the largest number of developers (engineers familiar with UML
will have no difficulty learning BON). Similarly, the Eiffel version of metamodel
will also be understandable to many developers as it is written in a program-
ming language – admittedly, Eiffel’s agent syntax does require some adjustment,
but it is effectively just an iterator, and as such is compatible with the stan-
dard object-oriented programmer’s toolkit. The PVS version of the metamodel
requires substantial formal methods expertise, and is the most challenging to
understand of the three.
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—Correctness: the degree to which correctness of the metamodel specification
can and has been checked, either automatically or semi-automatically. Note that
a score of ••• does not imply that the specification is unchecked, merely that less
checking is feasible or has been carried out than with the other approaches. The
PVS version of the metamodel has been partly checked via proof, as reported in
[Paige and Ostroff 2001], and this process is repeatable. The Eiffel version has
been partly tested and additional testing can be carried out. The BON version
has been constructed via BON-compatible CASE tools, but beyond the syntax
and partial lightweight semantic checking that these tools support, no additional
correctness checking has been carried out.

—Completeness: the degree to which the metamodel description captures all
the well-formedness constraints of the BON language. We claim that the BON
and PVS descriptions are complete (though this has not been proved); the Eiffel
description is incomplete since Eiffel’s predicate agent syntax is restricted to use
boolean expressions that can be written in Eiffel.
Though we claim that both the BON and PVS descriptions are complete, we
prefer the PVS description in this respect because it is possible to use the PVS
theorem prover to detect incompleteness. An example of this was reported in
[Paige and Ostroff 2001], where because a requirement was not captured, a con-
jecture expressed in PVS turned out to be impossible to prove (though the PVS
prover itself did not indicate that the conjecture was unprovable). Of course,
there are other reasons to prefer the BON (or Eiffel) descriptions over the PVS
version.

—Maintainability: the degree to which the metamodel specification supports
extension, refactoring, and wholesale modification. The BON and Eiffel ver-
sions have an advantage due to their component-based style of specification, and
their use of patterns. However, even using good object-oriented design practice
may be insufficient for promoting extensibility and wholesale modification, e.g.,
as suggested with the pUML proposal for UML 2.0 [Evans et al. 2005], which
recommended adding templates and frameworks as first-class language concepts.

—Constructed via tools: the degree to which tools are available to assist in
constructing the specification (e.g., diagramming tools, smart editors with syntax
checking and highlighting, autocode generation). The BON and Eiffel versions
were constructed using CASE tools and integrated development environments,
whereas the PVS version was constructed using a text editor.

—V&V via tools: the degree to which tools are available to assist in verifying
and validating the correctness of the specification. With PVS this can be carried
out via theorem proving, whereas unit testing can be used for Eiffel. No such
support exists for BON directly. Note that while both Eiffel and PVS support
verification and validation, the PVS version should be considered more powerful,
as it makes use of proof as opposed to testing, while also supporting simulation
via its ground evaluator.

4. METAMODEL-BASED MULTI-VIEW CONSISTENCY CHECKING

Metamodels are intended to be used indirectly, by modellers applying the mod-
elling language, and directly, by tool builders constructing diagramming tools for

ACM Journal Name, Vol. V, No. N, Month 20YY.



Metamodel-Based Model Conformance and . . . · 33

modellers. The tool builder, in particular, will need to be able to understand the
metamodel, must have guarantees that it is correct (since they will not want to
substantially modify their tools due to corrections made to the metamodel), and
will need extensibility capabilities so that language revision processes can be ac-
commodated and directly linked to tool revision processes. The relative importance
of these metamodel quality factors can be used, in a specific context, to decide the
best metamodelling approach to use for a specific language.

A metamodel can form the basis of any approach to multi-view consistency check-
ing: a metamodel captures the essential concepts in a model, and defines (or can be
used to define) the rules that establish that different views of the model contain no
contradictions. The rules for multi-view consistency checking – which are expressed
within a metamodel – must be correct, understandable, and extensible as well, for
them to be of value to tool builders.

One particular aspect of a tool builder’s remit is to establish capabilities in their
tool for multi-view consistency, either by providing consistency checking capabili-
ties, or model synchronisation capabilities. In a language like UML, where a large
number diagrams representing the same system from different perspectives can be
produced, multi-view consistency is a critical and challenging problem. There are
several approaches that can be taken for metamodel-based view consistency check-
ing, but they can be contrasted in terms of two desirable criteria.

—Automation: the extent to which the views can be checked for consistency by
automated measures. Clearly, the more views that are present in the metamodel,
the more challenging it is to provide an automated scheme. All UML tools and
approaches to multi-view consistency checking are only semi-automatic. The
Eiffel-based approach we present here is fully automatic.

—Completeness: the degree to which all multi-view consistency constraints can
be captured, based on the metamodel specification available. For example, we
will see that the Eiffel-based metamodelling approach suffers from incompleteness
in its provisions for view consistency, while providing a fully automatic approach.
All UML tools are incomplete in terms of their support for multi-view consistency
checking, since all support only a limited set of views (e.g., class diagrams and
statecharts, like the Executable UML tools [Mellor and Balcer 2002]), or do not
fully consider the metamodel constraints, particularly those involving contracts
(discussed in more detail below).

Based on the metamodel specifications from the previous section, we now present,
compare, and contrast two distinct approaches to multi-view consistency checking,
in terms of the above factors, in the context of BON’s class and dynamic diagrams.
A novelty of the two approaches presented here is that they include support for
checking contracts for consistency (albeit in quite different ways).

Consider the BON dynamic diagram shown earlier in Fig. 3. Suppose that each
of messages 1-4 have been bound to routines in a BON class diagram. In order to
check that the dynamic diagram is consistent with a class diagram, the following
four constraints must be checked (there are additional constraints in MVCC, but
these are essential ones)7.

7Many of these constraints appear in consistency checking in UML [MODELWARE 2005].
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(1) object-class: each object appearing in the dynamic diagram must have a
corresponding class in a class diagram, which acts as the object’s type. This
constraint links the abstractions appearing in the two different BON views.
Note that without this constraint, an object may have a type that does not
appear in a system model (thus making it impossible to compile and implement
the model). Such a constraint also appears in UML 2.0, linking class and
communication diagrams.

(2) message-feature: each message in the dynamic diagram is bound to a routine,
and a call to that routine is permitted based on the list of accessors provided
with each routine. (To paraphrase, if a message in a dynamic diagram corre-
sponds to a call o.r for object o and routine r , then r must be exported to the
client class, i.e., the class of the object that sends the message to o.) A similar,
but not identical, constraint appears in UML 2.0: messages may be bound to
operations in UML.

(3) message-class: each routine bound to a message must actually belong to
the target class of the message (i.e., routines that are called must exist). This
ensures that if a message is sent from one object to another, there is a connection
between the two objects. According to Gao [Gao 2004], connections can arise
due to direct associations between the objects’ classes, can be due to indirect
associations (i.e., a chain of more than one association), or can be due to
compositions of inheritance relationships and associations. In this paper, we
consider only direct associations and direct inheritance relationships; see [Gao
2004] for extensions to indirect associations and more complex relationships.
This constraint also appears in UML 2.0 for intra-model consistency checking.

(4) contract-consistency: the constraint in (2) establishes that each message in
a dynamic diagram corresponds to a routine call. The routines that are called
must be enabled (i.e., their preconditions must be true) for the dynamic diagram
to be consistent with a class diagram. A precondition can only be true if the
sequence of previous calls to routines established a system state that satisfies
the precondition; that is, the postconditions of previous calls combine to enable
the current precondition of interest. To check this, an initial state, init , must
be provided (by the developer), and init must enable the first message in the
dynamic diagram. Successive messages must be enabled by the sequence of
message calls that precede it. This constraint does not appear in the UML 2.0
metamodel, but it is discussed in [Krishnan 2000] in the context of OCL and
UML.

These four constraints turn out to be fundamental in establishing that the class
diagram views and the dynamic diagram views are consistent; the constraints will
need to be implemented by the multi-view consistency approaches that we now
present. Once again, we will present approaches to checking these constraints that
follow the best practices of using PVS and Eiffel; we will discuss alternative ap-
proaches as appropriate.

4.1 A PVS approach to multi-view consistency

Building on the PVS specification of the BON metamodel in [Paige and Ostroff
2001], the PVS theories were extended in [Paige et al. 2002; 2003b] in three direc-
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tions in order to support multi-view consistency and the four constraints discussed
previously:

—to include additional features to project different views of a system. While this
information was present in the original metamodel from [Paige and Ostroff 2001],
it was not explicitly easily accessible.

—to include constraints to establish that projected views were consistent.

—to include the semantics of routines, in order to carry out MVCC checking in-
volving pre- and postconditions.

Referring to the rules discussed in the previous subsection, (1)-(3) are reasonably
straightforward to capture in PVS once the aforementioned projection functions are
defined. These functions are not difficult to define [Paige et al. 2003b] for details.
Formalising the notion of routine specification, and the corresponding consistency
constraint for (4) above, is much more challenging. The complication does not
arise in expressing a routine specification directly, but in combining routine speci-
fications: PVS requires explicit specification of a function’s domain (possibly using
an uninterpreted type) in order to support type checking: a routine specification’s
state must be formally specified. The formulation of routine specifications is there-
fore aimed at being able to (sequentially) compose them. The formalization of
specifications of a routine requires a new type, SPECTYPE, which is a record con-
taining the initial and final state variables of a specification, along with the value of
the specification; initial and final state are sets of entities. The functions oldstate
and newstate produce the entities associated with a routine (given the class in
which the routine arises), specifically the parameters, local variables, and accessi-
ble attributes. It is also necessary to introduce a new type for specifications so that
the frame of a specification can be expressed.

SPECTYPE: TYPE+ =
[# old_state: set[ENTITY], new_state: set[ENTITY],

value: [ set[ENTITY], set[ENTITY] -> bool ] #]

oldstate, newstate: [ ROUTINE, CLASS -> set[ENTITY] ]

A specification can now be defined in terms of the new type.

spec: [ ROUTINE, set[ENTITY], set[ENTITY] -> SPECTYPE ]

spec_ax: AXIOM
(FORALL (rou1:ROUTINE): (FORALL (c:CLASS):

(member(rou1,class_features(c)) IMPLIES
(spec(rou1,oldstate(rou1,c),newstate(rou1,c)) =

(# old_state := oldstate(rou1,c), new_state := newstate(rou1,c),

value := (LAMBDA (o:{p1:set[ENTITY] | p1=oldstate(rou1,c)}),
(n:{p2:set[ENTITY] | p2=newstate(rou1,c)}):

feature_pre(rou1,o) IMPLIES feature_post(rou1,o,n)) #)))))

The spec_ax axiom states that for a routine the prestate and poststate of a
specification are that of the routine, and the value of the specification is a function
from pre and poststate to a boolean, where the boolean is true if and only if the
precondition implies the postcondition.

We can now express the view consistency constraint (4) in PVS; this is challeng-
ing, and has two parts. The first part, enabling the first message in the dynamic
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diagram, can be done as follows. init is translated to a function mapping a model
and a class (which should be the class from which execution begins) to a boolean.
The enabling of the first message is formalised as an axiom.

init: [ MODEL, CLASS -> bool ]

views_consistent_ax1: AXIOM

(FORALL (mod1:MODEL): FORALL (c:CLASS):
LET

loc_spec:SPECTYPE = (spec(init(mod1)(c),oldstate(init(mod1)(c)),
newstate(init(mod1)(c))) IN

value(loc_spec)(old_state(loc_spec),new_state(loc_spec)) IMPLIES

feature_pre(calls_model(mod1)(0),
oldstate(calls_model(mod1)(0),

object_class(msg_target(sequence_model(mod1)(0))))) )

A local variable is declared, constructing a specification for the initialising pred-
icate init. Then, it is stated that the initial state must imply the prestate of the
first message.

The second part is even more challenging. The complexity lies in formalizing
the definition of sequential composition: an explicit specification of the state of a
routine is required so as to capture the frame of each specification, and to be able
to define an intermediate state. Sequential composition can be formalized in PVS
as follows, using function seqspecs. It takes as argument two variables of type
SPECTYPE and returns a SPECTYPE result, representing the sequential composition
of the arguments.

seqspecs(s1,s2:SPECTYPE): SPECTYPE =
(# old_state := old_state(s1),

new_state := new_state(s2),
value := (LAMBDA (o:{p1:set[ENTITY] | p1=old_state(s1)}),

(n:{p2:set[ENTITY] | p2=new_state(s2)}):
(EXISTS (i: set[ENTITY]): value(s1)(o,i) AND value(s2)(i,n)))

#)

seqspecs must be lifted to apply to a finite sequence of specifications in order
to formalize constraint (4). This is expressed as recursive function seqspecsn.
A MEASURE must be provided in order to generate proof obligations for ensuring
termination of recursive calls.

seqspecsn(seq1:{f:finseq[SPECTYPE]|length(f)>=1}): RECURSIVE SPECTYPE =
IF length(seq1)=1 THEN seq1(0)
ELSIF length(seq1)=2 THEN seqspecs(seq1(0),seq1(1))

ELSE seqspecs(seq1(0),seqspecsn(^(seq1,(1,length(seq1))))) ENDIF
MEASURE

(LAMBDA (seq1:{f:finseq[SPECTYPE]|length(f)>=1}): length(seq1))

To complete the PVS formalization of constraint (4), it is helpful to define a
function to convert a sequence of messages into a finite sequence of SPECTYPEs.
This function, convert, extracts the routines from the messages and produces
specifications from them, by repeated application of function spec. Its details can
be found in [Paige et al. 2002].

Now the remaining view consistency constraint can be formally expressed in PVS.
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views_consistent_ax2: AXIOM
(FORALL (mod1:MODEL): FORALL (c:CLASS):

(FORALL (i:{j:nat|0<j & j<length(calls_model(mod1))}):
LET

loc_spec:SPECTYPE =
seq(spec(init(mod1)(c),oldstate(init(mod1)(c)),

newstate(init(mod1)(c)),

(seqspecsn(convert(sequence_model(mod1)^(0,i-1))))
IN

(value(loc_spec)(old_state(loc_spec),new_state(loc_spec)) IMPLIES
feature_pre(calls_model(mod1)(i),

oldstate(calls_model(mod1)(i),

object_class(msg_target(sequence_model(mod1)(i))))))))

The structure of this axiom is similar to the axiom establishing that the first
message is enabled by the initial state. This axiom first declares a local variable,
loc_spec, which is the result of sequentially composing the first i specifications in
messages in the model. This specification must then imply the precondition of the
routine of message i + 1 in the model.

4.1.1 Using the PVS theories. To use the PVS theories for proving view consis-
tency, a BON model can be specified as a PVS conjecture, following the approach
presented in [Paige and Ostroff 2001]. These conjectures effectively posit that the
model can exist. They must therefore satisfy the multi-view consistency constraints
as specified in the metamodel. PVS can then be used to import the view consistency
axiom as above, and one can then attempt to prove or disprove that the axiom is
satisfied by the models. This is identical to the approach used in demonstrating
conformance, i.e., that equation (1) is satisfied.

In general, it is typically easier to attempt to prove that a model does not satisfy
the view consistency constraint. This is because it means that the BON models can
be expressed as a non-existence conjecture, thus allowing automatic skolemization
to be used in simplifying the conjecture.

A lengthy example demonstrating this approach is in [Paige et al. 2003b], where
a model consisting of a class and a dynamic diagram is shown to be consistent
against the metamodel and multi-view consistency constraints. The PVS proof is
long and laborious (which is why we omit it), and requires a clever selection of
skolem constants in order to succeed. Other examples and case studies that we
have carried out suggest to us that a general strategy for using PVS to carry out
view consistency checking is possible, but in the most non-trivial cases it will be
extremely difficult to automatically choose skolem (or instantiation) constants as
part of this process, and it seems that user intervention is unavoidable.

Succeeding with multi-view consistency checking in PVS requires substantial ex-
pertise in not only using the PVS theorem prover, but also in interpreting the proof
obligations and subgoals generated by PVS. These are typically difficult to inter-
pret, in part because of PVS’s syntax, but in this particular application domain
they appear to be more difficult to understand because they refer to meta-level
constraints.

4.2 An Eiffel approach to multi-view consistency

In Section 3 the BON metamodel was specified in Eiffel, using the programming
language’s agent technology. This resulted in a declarative and executable speci-
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fication of the well-formedness constraints for BON. The metamodel encompassed
both BON class diagrams (with their concomitant features and relationships) as
well as BON dynamic diagrams (i.e., objects, clusters of objects, and messages).
Based on the metamodel, three of the four multi-view consistency constraints can
be specified and directly expressed in Eiffel; the fourth is best handled indirectly
(though we comment on handling it entirely within the Eiffel metamodel in the
sequel).

Unlike the PVS version of the metamodel, the multi-view consistency constraints
in Eiffel are distributed over the specification. That is, constraints are expressed as
invariants of classes; in the PVS version, the constraints were axioms belonging to
the metamodel theory. Some constraints in the Eiffel version will therefore apply
directly to classes, messages, and objects, while others will apply to the MODEL
class as a whole.

An example of a consistency constraint that applies directly to a message is
constraint message-feature, constraint (2), described earlier. This multi-view
consistency constraint is captured in the invariant of class MESSAGE as follows.
First, the invariant of MESSAGE includes the following boolean expression.

bound_routine /= Void implies access_granted

which states that if the message is bound to a routine then access must be granted
to that routine to the invoking class. The definition of access_granted is given
below.

access_granted: BOOLEAN is

local o, p: E_OBJECT; ec: E_OBJECTCLUSTER;

do

o ?= source

if (o/=Void) then

p ?= target

if (p/=Void) then

Result := bound_routine.accessors.has(o.static_type) or

bound_routine.accessors.has(bound_routine.any_accessor)

else

ec ?= target

Result := ec.contains.there_exists( agent ecce(?) )

end

end

end

The routine extracts the source and target of the message, using Eiffel’s assign-
ment attempt operator (similar to casting in Java). If the target is an object then
it ensures that the class of that object has given permission to the invoking class
to call the routine. If the target is a multiobject (i.e., a cluster of objects) then an
agent is invoked to check that some object in this set provides access.

Multi-view consistency constraints (1) and (3) can also be specified in Eiffel in
a similar way. Moreover, checking that constraints (1)-(3) hold resolves to model
conformance checking; an example in Section 4.2.2 demonstrates this.

Constraint (4) is challenging, as it involves routine pre- and postconditions. The
Eiffel metamodel already captures routine pre- and postconditions using predicate
agents (see Section 3.2.2). There are several approaches for checking this constraint.
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(1) Mimic the PVS approach, i.e., simulate theorem proving in Eiffel. Such an
encoding would make use of predicate agents, and would provide a way to
evaluate sequential compositions of agents. Of course, the limitation with this
is that only those predicates that can be expressed in Eiffel’s agent syntax can
be captured.

We have experimented with this approach. Encoding sequential composition
of agents can be done but it is non-trivial to write, and is particularly difficult
to use. Users of the metamodel must re-express contracts at the meta-level,
making the contracts difficult to write, debug, and understand. The meta-
level encoding of contracts, in particular, means that users of the metamodel
must explicitly understand and use the meta-level encoding of BON variables,
objects, pointer de-referencing, and intermediate states that are expressed in
Eiffel.

Given this encoding, contract consistency can be checked, but not fully auto-
matically. Moreover, the results are less informative than with PVS. What is
produced with this approach is a sequence of agents, which can then be invoked
on an initial state (conceptually identical to the initial state provided in the
PVS approach). This produces a true or false result, whereas with PVS one
also obtains a set of undischarged proof obligations when the constraint can-
not be proven. This suggests to us that, while the approach provides partial
automation, easier-to-use approaches should be developed: this is not the best
way to use Eiffel.

(2) Reflection. Make use of reflection techniques to extract pre- and postconditions
from the Eiffel metamodel and then use of an external theorem prover, in much
the same manner as in Section 4.1. This approximate approach motivates the
work in [Taligheni 2004].

(3) Exploit Eiffel’s executability. The PVS approach trades off completeness with
automation: MVCC is not fully automatic, but all constraints can be checked.
One of Eiffel’s strengths is its executability while still maintaining abstract
specification capabilities. Thus, an alternative to the first option is to include
routine implementations which can be invoked as messages are sent. Thus, con-
tracts are again encoded as agents, but the metaclass ROUTINE also includes a
new feature called implementation. This feature is invoked during the MVCC.
MVCC in this case resolves to generating code from the meta-level encoding of
the BON class diagram, generating an implementation of a dynamic diagram
that instantiates objects and calls routines, and running the dynamic diagram
against the class diagram.

We should also refer to related work on the BON Design Tool (BDT) [Taligheni
and Ostroff 2003] which provides simulation facilities for BON contracts. This
technology, integrated with the Eiffel metamodel, would be an alternative to the
Eiffel encoding of contracts discussed above. BDT relies on fully automated theorem
proving behind-the-scenes in order to carry out simulation. Efforts are continuing
on integrating the metamodel in Eiffel with BDT.

The last approach is the most compatible with Eiffel’s best practices, and is the
one that we describe in more detail now.
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4.2.1 A transformational approach to multi-view consistency checking. The ba-
sic approach that we are advocating is to generate unit tests from dynamic dia-
grams, based on the metamodel encoding discussed earlier. Executable Eiffel code
can be generated from the metamodel encoding of class diagrams as well. The unit
tests can then be executed against the generated code to check for consistency. If
the test drivers run successfully, we infer that the code and the unit tests, and hence
the dynamic diagrams and class diagrams, are consistent8.

We remind the reader that this approach is only used for checking constraint (4),
i.e., contractual consistency. The remaining multi-view constraints can be handled
directly by conformance checking, and do not require any transformation technology
to be applied.

This is an indirect consistency check: effectively, the unit tests are viewed as a
refinement of dynamic diagrams, and the executable code as a refinement of class
diagrams. This can be depicted as in Fig. 16. The stereotype <<derive>> on
the dependencies indicates that the source of the dependency can be automatically
derived (and is therefore automatically consistent) from the target. The stereo-
type <<consistent-refine>> indicates that a consistency checking process must
take place. Note that the dependency between the executable work products (the
source code and the unit test) is a refinement of dependency between the mod-
els; the implementation of the consistency checking algorithm must guarantee this.
The dependency between class diagrams and code is standard code generation; the
dependency between unit tests and dynamic diagrams is to be presented shortly.

Collaboration DiagramsClass Diagrams

Test DriverCode

<<derive>> <<derive>>

<<consistent−refine>>

<<consistent−refine>>

Fig. 16. Refinement structure for contract consistency scheme

Generating Eiffel code from the meta-level encoding of class diagrams is straight-
forward. Generating unit tests from dynamic diagrams is slightly more complex.
The simplifying assumption that we made earlier – that we handle only direct
associations and inheritance relationships – will allow a generic and reasonably
straightforward generation algorithm. Gao [Gao 2004] considers the general prob-
lem.

Given that a dynamic diagram typically refines a scenario of use in an object-
oriented model, it is useful to be able to specify conditions that should be true when

8Assuming the correctness of the code and test generation algorithms.
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a scenario ends; we thus add a final state to the metamodel: when the sequence
of message calls in the dynamic diagram ends, the final state should be reached.
We already include an initial state for a dynamic diagram (see the PVS version).
We currently require that the initial and final state specifications be in the Eiffel
assertion language, and thus that they are machine checkable and executable. They
will therefore be expressed as check statements (similar to C’s assert) in Eiffel.
Given the expressive power of Eiffel this is a not unreasonable restriction.

We have considered two (generally equivalent) approaches to transforming dy-
namic diagrams into unit tests. We describe one in detail, and briefly outline the
second. The first approach uses a syntax-directed algorithm to generate a single
Eiffel class, CONSISTENCY TEST , which implements a unit test. This class in-
herits from the Eiffel unit testing framework ETest. The class possesses a creation

routine make that is executed when CONSISTENCY TEST is instantiated. The
creation routine executes a sequence of feature calls, generated according to the se-
quence of messages appearing in the class diagram. If guards appear on messages,
the feature calls will be prefixed with suitable if-then-else structures, or loop-end

structures in the case where an iterative multiplicity constraint is provided.
Two challenges arise with the refinement process of dynamic diagrams into an

Eiffel unit test

(1) new messages: these indicate the creation of a new object of the type of
the recipient of the message. Each object in the dynamic diagram is being
mapped into an entity in Eiffel. However Eiffel classes may have many con-
structors/creation routines, and unlike languages such as C++ and Java, con-
structors can have any name. Even when dealing with a language like C++
and Java – which force constructors to have the same name as the class – will
require dealing with a choice of multiple constructors in order to distinguish
argument types. Thus, user assistance will be necessary, in general, to select
the appropriate constructor to execute as a result of a new message. In the
test driver generation algorithm, presented shortly, user assistance is obtained
through the use of select features, e.g., select_create_feature. This user
assistance simply takes the form of selecting a feature from a specified, auto-
matically generated list.

(2) Underspecified messages: a message in the dynamic diagram may be an-
notated with the name of the feature that should be called in response; in this
case, the feature call is added directly to the test driver. In general, though, a
message can be underspecified: names or types of arguments may not be pro-
vided, or messages may be overloaded, or the specific target of the message may
not be precisely constrained. The last case arises when a multiobject appears
in the collaboration diagram. In all of these cases, it is best to ask for assistance
from the user, to indicate which feature to call in response to a message, or to
specify the name of an object that should be the recipient of the message. This
is the purpose of select_feature in Fig. 17, which will provide the user with
a choice of features from which one must be selected.

It is important to point out that the generated unit test is not sufficient for full
test coverage of the system – it is to be used for checking multi-view consistency.
For test coverage, the dynamic diagram would have to be refined to include excep-
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class GENERATOR feature

generate_test_driver(c: COLLABORATION_DIAGRAM) is

local

i: INTEGER

m: MESSAGE

f: E_FEATURE

do

generate_driver_header;

generate_declarations(c.objects);

generate_check_statement(c.initial);

from i := 1

until i>c.messages.length

loop

m := messages.item(i);

if m.has_guard then

generate_ifthen(m.guard)

end

if m.has_multiplicity then

generate_loop(m.multiplicity)

end

if m.feature.is_create then

-- return specific creation routine

f := select_create_feature(m.target);

else

-- return specific feature with arguments

f := select_feature(m.target);

end

generate_feature_call(m.target,f);

generate_close_branches;

i := i+1;

end

generate_check_statement(s.final);

generate_driver_footer;

end

...

end -- GENERATOR

Fig. 17. Algorithm for generating unit tests from dynamic diagram

tional conditions. Providing that modellers are able to extend their collaboration
diagrams to include exceptional cases, the approach can be used to generate tests
for functional and integration testing as well. However, we suggest that in practice
this approach is not be sensible, since the collaboration diagrams will quickly be-
come large, cumbersome, and difficult to understand. A pragmatic approach might
be to extend the generated unit tests to carry out more detailed functional and
integration testing, i.e., to modify the unit tests directly.

We can now use the metamodel encoding of BON class and dynamic diagrams to
express the unit test generation algorithm. This appears as part of the definition
of class GENERATOR.
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The algorithm works, informally, as follows. First, declaration header information
is generated for the unit test (i.e., name of test class and standard Eiffel syntax),
then declarations for objects in the dynamic diagram. A check statement (i.e., an
assert) is generated to test the validity of the initial state of the system. Then,
the messages in the diagram are looped over. Each message is tested to see if it has
a guard or multiplicity constraints, and suitable Eiffel if-then-else statements or
loop statements are generated. Then a feature call is generated; this may require
consulting the user to select either a default create statement or one of several
possible create routines. Finally, all branches in the generated code (i.e., loops or
selections) are closed, and a final check is generated on the final state of the system.
The algorithm is interactive in the general case, but if users have specified features
for each message (i.e., they have refined away nondeterminism) then the unit test
generation is automatic. Any interactions would be limited to selecting a method
from a drop-down list of options.

Running the unit test, and hence carrying out the MVCC, is a simple matter of
compiling and executing the generated code, including the unit test, using the unit
test as the root class [Meyer 1997] of the system; the root class contains a method
from which execution must start.

Examples of MVCC using this approach can be found in [Paige et al. 2003a; Gao
2004].

An alternative approach to transformation is demonstrated in [Paige et al. 2005],
where the Atlas Transformation Language (ATL) [Bezivin et al. 2003] is applied.
This approach allows transformations – defined in terms of a set of rules – to be
defined with explicit reference to a pair of metamodels. As a result, the rules are
concise and abstract. It is easier to maintain and modify the ATL version of the
transformation than the Eiffel algorithm in Fig. 17, and thus future extensions of
the approach will likely be based on the ATL transformation.

4.2.2 Example: using Eiffel for multi-view consistency checking. We now demon-
strate how to use Eiffel for MVCC with an example, which shows how to check
constraints (1)-(3), i.e., all but contract consistency. Using Eiffel for MVCC is very
similar to how we use the language for model conformance checking. This is not
surprising since the multi-view consistency rules are encoded at the meta-level. A
short example illustrates the process.

Consider once again the diagrams shown earlier in Fig. 1. These diagrams present
a model of part of a simple maze game, with the class diagram presenting a struc-
tural view, and the dynamic diagram presenting a behavioural view. These views
are inconsistent according to the metamodel of BON. We test this by writing the
unit test that is excerpted in Fig. 18. This unit test encodes both the class diagram
and the dynamic diagram as Eiffel reference structures. The test is then executed
in order to check the well-formedness rules.

The routine views_consistent is a boolean valued function that belongs to the
same class as the previous example; thus, the results of running this unit test will
appear in the HTML tables that are generated by ETest. As it turns out, the unit
test fails, as it atempts to invoke a routine, in end room, that does not exist in class
MAZE GAME . This is easy to repair. After repairing this, we can experiment and
introduce an additional inconsistency by modifying the export policy of routine
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views_consistent: BOOLEAN is

local

maze_game, room, player, set_room, set_player, user: E_CLASS;

m1, m2, m3, m4: MESSAGE; ....; m: MODEL;

do

-- Initialise class diagram: classes, attributes, routines.

create maze_game.make("MAZE_GAME"); create room.make("ROOM");

create player.make("PLAYER"); create set_room.make("SET[ROOM]");

...

-- Initialise dynamic diagram: objects and messages.

create mg.make("mg",maze_game); create p.make("p", player);

...

-- Create the model

create m.make; m.add_class(maze_game); m.add_class(player); m.add_class(room);

m.add_message(m1); m.add_message(m2); m.add_message(m3); m.add_message(m4);

m.prepare; Result:=true;

end

Fig. 18. Unit test for multi-view consistency

is end room, i.e., by exporting this routine only to class ROOM . In this case, the
unit test fails again since the constraint message-feature will not hold.

The dynamic diagram in Fig. 1(b) assumes that routines have been associated
with messages. In general, dynamic diagrams in BON can be used informally, e.g.,
to refine use case scenarios, and such an association cannot be assumed.

4.3 Comparison

Table III summarises the view consistency approaches in terms of the quality factors
discussed earlier.

Quality Factor MVCC approach

PVS Eiffel

Automation • • • •

Completeness • • • ••

Table III. Comparison of view consistency approaches (•=least, • • •=most)

Once again, the comparisons are subjective and are based on experience and
careful analysis of the approaches. As we would perhaps expect, the PVS approach
offers the most complete solution to multi-view consistency checking. Consistency
constraints can be specified in PVS as axioms (or even conjectures) and the theorem
prover used to verify that a model obeys the axioms. However, the PVS approach
is lacking in terms of automation – invariably user intervention is required to help
discharge a proof (particularly for choosing instantiations of quantified variables).
The Eiffel approach to view consistency checking is fully automatic but incomplete
– some consistency constraints, particularly those BON contracts that cannot be
translated to Eiffel – cannot be checked using the Eiffel approach in the same way
as the PVS approach.
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The comparison in terms of completeness is a representation of the current state-
of-play. We expect to make progress on moving the completeness of the Eiffel
approach closer to PVS by building the Eiffel metamodel as a .NET application,
and using its reflection capabilities to extract predicates, which can then be passed
along to a theorem prover for external verification.

5. SUMMARY AND CONCLUSIONS

We have presented and contrasted two different approaches to metamodelling the
BON language. Comparisons of the approaches were based on a number of identified
quality factors that are of interest to metamodellers and users of metamodels. The
metamodel specifications were thereafter used in presenting approaches to multi-
view consistency checking, and these were in turn contrasted in terms of their
completeness and level of automation.

An obvious conclusion of this work is that no one approach to metamodelling,
and hence multi-view consistency checking, is sufficient: a tradeoff between levels
of automation and completeness will have to be made. As well, issues of under-
standability, usability, and scalability must also be taken into account. A further
concern is maintainability. Given the substantial efforts put in to revising UML over
the past few years – with its corresponding changes in the underlying metamodel
and supporting tools – it is highly desirable for a metamodel to be maintainable,
amenable to change. To this end it will be useful if metamodelling can be done
in an agile way, accepting that change to language specifications is inherent in the
process, and that the supporting tools that we use to write and verify and validate
metamodels support agile development as well. We have explored these issues fur-
ther in [Paige et al. 2004], where we applied an agile process for building a small
metamodel.

Another observation from this work is that, for metamodelling, we should not al-
ways prefer a more expressive metamodelling language to a less expressive one. PVS
is more expressive than both BON and Eiffel, and can capture all well-formedness
rules; however, what it offers in completeness it loses in terms of automation and
ease-of-use. Eiffel, as a metamodelling language, is incomplete and yet it can be
used to capture and check almost all well-formedness rules automatically. Moreover
(as we discuss in the next paragraph) we have preliminary evidence to suggest that
the Eiffel approach is more scalable. Whether we should prefer a more expressive
language to a less expressive one will depend on how we want to use the metamodel
in other tasks.

Our aim in this paper was to provide guidelines and recommendations to meta-
modellers and language designers in terms of the factors that they should consider
when constructing metamodels, and view consistency checking facilities. It would
be useful to broaden the comparison to include additional quality factors and a
more quantitative set of comparisons. For example, some measure of maintainabil-
ity or extensibility in terms of change metrics would be useful to include, as would
measures of the size of models and metamodels that are feasible to check using the
PVS and Eiffel approaches. While we do not yet have conclusive data about scala-
bility of either approach, our initial indications are that the Eiffel approach scales
easily and maintains the ability to automatically check conformance and multi-view
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consistency (up to the limitations noted earlier). In part, this is due to the object-
oriented characteristics of Eiffel, but is also because of its executability. We plan to
carry out further case studies with PVS, particularly to produce proof strategies,
to assess the scalability of the theorem proving approach.

Our future work is taking an agile approach to extending the Eiffel specification of
the metamodel to more detailed consistency checking; in this sense, we are building
up a relatively simple method of consistency checking to more complex tasks. There
are two directions to this research: supporting contracts in more detail (as discussed
in Section 4), and supporting additional views. We plan to first add a statechart
view to the metamodel, basing this work on the new Event library available with
Eiffel. In this manner, an event-driven model of concurrency and distribution will
underpin the multi-view metamodel.
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