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Neural Spike Train Synchronization Indices:
Definitions, Interpretations, and Applications

David M. Halliday* , J. R. Rosenberg, P. Breeze, and B. A. Conway

Abstract—A comparison of previously defined spike train

syncrhonization indices is undertaken within a stochastic point

process framework. The second-order cumulant density (covari-

ance density) is shown to be common to all the indices. Simulation

studies were used to investigate the sampling variability of a

single index based on the second-order cumulant. The simulations

used a paired motoneurone model and a paired regular spiking

cortical neurone model. The sampling variability of spike trains

generated under identical conditions from the paired motoneu-

rone model varied from 50% to 160% of the estimated value. On

theoretical grounds, and on the basis of simulated data a rate

dependence is present in all synchronization indices. The applica-

tion of coherence and pooled coherence estimates to the issue of

synchronization indices is considered. This alternative frequency

domain approach allows an arbitrary number of spike train

pairs to be evaluated for statistically significant differences, and

combined into a single population measure. The pooled coherence

framework allows pooled time domain measures to be derived,

application of this to the simulated data is illustrated. Data from

the cortical neurone model is generated over a wide range of firing

rates (1–250 spikes/s). The pooled coherence framework correctly

characterizes the sampling variability as not significant over this

wide operating range. The broader applicability of this approach

to multielectrode array data is briefly discussed.

Index Terms—Coherence, cross-correlation, motor units, syn-
chronization indices.

I. INTRODUCTION

T
HE CROSS-CORRELATION histogram is one of the prin-

cipal analytical tools used to detect and characterize cor-

related motor-unit discharges during voluntary contractions in

man [9], [19], [20]. The investigation of motor unit synchrony,

through the use of the cross-correlation histogram, provides the

basis for inferring the properties of common inputs to pairs of

motor-units based on measures of the peak [9], [21], and for

quantifying and comparing the strengths of these inputs ([10]

and [23] for further references and discussion). The various

measures used to characterize this peak are referred to collec-

tively as “synchronization indices.” Although there is no agreed
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method of calculating a synchronization index all of the pro-

posed measures are based on the assumption that the magni-

tude of the synchrony estimated from the cross-correlation his-

togram must be positively correlated with the strength of the

common input. This is often defined in terms of the number of

shared branches of common presynaptic fibers and the distribu-

tion of arrival times and amplitudes of the post-synaptic poten-

tials arising from the common sources [35]. This report deals

with two unresolved issues related to the use of synchronization

indices: 1) rate dependency, and 2) sampling variability.

The question of any dependence of synchronization indices

on the rate of discharge of the motor units has received consid-

erable attention [10], [21], [33], [35], [45]. Such a dependence

would have implications for the use of synchronization indices

as measures of the strength of common inputs [9], [16], [46]. We

define all the synchronization indices which have been proposed

in the literature within a single unified theoretical framework of

stochastic point processes. This makes explicit the relationship

between all the synchronization indices, and clearly demon-

strates a rate dependence in all of these proposed measures.

The issue of synchronization index sampling variability

has received less attention. Comparison of different indices or

drawing inferences based on an estimated value of a particular

index requires knowledge of the sampling variability of the

estimated index. The number of repeat experiments required

to assess this variability is unlikely to be realizable under the

usual conditions for motor unit and single unit recordings in

humans and behaving animals where record lengths are nec-

essarily limited by considerations of attention to the task and

the possible effects of fatigue [25]. In this study a simulation

approach was adopted to estimate the sampling variability of

a single synchronization index. The simulation used a realistic

paired motoneurone model, with shared synaptic input, to de-

rive the sampling variability of a synchronization index under

different input conditions. Results from the simulation study

allow guidelines to be given for assessing the significance of

changes in the value of an estimated index under identical input

conditions.

The broader applicability of synchronization indices is ex-

plored through a second set of simulations, based on a regular

spiking cortical neurone model [43], over a wide range of output

firing rates, from 1 spike/s to 250 spikes/s.

The paper concludes by describing an alternative frequency

domain approach to the construction of synchronization indices.

This method, which is based on coherence and pooled coher-

ence measures [3] is compared with the existing time domain

approach. A frequency domain approach has a number of advan-

tages, these include the ability to compare an arbitrary number

0018-9294/$20.00 © 2006 IEEE
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of pairs of spike trains for statistically significant differences,

and the ability to provide parameters (in time and frequency do-

main) which summarize the strength of correlation across sev-

eral records.

II. SYNCHRONIZATION INDICES DEFINED AS POINT

PROCESS PARAMETERS

This section gives formal definitions and estimation pro-

cedures for time domain synchronization indices in terms of

stochastic point process parameters. Spike trains are regarded

as samples of stationary stochastic point processes [15], [28],

[36]. A sample record from a spike train of duration

is denoted , where gives the number of events

(spikes) in the interval , and is the number of samples

in the record. Differential increments of the process at time

are denoted by , where

gives the number of events in the sampling interval . The

point processes are assumed to be second-order stationary, and

it is further assumed that differential increments well separated

in time are only weakly dependent. The latter is referred to as a

mixing condition [12], [13], and in practice is satisfied by most

spike trains. Point processes are further assumed to be orderly,

which implies that only one event (spike) will occur in each

sampling interval. The assumption of orderliness is important

in that it allows certain point process parameters to be inter-

preted either in terms of expected values or as probabilities

[12], [18], [40].

Two simultaneously recorded spike trains may be referred to

as a realization of a bivariate point process. Let

be such a bivariate point process with differential increments at

time given by . The mean intensity or mean

rate, , of process is defined as

(1)

where denotes the averaging operator or mathematical ex-

pectation of a random variable. Since the process is assumed to

be orderly, may be interpreted as

(2)

The mean intensity of is similarly defined. The mean

intensity, is estimated as

(3)

The hat symbol “^” is used to indicate an estimate of a point

process parameter. The second-order product density at lag ,

, is defined as

(4)

which may be interpreted as shown in (5) at bottom of page.

The second-order product densities and are de-

fined as in (4) by making the appropriate changes in the sub-

scripts. Since the processes are assumed to be mixing, the in-

crements and will become independent as

becomes large. Therefore, the asymptotic distribution for the

second-order product density, , is

(6)

The definition of the second-order cumulant, , is

(7)

From (6) this quantity tends to zero as . Therefore

the second-order cumulant may be interpreted as a covariance

density

(8)

where “cov” denotes covariance [11].

The above point process product and cumulant densities may

be directly estimated from the cross-correlation histogram. De-

note the set of spike times for by

and those for as for a sample

record of duration T. The cross-correlation histogram, ,

may be written as:

(9)

where indicates “the number of events in the set .” For

each pair of spikes , counts the number of occur-

rences of interspike intervals of duration lying in a bin

of width centered at lag Following [17] the expected value

of the cross-correlation histogram is

(10)

(5)
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which shows the relation between the cross-correlation his-

togram and the second-order product density, and suggests the

following approximately unbiased estimate for as

(11)

The second-order cumulant can be estimated as

.

Two important concepts used in the definition of synchroniza-

tion indices are “expected counts” and “extra counts,” these are

normally defined with respect to the cross-correlation histogram

[38]. The number of expected counts in the cross-correlation

histogram between two spike trains and , denoted here

as , can be defined in terms of the expected value of the

cross-correlation histogram for uncorrelated spike trains. For

any given pair of spike trains, and , the value of this can

be defined as the constant

(12)

Extra counts is defined as the number of counts which exceeds

those which occur by chance [38]. The number of extra counts,

denoted as , at a particular value of lag , can be defined

as

(13)

The definition in terms of the second-order cumulant density,

, follows from (7) and (10). Therefore, the concept of

“extra counts” is directly proportional to the value of the cumu-

lant density, , at a particular lag, . Equations (12) and

(13) give definitions of extra and expected counts in terms of

formal point process parameters. Estimates of these can be con-

structed as and . Equa-

tions (1)–(13) provide a unified framework within which syn-

chronization indices can be defined and discussed.

A number of different synchronization indices have been in-

troduced in the literature, all of these are based on the concept

of “extra counts” in the cross-correlation histogram, defined in

(13). For each index two expressions are given below, a formal

definition in terms of point process parameters, and a discrete

estimation procedure, based on the estimated second-order cu-

mulant density, . The first synchronization index based on

the cross-correlation histogram, , [30], [38], [44] is the ratio of

the peak in the cross-correlation histogram to the mean level of

the histogram, defined and estimated as

(14)

In the case of uncorrelated spike trains, . On the assump-

tion that using the area under the peak of the cross-correlation

histogram would reduce the variability associated with trial by

trial fluctuations of the peak magnitude, the synchronization

index was proposed as the ratio of the number of counts in

Fig. 1. Cross-correlation analysis of two spike trains generated by a paired
motoneurone model with common and independent synaptic input. (top) cross-
correlation histogram, J (u), calculated using (9). (bottom) estimated cumu-
lant density, q̂ (u), calculated using (11) and (7). The solid horizontal lines are
the estimated upper and lower 95% confidence limits, based on the assumption
of independence. The limits of the central peak are taken as the interception
of the cumulant with the upper 95% confidence limit, in this example these
are [�2, +4] ms, a total of 6 bins. Other parameters are N (T ) = 1269,
N (T ) = 1279, h = 1 and T = 10 .

the bins within the peak to the number of counts that would be

expected to occur if the two processes were independent [21].

This index can be defined and estimated as

(15)

This index, like all subsequent indices, depends on the speci-

fication of the parameters and , which specify the width of

the central peak in the cross-correlation histogram (see Fig. 1).

For the discrete estimation in (15), the quantity is an

integer specifying the number of bins in the central peak of the

histogram.

The synchronization index denoted by , was introduced

in [19] and [20], as the total number of “extra counts” within

the peak of the cross-correlation histogram relative to the total

number of reference events. This can be defined and estimated

as

(16)

where and are the number of events and estimated

mean intensity of the spike train with the slower mean rate.

The synchronization index, , introduced in [1] and applied

in [10] is defined by these authors as the total number of “extra

counts” in the cross-correlation histogram peak relative to the
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total number of spikes in both the reference and response motor-

unit spike trains. This can be defined and estimated as

(17)

The index denoted by was proposed in [32], and is defined as

the ratio of “extra counts” in the histogram to the total number

of pairs of counts in the entire cross-correlation histogram. This

can be defined and estimated as

(18)

The synchronization index referred to as the “common input

synchronization” or was introduced in [35]. This index is

also based on the cross-correlation histogram, and in addition,

depends on a model for a rhythmically discharging motoneu-

rone [4], [5]. In its final form is estimated by where

is the number of counts in the cross-correlation histogram

peak exceeding those expected by chance alone, and is the

duration of the record in seconds. This can be defined and esti-

mated as

(19)

The quantity is the sampling interval. The index was in-

troduced in [45]. The derivation of this index is given in terms

of a joint peri stimulus time histogram (JPSTH, [2]), which in-

volves splitting the complete record into a number of sections,

each containing bins. The authors give an equivalent defini-

tion in terms of the cross-correlation histogram for the case of

stationary spike trains. In the point process formalism this index

can be defined and estimated as

(20)

The calculation of this index requires specification of the

number of bins in the JPSTH. In [45], 100 ms sections con-

taining 100 bins was used.

A number of common features are present in the synchroniza-

tion indices defined in (14)–(20). All the indices depend on the

second-order cumulant density, . The most common de-

pendence is the integral of the cumulant across the central peak:

. The cumulant density is analogous to a covariance

density (8). Therefore it will be sensitive to any changes in the

variances of the individual spike trains. The principal determi-

nant of the variance of a spike train is the mean intensity [8].

Thus any changes in the firing rate of a spike train will be re-

flected in the cumulant density and therefore in any synchro-

nization index which depends on the cumulant density. There-

fore, a rate dependency is implicit in all the synchronization in-

dices defined herein.

With the exception of the index , the integration over the

second-order cumulant is common to all of the other synchro-

nization indices. This integral is related to the index according

to the relationship

(21)

All the other indices (apart from ) can be expressed in terms of

the index as , ( for the index

), where is a constant depending only on , ,

, , and .

The two main points of this section may be summarized as

follows: (1) Synchronization indices other than the one pro-

posed by [38] differ only by fixed scale factors, consequently

given one, and the appropriate scale factors, all the others can

be estimated. (2) All synchronization indices which are based

on the second-order cumulant density, , have an implicit

dependence on the mean rates of the motor units.

III. SAMPLING VARIABILITY OF AN ESTIMATED

SYNCHRONIZATION INDEX

The complexity of the expressions for the synchronization in-

dices together with the need to estimate the width of the base

of the peak in the second-order cumulant precludes a practical

derivation of expressions for the sampling variability of the es-

timated synchronization indices. For example, to use Kendall’s

expression [41] for the approximate variance of , the variance

of the sum of the estimated values in the peak of the histogram,

where the entries in this sum are not necessarily independent,

and where the width of the peak is based on an estimate, and

the covariance between this sum and the product of the esti-

mated mean rates of the two processes would need to be speci-

fied. Simulation provides an important and widely used means

of assessing the sampling variability of an estimated parameter

in complex cases such as this.

In this section results are presented from simulation studies

based on a motoneurone model and a regular spiking cortical

neurone model [43]. A two cell configuration with common

and independent synaptic input was used to generate paired

spike train records for analysis. The equation describing the

membrane potential for a single neurone, incorporating multiple

synaptic inputs and afterhyperpolarization (AHP), is

(22)

where is the membrane capacitance, the membrane po-

tential, and the leakage current given by

[24]. and represent the resting potential and mem-

brane resistance, respectively. The synaptic current due to

the th synaptic input is with the summation in (22)

over the total number of synaptic inputs, denoted by . The

synaptic current in response to a single input spike at time
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zero was modeled by , with

the time dependent conductance change, and the

synaptic reversal potential. The time course of a single synaptic

conductance change was represented by the alpha-function:

[29], where is a constant

scaling factor. represents the output spike-triggered

afterhyperpolarization current, where the summation for this

term in (22) is over the number of output spikes, was

only included in the motoneurone model, the cortical neurone

model incorporates a partial reset mechanism [43].

For the motoneurone model, ,

and . The time constant

for the synaptic input, , was chosen to give an EPSP with a

10%–90% rise time of 1.8 ms and a half-width of 7.0 ms in

relation to a membrane time constant of . These

values lie within the range used in [9]. The AHP was based on

the model of [7] with a time constant of .

For the cortical neurone model, ,

, and , giving a membrane

time constant of . The firing threshold was

, and the partial reset after firing was

. The model parameters were taken from [43], where

parameters were chosen to match slice recordings of regular

spiking cells. Both excitatory and inhibitory synaptic inputs

were included. Excitatory synaptic conductances used an alpha

function with a time constant of , and a reversal

potential of . Inhibitory synaptic conductances

used and . was set in both

cases to give an EPSP and IPSP of magnitude and

, respectively, both measured when injected current

was used to elevate the membrane potential to .

Sampling Variability of Simulated Motoneurone Data:

Results from the motoneurone simulations are presented first.

Each neurone received 200 synaptic inputs, 100 of which were

shared between the two cells. The spike trains for the indepen-

dent inputs to both motoneurones had exponentially distributed

intervals. Two types of common input processes were used,

one with an exponential distribution of interspike intervals and

the other with a Gaussian distribution of intervals. All input

spike trains were mutually independent. The mean intensity of

common input spike trains was fixed at 30 spikes/s. The mean

intensities for the independent inputs for each neurone were set

separately to achieve the desired output rate.

The range of output firing rates was based on sustained

firing rate ranges (6–18 spikes/s) commonly reported for human

motor unit recordings [25], [35]. Simulations were divided into

three different groups according to the output firing rate of one

of the motoneurones, the reference rate, . Three reference

rates were selected, two at the extremes and one in the centre

of this range. For each reference rate the output firing rate, or

response rate , of the second motoneurone was systemati-

cally adjusted to cover this range. The values for the reference

rate and the range for the response rates for each of the three

groups were: 1) 5 and 6–13; 2) 13 and 6–18; 3) 20 and 5–19; all

values in spikes/s. Each group used thirteen different response

rates to cover the ranges indicated. For each specific value of

reference and response rate, seventy repeat runs were generated

Fig. 2. Sampling variability of the synchronization index Q for (a) Poisson
common input spike trains, and (b) Gaussian common input spike trains to the
paired motoneurone model. Index values are plotted as a function of the ratio
P =P , for thirteen fixed values of this ratio, with P = 13 spikes=s.
Values of Q for each data set are indicated as dots, with 70 repeat runs at each
value of P . Overlaid vertical lines indicate�2SD about the mean value of
Q, horizontal lines indicate �2SD about the mean value of P =P .

to characterize the statistical distribution of the synchroniza-

tion index, representing a total of 2730 separate simulations.

A second set of 2730 simulations was also performed, in this

case the ISI distribution of the common inputs was altered from

Exponential (Poisson) to Gaussian, with a coefficient of vari-

ation (COV) of 0.1. All simulations generated 100 s of spike

train data, output spike times were recorded with a sampling

interval of 1 ms.

The second-order cumulant density, is common to all

the synchronization indices defined in the previous section. The

present study therefore used as a comparative synchronization

index the quantity . For notational convenience we

denote this quantity as . For the present series of simulations,

which have fixed record lengths and fixed target mean rates, the

synchronization indices defined above (apart from , , and )

have the form , for a constant . This simplification does

not take into account the sampling variability of the firing rates

during repeat runs (see Section V).

The estimation of requires limits for and to be defined.

In the present study, these limits were taken as the intersection

of the estimated cumulant density with the upper 95% confi-

dence limit, based on the assumption of independence, which

was approximated by the constant value , [26].

This procedure avoids the need to estimate the limits and

by visual inspection, and is part of a rigorous statistical ana-

lytical framework [26], [28] which can readily be incorporated

into an algorithm, see Fig. 1. The sampling variability of the es-

timated index, for the series of simulations

with is illustrated in Fig. 2. This summa-

rizes the results from 70 repeat runs at the 13 different ratios of

. Each dot in Fig. 2(a) and (b) represents the value of
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Fig. 3. Histograms of the distribution of values of Q̂ for four fixed values of
P =P from Fig. 2(a). (a) P =P = 0:64. The mean and SD esti-
mated from the histogram are 9.5, 1.2. (b) P =P = 0:75. Mean, SD are
10.3, 1.4. (c) P =P = 1:00. Mean, SD are 13.9, 2.0. (d) P =P =
1:3. Mean,SD are 5.5, 1.8. For all histogramsN = 70. Solid curves are normal
distributions based on the mean and SD estimated from the data.

for one simulation run, plotted against the ratio .

The superimposed horizontal and vertical lines represent

about the estimated mean, the 13 vertical lines give an indica-

tion of the spread of values for each value of that results

purely from the sampling variability. The horizontal lines show

the variability in the value of the ratio obtained with

repeat runs under identical input conditions.

The distribution of the index is explored in Fig. 3, which

illustrates histograms of values for 4 fixed values of

from the series of simulations with Poisson common input

spike trains in Fig. 2(a). Overlaid on each histogram is a normal

pdf with mean and estimated from the data, and amplitude

scaled to match each histogram. These histograms are well

fitted with a normal distribution, thus the magnitude of the

vertical lines in Fig. 2(a) and (b), which indicate can be

used practically as a measure of the sampling variability of the

index .

One approach to quantify the sampling variability of the index

is to express the range of sampling variability as a percentage of

the mean value, this quantifies the length of the vertical lines

in Fig. 2 (see, also, Fig. 5) as a percentage of the mean index

in each set. The ratio is used, where is the mean

value of the estimated index, over the 70 repeat runs at each

of the 13 values of . This gives a range of values of 0.5–1.3

for the Poisson common input spike trains, and 0.6–1.6 for the

Gaussian common input spike train. Thus the sampling vari-

ability of the index lies between 50% and 160% of the estim-

Fig. 4. Individual cumulant density estimates illustrating sampling variability
in synchronization indices derived from the cross-correlation histogram for the
paired motoneurone simulation. The individual plots show the (a) and (b) min-
imum, (c) and (d) median, and (e) and (f) maximum for the configuration in
Fig. 2 withP =P = 1, with (a), (c), and (e) Poisson inputs and (b), (d), and

(f) Gaussian inputs. Individual values of synchronization indices are: (a) Q̂ =
9:46� 10 , k̂ = 2:47, Ê = 0:0747, Ŝ = 0:0373, SI = 5:88� 10 ,
and CIS = 0:946, with N (T ) = 1270 and N (T ) = 1267; (b) Q̂ =
5:57�10 , k̂ = 2:09, Ê = 0:0428, Ŝ = 0:0213, and SI = 3:26�10 ,
CIS = 0:557, with N (T ) = 1313 and N (T ) = 1302; (c) Q̂ = 1:37�
10 , k̂ = 2:40, Ê = 0:108, Ŝ = 0:0536, SI = 8:42� 10 , CIS =
1:37, with N (T ) = 1269, and N (T ) = 1279; (d) Q̂ = 1:01 � 10 ,

k̂ = 1:99, Ê = 0:0777, Ŝ = 0:0387,SI = 5:93�10 , andCIS = 1:01,
with N (T ) = 1298 and N (T ) = 1311; (e) Q̂ = 1:88� 10 , k̂ = 2:27,

Ê = 0:147, Ŝ = 0:0734, SI = 1:14 � 10 , and CIS = 1:88, with
N (T ) = 1281 and N (T ) = 1283; (f) Q̂ = 1:45 � 10 , k̂ = 2:69,

Ê = 0:111, Ŝ = 0:0553, SI = 8:46 � 10 , and CIS = 1:45, with
N (T ) = 1306 and N (T ) = 1308. In all cases h = 1:0 and T = 10

ated value of the index. To a first approximation, ignoring the

firing rate sampling variability with repeat runs, these conclu-

sions also apply to the indices , , , and defined in

the previous section. Fig. 4 illustrates variations in the shape

of that occur with repeat runs. The estimated cumulant

density functions correspond to the median and extremes of the

index for Poisson and Gaussian common input spikes trains.

The changes in the shape of the central peak in this figure, and

the indices derived from these (see figure legend), are entirely

accounted for by the sampling variability of the indices. Fig. 5

summarizes the results of the simulations for the two other ref-

erence rates used, [Fig. 5(a) and (b)], and

[Fig. 5(c) and (d)], these demonstrate a sim-

ilar level of variability. The ratio , ranges from 0.5–1.4

for , and 0.7–1.1 for . Two
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Fig. 5. Sampling variability of the synchronization index Q from the paired
motoneurone model for (a ) and (b) P = 5 spikes=s, and (c) and (d) P =

20 spikes=s. (a) and (c) have Poisson common input spike trains, (b) and (d)
have Gaussian common input spike trains to the paired motoneurone model.
Format of plots is identical to that in Fig. 2(c) and (d).

main conclusions can be drawn from the simulations results il-

lustrated in Figs. 2–5. The estimated synchronization index ex-

hibits a similar range of variability across the range of firing

rates typically found in motor unit recordings. Quantifying this

variability as a percentage of the the mean index gives a range

of 50%–160%.

Sampling Variability of Simulated Cortical Neurone Data:

The second set of simulations is based on the regular spiking

cortical neurone described above. Two different input scenarios

were investigated. In the first scenario the total number of

synaptic inputs remained fixed, and the percentage of common

inputs was varied systematically from 10% to 100%. Each cell

received 100 inhibitory inputs and 400 excitatory inputs, all

inputs were driven by independent Poisson spike trains of rate

10 spikes/s. The inhibitory inputs were always applied inde-

pendently to each cell, only excitation was shared between the

two cells. The results from this configuration are illustrated in

Fig. 6(a), the vertical lines indicate about the estimated

mean index at each percentage of common inputs, derived from

70 repeat runs. The mean output rate and COV across all 10

groups, was 32.7 spikes/s, and 0.92, respectively. The second

scenario used a fixed percentage of common excitatory input

(50%), however the numbers of common excitatory inputs was

varied from 150 to 350. Both cells also independently received

100 inhibitory inputs. Excitatory and inhibitory firing rates

were 10 spikes/s. The output firing rate of the two cortical

neurons varied from 1 spike/s (150 common inputs) to 267

Fig. 6. Sampling variability of the synchronization index Q from the paired
cortical neurone model for (a) Fixed number of 400 excitatory inputs per neu-
rone, with the percentage of common inputs varied from 10% to 100%. (b) Fixed
percentage of common excitatory inputs (50%), with the number of common in-
puts varied from 150 to 350. The first order statistics for the output discharges
in the 9 groups, spikes/s (COV), are 0.98(1.00), 9.4(1.04), 32.7(0.92), 67(0.76),
106(0.63), 147(0.53), 187(0.46), 227(0.41), and 267(0.37). Vertical lines in (a)
and (b) indicate�2SD about the mean value ofQ, horizontal are used to indi-
cate the mean for each group.

spikes/s (350 common inputs). The vertical lines in Fig. 6(b)

indicate about the estimated mean index for each group,

derived from 70 repeat runs. The horizontal lines in Fig. 6 serve

only to indicate the mean value for each group, (they do not

indicate any variability as in Figs. 2 and 5).

Quantitatively, the results in Fig. 6 can be summarized using

the same ratio as above. In Fig. 6(a), the ratio de-

creases monotonically from 180% to 9% as the percentage of

common input increases. This reflects an increase in the mean

value of index with increasing percentage of common input,

whereas the variability in the estimated index is relatively con-

stant. In Fig. 6(b) the ratio ranges from 15% to 49% (not in-

cluding the first point), as both the mean value of the index

and the variability increase as the number of common inputs in-

creases. Fig. 6(b) also suggests a strong rate dependence in the

value of the synchronization index, the mean index increasing

as the mean output firing rate of the two neurones increases.

The synchronization index sampling variability for the cortical

neurone model is quantitatively similar to that for the paired

motoneurone model, which suggests the patterns of sampling

variability illustrated in Figs. 2, 5, and 6 is representative across

a wide range of neural spike train data. The next section de-

scribes the application of an alternative frequency domain ap-

proach which can deal with this sampling variability in a rig-

orous statistical manner.

IV. FREQUENCY DOMAIN APPROACH FOR COMPARING

SYNCHRONIZATION INDICES—POOLED COHERENCE

There has been an increased use of Fourier-based methods

for defining measures of association between neuronal signals
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[28], [36]. One frequency domain measure of association, the

coherence, provides a normative measure of the strength of as-

sociation on a scale from zero to one. The coherence can be de-

fined in terms of the magnitude squared of the cross-spectrum

between the two processes, which in turn can be obtained from

the Fourier transform of the second-order cumulant density, (8).

Therefore, the second-order cumulant density and the coherence

provide alternative measures of association between two spike

trains. The technique of pooled coherence was introduced in [3]

as a method of pooling and comparing independent coherence

estimates. Here, it is proposed to use pooled coherence as an

alternative frequency domain synchronization index. A pooled

coherence analysis includes two components. These are the con-

struction of a pooled estimate across a number of independent

coherence estimates, and a statistic which is used to test the

null hypothesis that all the individual coherence estimates have

a common mean at each frequency. The method used to calcu-

late the pooled coherence and the chi squared statistic is given in

[3]. In addition, the pooled coherence framework allows pooled

cumulant density estimates to be constructed, these provide a

population time domain measure of association.

Fig. 7 presents a pooled coherence analysis applied to the sim-

ulated motoneurone data. Fig. 7(a) illustrates the coherence esti-

mates corresponding to the three cumulant density estimates for

Gaussian common inputs shown in Fig. 4 (right column). Over-

laid in bold is the pooled coherence estimate for all 70 records in

this group. The pooled and ordinary coherence estimates are all

similar in form. As well as providing a normative value for the

strength of association, the coherence estimates also show that

this correlation is centered about 30 Hz, the frequency of the

common Gaussian inputs in this case. Fig. 7(b) shows the

extended difference of coherence test and Fig. 7(c) the pooled

cumulant density for all 70 simulations in this particular set of

simulations. The test statistic does not assume any signifi-

cant values, thus the hypothesis of equal coherence estimates is

accepted in this case. Therefore, the pooled coherence analysis

indicates no significant differences in the strength of correlation

between any of the 70 records, as expected. The pooled coher-

ence analysis quantifies within a theoretical framework the sam-

pling variability present in the individual cumulant [Fig. 4(b),

(d), and (f)] and coherence [Fig. 6(a)] estimates as acceptable

within the null hypothesis of equal strength of correlation be-

tween the 70 pairs of spike trains. Fig. 7(c) illustrates the pooled

cumulant density estimate for all 70 simulations. From this a

single representative value of can be derived (see legend).

The significant symmetrical negative values in Fig. 7(c) are due

to the periodic modulation of the cumulant which results from

the periodic output discharge of the motoneurone model. Sim-

ilar features are seen in experimental data [25].

Fig. 8 present the same analysis applied to data from the cor-

tical neurone model. The pooled analysis is applied to the centre

group of data in Fig. 6(b), where each neurone has 250 shared

and 250 independent excitatory synaptic inputs. The three or-

dinary coherence estimates in Fig. 8(a) are for spike train pairs

with the minimum, median, and maximum values of , the bold

line is the pooled coherence estimate for all 70 spike train pairs

in the group. For this set of data the coherence is broad band

in nature, reflecting the random discharge of the common input

Fig. 7. Pooled coherence analysis for 70 pairs of spike trains with common
Gaussian common inputs from the paired motoneurone simulation, P =
13 spikes=s and P =P = 1. (a) Individual coherence estimates (normal

lines), jR̂ (�)j , corresponding to cumulant density estimates in Fig. 4(b), (d),
and (f), respectively. Horizontal dashed line is upper 95% confidence limit based
on the assumption of independence. The bold line is the Pooled coherence esti-
mate across all 70 records (the upper 95% limit for this estimate is 4:4�10 ).
(b) Computed value of � test statistic across the 70 records. The horizontal
dashed line is the upper 95% confidence limit under the null hypothesis of equal
coherences, (� = 98:4). (c) Pooled cumulant density derived from
pooled cross spectrum. Solid horizontal lines are 95% confidence limits under
the assumption of independence. The value of synchronization index derived
from this is Q̂ = 1:11 � 10 , with N (T ) = 90772, N (T ) = 90964,
T = 6952960, and h = 1 in the pooled analysis.

spike trains. As in Fig. 7, there is no evidence in the test

statistic [Fig. 8(b)] of any statistically significant differences in

the 70 coherence estimates in the group. Fig. 8(c) illustrates the

pooled cumulant estimate for the 70 records, a single summary

value of is given in the figure legend. Similar conclusions re-

sult from a pooled coherence analysis of all 19 groups of data in

Fig. 6. A pooled coherence approach to synchronization indices

appears to have broad applicability to a range of neural spike

train data.

V. DISCUSSION

The definition, application and interpretation of neural spike

train synchronization indices have been reviewed, within a sto-

chastic point process framework. The key concept in the defini-

tion of all the synchronization indices reviewed is that of “extra

counts”, this was shown to be directly related to the second-

order cumulant density function, . The majority of in-

dices involve the summation of extra counts in a central peak

in the cross-correlation histogram. The index defined as

was used as a comparative time domain synchro-

nization index. All previously defined indices can be written as
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Fig. 8. Pooled coherence analysis for 70 pairs of spike trains with Poisson
common inputs from the paired cortical neurone simulation, with 250 common
excitatory inputs. (a) Individual coherence estimates (normal lines), jR̂ (�)j ,

corresponding to the minimum, median, and maximum values of the index Q̂
across the 70 records. Horizontal dashed line is upper 95% confidence limit
based on the assumption of independence. The bold line is the Pooled coher-
ence estimate across all 70 records (the upper 95% limit for this estimate is
4:4 � 10 ). (b) Computed value of � test statistic across the 70 records.
The horizontal dashed line is the upper 95% confidence limit under the null

hypothesis of equal coherences, (� = 98:4). (c) Pooled cumulant den-
sity derived from pooled cross spectrum. Solid horizontal lines are 95% confi-
dence limits under the assumption of independence. The value of synchroniza-
tion index derived from this is Q̂ = 16:1 � 10 , with N (T ) = 739667,
N (T ) = 739620, T = 6952960, and h = 1 in the pooled analysis.

where and are constants depending on the values

, , , , and . Therefore, the properties of

the second-order cumulant density, or cross covariance function

[11], [36], are central to our treatment of time and fre-

quency domain synchronization indices.

In our comparative framework, we have introduced a simple,

statistically rigorous method of determining the width of the

central peak by using an upper 95% confidence limit on the

estimated cumulant density function. This avoids the need to

determine the limits through visual inspection, and can easily

be incorporated into an algorithm to automatically calculate the

value of a synchronization index. The definition of the central

peak was taken as the sum of the estimated cumulant density

over the limits, and obtained using this procedure. An al-

ternative approach, consistent with accepted statistical practice,

would be to take the area above the 95% confidence limit. The

present approach, however, is consistent with previous defini-

tions of synchronization indices. Repeating the analysis using

an index based on the area above the 95% confidence limit gives

similar quantitative results to those reported here (not shown).

Both approaches provide an objective, repeatable procedure for

defining the extent of any central peak.

An important question is to what extent the sampling vari-

ability of estimates of the index is representative of the sam-

pling variability of previously defined indices. If the sampling

variability of the target firing rates is ignored then examination

of the sampling variability of can be used as an indicator of

the sampling variability of these indices. Thus, to a first approx-

imation, the sampling variability illustrated in Figs. 2, 5, and 6

also applies to the other indices. However, it is important to note

that this ignores the sampling variability of the individual firing

rates included in the definitions of the indices. A more complete

description in the case of , , , and would involve the

sampling variability of the ratio of two random variates. In the

case of the index the appropriate expression would include the

sum of two random variates, the second term depending on the

product of two random variates describing the firing rates. Ex-

pressing the sampling variability of as the ratio gave

a range of values from 0.5–1.6 for the range of firing rates ex-

amined in the simulated motoneurone data. Figs. 2 and 5 can be

used to provide indicative sampling variabilities for the compar-

ison of individual time domain indices constructed from motor

unit data with firing rates which match those illustrated.

The statistics of the input process to the paired motoneurone

model, Gaussian or Poisson spike trains, does not have a signifi-

cant effect on the sampling variability of the estimated synchro-

nization index. However, the value of was, in general, larger

with Poisson common inputs than with Gaussian common in-

puts. The simulation results also suggest the presence of a rate

dependence in synchronization indices based on . For the set

of simulation results shown in Fig. 2 the

mean value is greatest when the ratio is closest to 1.0.

There is a suggestion of a similar effect in the simulation results

in Fig. 5, and . The cortical neurone data in

Fig. 6(b), which has a fixed percentage of common excitatory

input, exhibits a strong rate dependency with increasing num-

bers of common inputs Therefore, on both theoretical grounds,

see above, and on the basis of simulation, synchronization in-

dices appear to exhibit a rate dependency. This finding is in con-

trast to [35] and [45].

The present report has in addition investigated the use of a

frequency domain approach to neural spike train synchroniza-

tion indices. A frequency domain approach based on pooled

coherence has several advantages over a direct time domain

approach. Since individual coherence estimates provide a nor-

mative measure of association, then the framework allows di-

rect statistical comparison of two (or more) coherence esti-

mates. The mathematical equivalence of the cumulant density

function, , and the cross spectrum allow a pooled cumu-

lant density estimate to be constructed from the pooled cross

spectrum, this can in turn be used to construct a population

synchronization index summarizing the strength of correlation

across several records (Figs. 7 and 8). The extended differ-

ence of coherence test provides a summary statistic describing

any significant differences in the correlation between different

reocrds. Details of the pooled coherence framework are in [3].

Further comments on the usage of pooled coherence are in [6],
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[27]. The issue of preprocessing of spike trains regarding align-

ment of the central peak prior to pooled analysis is discussed

in [25].

The individual coherence estimates in Fig. 7(a) are estimated

from the same data sets as the cumulant density estimates in

Fig. 4 (right column). The individual examples in Fig. 4 were

chosen to illustrate the two extremes and the median value of

obtained across the 70 repeat trials. It is striking that the in-

dividual coherence estimates (corresponding to these extremes

in the time domain representations) are remarkably similar in

appearance. Visual inspection of the three individual coherence

estimates in Fig. 7(a) would probably lead to the conclusion of

no significant differences in the correlation structure in the three

pairs of spike trains, as verified by the pooled analysis. Sim-

ilar conclusions can be drawn from the ordinary coherence esti-

mates for the cortical neurone data in Fig. 8(a), which represent

the two extremes and median value of across the 70 repeats.

The cumulant density and cross spectrum (from which the co-

herence is constructed) are mathematically equivalent, through

the use of the Fourier transform. This mathematical equivalence

does not, however, imply an equivalence of representation [36].

It has been suggested that coherence analysis between pairs

of motor unit recordings may be more appropriate for high-

lighting changes in the common input during voluntary contrac-

tions [39]. The present results suggest a frequency domain ap-

proach provides a more flexible and rigorous approach to neural

spike train synchronization indices.

The primary focus of this report has been on synchroniza-

tion indices applied to paired motor unit data. The inclusion

of a regular spiking cortical neurone model has demonstrated

the broader applicability of a frequency domain approach to

measures of synchronization. Recent developments in multi-

electrode recording techniques can generate large numbers of

simultaneously recorded spike trains from in vivo and in vitro

[14], [31], [34] and cultured neurone preparations [42]. The

techniques outlined above may be suitable for analysis of neural

synchronization across these different preparations.

REFERENCES

[1] L. Adams, A. K. Datta, and A. Guz, “Synchronization of motor-unit
firing during different respiratory and postural tasks in human stern-
ocleidomastoid muscle,” J. Physiol., vol. 413, pp. 213–231, 1989.

[2] A. M. H. J. Aertsen, G. L. Gerstein, M. K. Habib, and G. Palm, “Dy-
namics of neuronal firing correlation: modulation of effective connec-
tivity,” J. Neurophysiol., vol. 61, pp. 900–917, 1989.

[3] A. M. Amjad, D. M. Halliday, J. R. Rosenberg, and B. A. Conway,
“An extended difference of coherence test for comparing and com-
bining several independent coherence estimates—theory and applica-
tion to the study of motor units and physiological tremor,” J. Neurosci.

Meth., vol. 73, pp. 69–79, 1997.
[4] P. Ashby and D. Zilm, “Relationship between EPSP shape and

cross-correlation profile explored by computer simulation for studies
on human motoneurones,” Exp. Brain Res., vol. 47, pp. 33–40, 1982.

[5] ——, “Characteristics of postsynaptic potentials produced in single
motoneurones by homonymous Group I volleys,” Exp. Brain Res., vol.
4, pp. 41–48, 1982.

[6] S. N. Baker, “Pooled coherence, can overestimate the significance of
coupling in the presence of inter-experiment variability,” J. Neurosci.

Meth., vol. 96, p. 1712, 2000.
[7] F. Baldissera and B. Gustafsson, “After hyperpolarization conductance

time course in lumbar motoneurones of the cat,” Acta Physiol. Scand,
vol. 91, pp. 512–527, 1974.

[8] M. S. Bartlett, “The spectral analysis of point processes,” J. the Roy.

Statist. Soc., vol. B25, pp. 264–280, 1963.

[9] F. D. Bremner, J. R. Baker, and J. A. Stephens, “Correlation between
discharges of motor units recorded from the same and from different
finger muscles in man,” J. Physiol., vol. 432, pp. 355–380, 1991.

[10] ——, “Variation in the degree of synchrony exhibited by motor-units
lying in different finger muscles,” J. Physiol., vol. 432, pp. 381–399,
1991.

[11] D. R. Brillinger, “The identification of point process systems,” Ann.

Probability, vol. 3, pp. 909–929, 1975.
[12] ——, Statistical inference for stationary point processes (in Stochastic

Processes and Related Topics)M. I. Puri, Ed. New York: Academic,
1975, pp. 57–79.

[13] ——, “Estimation of second-order intensities of a bivariate stationary
point process,” J. Roy. Statist. Soc., vol. B38, pp. 60–66, 1976.

[14] A.-H. Chen, Y. Zhou, H.-Q. Gong, and P.-J. Liang, “Firing rates and
dynamic correlated activities of ganglion cells both contribute to retinal
information processing,” Brain Res., vol. 1017, pp. 13–20, 2004.

[15] B. A. Conway, D. M. Halliday, and J. R. Rosenberg, “Detection of
weak synaptic interactions between single Ia afferent and motor-unit
spike trains in the decerebrate cat,” J. Physiol., vol. 471, pp. 379–409,
1993.

[16] T. C. Cope, E. E. Fetz, and M. Matsumura, “Cross-correlation assess-
ment of synaptic strength of single Ia fiber connections with triceps
surae motoneurones in cats,” J. Physiol., vol. 390, pp. 161–188,
1987.

[17] D. R. Cox, “On the estimation of the intensity function of a stationary
point process,” J. Roy. Statist. Soc., vol. B27, pp. 322–327, 1965.

[18] D. R. Cox and P. A. W. Lewis, “Multiple point processes,” in Proc. 6th

Berkeley Symp. Mathematics, Statistics and Probability, L. M. LeCam,
J. Neyman, and E. L. Scott, Eds., Berkeley, 1972, vol. 3, pp. 401–448.

[19] A. K. Datta, S. F. Farmer, and J. A. Stephens, “Central nervous path-
ways underlying synchronization in human motor-unit firing studied
during voluntary contractions,” J. Physiol., vol. 432, pp. 401–425,
1991.

[20] A. K. Datta and J. A. Stephens, “Synchronization of motor-unit ac-
tivity during voluntary contractons in man,” J. Physiol., vol. 422, pp.
397–419, 1990.

[21] P. H. Ellaway and K. S. K. Murthy, “The origins and characteristics of
cross-correlated activity between -motoneurones in the cat,” Quarter.

J. Exp. Physiol., vol. 70, pp. 219–232, 1985.
[22] ——, “The source and distribution of short-term synchrony between

-motoneurones in the cat,” Quarter. J. Exp. Physiol., vol. 70, pp.
233–247, 1985b.

[23] S. F. Farmer, F. D. Bremner, D. M. Halliday, J. R. Rosenberg, and J.
A. Stephens, “The frequency content of common synaptic inputs to
motoneurones studied during voluntary isometric contractions in man,”
J. Physiol., vol. 470, pp. 127–155, 1993.

[24] P. A. Getting, “Reconstruction of small neural networks,” in Methods in

Neuronal Modeling, C. Koch and I. Segev, Eds., 1st ed. Cambridge,
MA, USA: MIT Press, 1989, pp. 177–194.

[25] D. M. Halliday, B. A. Conway, S. F. Farmer, and J. R. Rosenberg,
“Load-independent contributions from motor-unit synchronization to
human physiological tremor,” J. Neurophysiol., vol. 82, pp. 664–675,
1999.

[26] D. M. Halliday and J. R. Rosenberg, “Time and frequency domain
analysis of spike train and time series data,” in Modern Techniques in

Neuroscience Research, U. Windhorst and H. Johansson, Eds. Berlin,
Germany: Springer-Verlag, 1999, ch. 18, pp. 503–543.

[27] ——, “On the application, estimation and interpretation of coherence
and pooled coherence,” J. Neurosci. Meth., vol. 100, pp. 173–174,
2000.

[28] D. M. Halliday, J. R. Rosenberg, A. M. Amjad, P. Breeze, B. A.
Conway, and S. F. Farmer, “A framework for the analysis of mixed
time series/point process data—theory and application to the study of
physiological tremor, single motor unit discharges and electromyo-
grams,” Prog. Biophys. Mol. Biol., vol. 64, pp. 237–278, 1995.

[29] J. J. B. Jack, D. Noble, and R. W. Tsien, Electric Current Flow in

Excitable Cells. Oxford, U.K.: Clarenden, 1975.
[30] Kirkwood and T. A. Sears, “The synaptic connections to intercostal

motoneurones as revealed by the average common excitation poten-
tial,” J. Physiol., vol. 275, pp. 103–134, 1978.

[31] M. Laubach, J. Wessberg, and M. A. L. Nicolelis, “Cortical ensemble
activity increasingly predicts behavior outcomes during learning of a
motor task,” Nature, vol. 405, pp. 567–571, 2000.

[32] E. L. Logigian, M. M. Wierzbicka, F. Bruyninckx, A. W. Wiegner, B.
T. Shahani, and R. R. Young, “Motor-unit synchronization in physio-
logic, enhanced physiologic, and voluntary tremor,” Ann. Neurol., vol.
23, pp. 242–250, 1988.



1066 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 6, JUNE 2006

[33] P. B. C. Matthews, “Relationship of firing intervals of human motor
units to the trajectory of post-spike after-hyperpolarization and
synaptic noise,” J. Physiol., vol. 492, pp. 597–628, 1996.

[34] M. A. L. Nicolelis and S. Ribeiro, “Multielectrode recordings: the next
steps,” Curr. Opinion Neurobiol., vol. 12, pp. 602–606, 2002.

[35] M. A. Nordstrom, A. J. Fuglevand, and R. M. Enoka, “Estimating the
strength of common input to human motoneurones from the cross-cor-
relogram,” J. Physiol., vol. 453, pp. 547–574, 1992.

[36] J. R. Rosenberg, A. M. Amjad, P. Breeze, D. R. Brillinger, and D.
M. Halliday, “The Fourier approach to the identification of functional
coupling between neuronal spike trains,” Prog. Biophys. Mol. Biol., vol.
53, pp. 1–31, 1989.

[37] J. R. Rosenberg, D. M. Halliday, P. Breeze, and B. A. Conway, “Iden-
tification of patterns of neuronal connectivity—partial spectra, partial
coherence, and neuronal interactions,” J. Neurosci. Meth., vol. 83, pp.
57–72, 1998.

[38] T. A. Sears and D. Stagg, “Short-term synchronization of intercostal
motoneurone activity,” J. Physiol., vol. 263, pp. 357–381, 1976.

[39] J. G. Semmler, K. W. Kornatz, and R. M. Enoka, “Motor Unit coher-
ence during isometric contractions is greater in a hand muscle of older
adults,” J. Neurophysiol., vol. 90, pp. 1346–1349, 2003.

[40] S. K. Srinivasan, Stochastic Point Processes and their Applications.
London, U.K.: Griffin, 1974, Monograph no. 34.

[41] A. Stuart and J. K. Ord, Kendall’s Advanced Theory of Statistics.

Volume 1 Distribution Theory. London, U.K.: Arnold, 1994.
[42] T. Tateno, Y. Jimbo, and H. P. C. Robinson, “Spatio-temporal cholin-

ergic modulation in cultured networks of rat cortical neurons: sponta-
neous activity,” Neuroscience, vol. 134, pp. 425–437, 2005.

[43] T. W. Troyer and K. D. Miller, “Physiological gain leads to high ISI
variability in a simple model of a cortical regular spiking cell,” Neural

Comput., vol. 9, pp. 971–983, 1997.

[44] D. L. Tuck, “Investigation of Intercostal Neuronal Intracellular Pro-
cesses and Connectivity by Signal Analysis and Computer Simulation,”
Ph.D. thesis, Univ. London, London, U.K., 1977.

[45] J. Ushiba, Y. Tomitaa, and Y. Masakadob, “Synchronization analysis
using joint peri-stimulus time histograms for human motor units,” J.

Neurosci. Meth., vol. 120, pp. 163–171, 2002.
[46] C. W. Vaughan and P. A. Kirkwood, “Evidence from motoneurone syn-

chronization for disynaptic pathways in the control of inspiratory mo-
toneurones in the cat,” J. Physiol., vol. 503.3, pp. 673–689, 1997.

David M. Halliday, photograph and biography not available at the time of
publication.

J. R. Rosenberg, photograph and biography not available at the time of
publication.

P. Breeze, photograph and biography not available at the time of publication.

B. A. Conway, photograph and biography not available at the time of
publication.


