
This is a repository copy of A model for time of day and mode choice using error 
components logit..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/2546/

Article:

de Jong, G., Daly, A.J., Pieters, M. et al. (2 more authors) (2003) A model for time of day 
and mode choice using error components logit. Transportation Research E, 39 (3). pp. 
245-268. 

https://doi.org/10.1016/S1366-5545(02)00037-6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

See Attached 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


   

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/

 
 

 
 

Institute of Transport Studies
University of Leeds 

 
 
This is an uncorrected proof version of an article published in Transportation 
Research Part E. It has been peer reviewed but does not contain the final articles 
corrections. 
  
White Rose Repository URL for this paper: 
http://eprints.whiterose.ac.uk/2546 
 

 
 
Published paper 
de Jong, G.; Daly, A.J.; Pieters, M.; Vellay, C.; Hofman, F. (2003) A model for 
time of day and mode choice using error components logit. Transportation 
Research. Part E: Logistics and Transportation Review, 39(3), pp.245-268. 

 
 
 

 

White Rose Consortium ePrints Repository 
eprints@whiterose.ac.uk 

 

http://www.its.leeds.ac.uk/
http://eprints.whiterose.ac.uk/
http://www.its.leeds.ac.uk/


U
N
C
O
R
R
EC
T
ED

PR
O
O
FA model for time of day and mode choice using

error components logit

Gerard de Jong a,*, Andrew Daly a, Marits Pieters a, Carine Vellay a,
Mark Bradley b, Frank Hofman c

a RAND Europe, Newtonweg 1, 2333 CP Leiden, The Netherlands
b Mark Bradley Research and Consulting, 129 Natoma Ave, Suite C, Santa Barbara, CA 93101, USA

c Transport Research Centre, P.O. Box 1031, 3000 BA Rotterdam, The Netherlands

Received 31 January 2002; received in revised form 15 July 2002; accepted 18 July 2002

Abstract

11 The severity of road congestion not only depends on the relation between traffic volumes and network

12 capacity, but also on the distribution of car traffic among different time periods during the day. A new error

13 components logit model for the joint choice of time of day and mode is presented, estimated on stated

14 preference data for car and train travellers in The Netherlands. The results indicate that time of day choice

15 in The Netherlands is sensitive to changes in peak travel time and cost and that policies that increase these

16 peak attributes will lead to peak spreading.

17 � 2002 Published by Elsevier Science Ltd.

18 Keywords: Time of day; Peak spreading; Error components model; Mixed multinomial logit model

19 1. Introduction

20 In the Netherlands, the Dutch National Model System for traffic and transport (LMS) has been

21 used since 1990 to predict the responses of travellers to a wide range of developments, such as

22 changing travel times (e.g. from congestion) or the imposition of time-dependent road user

23 charging. One of the results of these simulations has been that the choice of when to travel (time of

24 day choice) greatly affects the amount of congestion on the road network and that policies aiming

25 at spreading out peak travel can be effective instruments to relieve congestion.
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26 However, these results rely to a large extent on a time of day choice sub-model within the

27 Dutch National Model System, which is more than 10 years old. Moreover, this sub-model uses a

28 rather simple and restrictive specification: only three time periods are distinguished within a

29 working day, there are no links between the outward and inward leg of the same tour, and the

30 model is multinomial logit (MNL). Since then, congestion has increased considerably, casting

31 doubt about whether the old specifications will still hold, while modelling capabilities also im-

32 proved.

33 In this paper, a new model for the joint choice of mode and time of day is presented and es-

34 timated on new stated preference data. The model is not restricted to shifts between large time

35 periods and follows the error components logit (EClogit; also called mixed MNL) specification.

36 Using this type of model, one can take account of the different degrees of substitution between

37 time periods (e.g. greater substitution between nearby periods than between periods further away

38 from each other) and between time of day alternatives and alternative modes. It is a tour-based

39 model, in which outbound time of travel, duration of the activity at the destination and mode

40 choice are determined simultaneously.

41 This new model was developed to become the basis of a new time of day choice sub-module of

42 the Dutch National Model System. It also covers public transport users, whereas the old module

43 only referred to the time of day choice of car drivers. 1

44 The paper first describes the main outcomes of a literature survey into time of day choice

45 (Section 2). Section 3 provides information on the stated preference survey. The estimation results

46 for the EClogit model are in Section 4. Simulation results for the impact of changes in travel time

47 on mode and period choice can be found in Section 5. Finally, Section 6 contains conclusions and

48 recommendations for further work.

49 2. The literature on time of day choice models

50 2.1. Equilibrium scheduling theory and discrete choice models

51 Most empirical studies into the choice of time of day have considered only the demand of

52 travellers for travel at different points of time or periods in time (mostly using discrete time pe-

53 riods) for given travel time and/or travel cost. Impacts on congestion and feedback to choice after

54 assignment have usually been ignored.

55 An important exception is the literature, largely theoretical, building on the highly original

56 contribution by Vickrey (1969). In his model, Vickrey assumes a single bottleneck (one link). For

57 this bottleneck situation commuters decide on their time of travel (which can be different from the

58 official work starting time because of a desire to travel at a less congested time) and the demand-

59 supply equilibrium can be determined explicitly. Hyman (1997) and van Vuren et al. (1999) have

1 This paper is based on a research project that RAND Europe has carried out together with Veldkamp and Mark

Bradley Research and Consulting (MBRC) for the Transport Research Centre (AVV) of the Dutch Ministry of

Transport, Public Works and Water Management. A previous version of this paper was presented at the European

Transport Conference 2001 in Cambridge.
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60 called these type of models �equilibrium scheduling theory� (EST). The basic trade-off for the

61 travellers, which is the same for both the EST models following Vickrey and the discrete choice

62 models following Small (1982), is between the disutility of arriving too early or too late (sched-

63 uling disbenefits, measured in clock time) and the disutility of travel time (measured in travel time,

64 that is duration of travel).

65 The following formulation of this problem is based on Vickrey (1969):

V ðtÞ ¼ aT ðtÞ þ bmaxð0; ðPAT� t � T ðtÞÞÞ þ cmaxð0; ðt þ T ðtÞ � PATÞÞ ð1Þ

67 In which, V ðtÞ is the disutility (cost) to traveller with departure time t; T ðtÞ is the travel time

68 associated with a departure at time t; PAT is the preferred arrival time at destination; a, b, c are

69 parameters to be estimated.

70 A traveller arriving precisely at his preferred arrival time will have no disutility from scheduling

71 (second and third term are equal to zero), but T ðtÞ might be substantially higher. In the equi-

72 librium of the Vickrey model (assuming homogeneous travellers with respect to preferred arrival

73 time) the highest value of T ðtÞ will be at preferred arrival time. Arriving too soon (second term)

74 will yield a disutility, as will arriving too late (third term), but the disutility gradients might be

75 different (b can be different from c). Travel cost could be included in T ðtÞ, e.g. for tolls varying by
76 time of day.

77 Whether departure time or arrival time is modelled does not really matter, as long as there is no

78 unanticipated congestion. In the Vickrey model, as in most time of day models, it is assumed that

79 the travellers are aware of the amount of congestion and its impact on travel times (e.g. from daily

80 experience) and that they may respond to this by changing their departure time, which without

81 unanticipated congestion, translates into an identical change in arrival time.

82 Some proposals on how to extend these theoretical models for single bottlenecks or simple

83 networks to networks as used in operational transport models or even to dynamic assignment can

84 be found in Bates (1996) and Hague Consulting Group et al. (1998). An empirical application of

85 EST is the HADES (heterogeneous arrival and departure times based on EST) model (van Vuren

86 et al., 1999; Hague Consulting Group et al., 2000). These models for time of day can be combined

87 with existing assignment packages.

88 In Hague Consulting Group et al. (1998, 2000) the conclusion was drawn that HADES would

89 probably be the final stage of EST development. Further developments are most likely to con-

90 centrate on an approach with discrete choice between time periods: �The alternative (to EST)

91 based on choice modelling seems to offer the best potential� (Hague Consulting Group et al.,

92 2000). The general finding was that EST works best for small changes (5–10 min) in departure

93 time whereas the choice approach is more suited for longer periods.

94 2.2. Combining time of day with other choices

95 The general rule in previous time of day models has been that no other choices are studied

96 simultaneously, but some exceptions can be found. The EST studies include aggregate assignment

97 as well as the demand-side component of time of day. Mannering (1989), Mahmassani et al.

98 (1991) and Khattak et al. (1995) have developed models that not only explained time of day, but

99 also the choice of route (by individual travellers, not the supply side problem of finding travel

100 times that are consistent with the assignment of aggregate demand to the available routes at given
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101 capacities). Wang (1996) studied time of day and the scheduling of all daily activities and COWI

102 et al. (1997) developed a model for long distance travel through the Storebælt corridor in Den-

103 mark for the choice of mode/route, travel day and time of day.

104 Three models could be found in the literature for the joint choice of travel mode and time of

105 day. Of these three, Hendrickson and Plank (1984) used the most restrictive assumptions on the

106 substitution patterns (MNL). A high degree of flexibility can be found in Bhat (1998a,b), which

107 use EClogit and ordered generalised extreme value (OGEV) models.

108 Havnetunnelgruppen (1999) (see also Paag et al., 2000) used nested logit (NL) for route/time of

109 day choice, and also used EClogit. These models for the Copenhagen area examined route choice

110 (toll tunnel or untolled bridge) and time of day switching (two alternatives: switch from peak to

111 off-peak, switch from off-peak to peak) for car travellers. The error components models reflected

112 the relative elasticities of time-switching and route choice, in addition to random time and cost

113 coefficients and repeated measurement corrections.

114 For the Dutch National Model System LMS, a model of choice of time of day was developed in

115 1989/1990 using stated preference data and was integrated with the other choices represented in

116 the model system (e.g. mode and destination) using professional judgement. While this model has

117 been successful in modelling policy options, its integration is clearly open to doubt, while the data

118 on which it is based are from 1989 and a need for replacement is becoming more urgent. It is to

119 meet this need that the present work has been undertaken.

120 About half of the time of day studies in the literature deal only with commuting. The reason for

121 this is of course that the studies focus on congestion (or time-varying tolls); without these there

122 would be no reason for arriving at other than the preferred arrival times. In many countries

123 congestion is predominantly a peak phenomenon, and commuting traffic is the most important

124 travel purpose in the peak periods. Nevertheless there are also studies focussing on other travel

125 purposes (e.g. Bhat, 1998a,b) or dealing with the time of day behaviour for all purposes.

126 2.3. Model types used in time of day models

127 One of the disadvantages of using discrete choice models for time of day is that time periods are

128 likely to be correlated. Especially if time periods are short, this situation becomes quite likely;

129 intuitively speaking, the consecutive time periods then become very similar, not only with respect

130 to the measured attributes but also with regard to the unmeasured influences in the disturbance

131 terms. This problem does not appear to occur in a deterministic continuous time model, such as

132 Vickrey�s; in deterministic models the even stronger assumption of no unmeasured interpersonal

133 variation is made. Most empirical models with a choice between discrete time periods use MNL in

134 which the error terms are assumed to be independent (see Table 1). The possible dependence

135 between similar alternatives can therefore not be accounted for. Some of the models used are NL,

136 also called tree logit. In the NL model a uniform amount of correlation within a nest of alter-

137 natives is allowed, but alternatives not located in the same nest are uncorrelated.

138 The problem becomes even more complicated if mode choice is added to the time of day choice.

139 For many travel purposes it is natural to expect that there will be more correlation (and substi-

140 tution) between time of day alternatives than between time of day and mode alternatives. For the

141 combination of mode and time of day, NL might still be an appropriate solution, but for the

142 correlation within time of day alternatives, more flexible forms would be preferable.
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143 Small (1982) noted the problem of possibly correlated error terms and designed a test to see

144 whether adjacent alternatives are closer substitutes (higher correlation) than pairs of non-adjacent

145 alternatives. In a later paper, Small (1987) designed a more flexible model than the MNL model

146 that he had used in 1982: the OGEV model. This model belongs to the family of random utility

147 models proposed by McFadden (1978, 1981) and known as generalised extreme value (GEV)

148 models.

149 Both MNL and NL are special cases of the GEV model. The OGEV model allows for a

150 correlation parameter, for a pair of alternatives, which depends on the distance between the al-

151 ternatives along some natural ordering, such as the clock time in time of day choice. The highest

152 correlation is expected to be found for adjacent alternatives. Alternatives at great distance from

153 each other will be independent as in the common MNL. In practice the number of free parameters

Table 1

Model types used in time of day studies

Studies Discrete (D)

or continuous

(C) time

Stated preference

(SP) or revealed

preference (RP) data

Model type used

in time of day

Vickrey (1969) C – Deterministic

Small (1982) D RP MNL

Small (1987) D RP MNL, NL and OGEV

Hendrickson and Plank (1984) D RP MNL

Arnott et al. (1990a,b, 1994) C – Deterministic

Mannering (1989) D RP Poisson (for number of Changes)

Mahmassani et al. (1991), Hatcher and

Mahmassani (1992), Jou and Mahmassani

(1994) and Liu and Mahmassani (1998)

D RP Poisson (for number of changes);

MNP (for time of day on

consecutive days)

Chin (1990) D RP MNL (NL did not converge)

Bates et al. (1990) and Martin Voorhees

Associates (1990)

D SP MNL

Daly et al. (1990) and Hague Consulting

Group (1991)

D SP MNL

Polak and Jones (1994) D SP NL

Chin et al. (1995) D RP Incremental logit (MNL)

Accent and Hague Consulting Group

(1995)

D SP MNL

Khattak et al. (1995) D SP Ordered probit (for changing)

De Palma and Rochat (1996) C RP Ordered probit (number of changes)

Wang (1996) C RP Weibull and log-logistic hazard

COWI et al. (1997) D SP NL

De Palma et al. (1997) D SP OLS & Tobit (for change in minutes)

Bhat (1998a) D RP MNL, NL and OGEV

Bhat (1998b) D RP MNL and EClogit

Bradley et al. (1998) D RP NL

Havnetunnelgruppen (1999) D SP NL and EClogit

van Vuren et al. (1999) and Hague

Consulting Group et al. (2000)

C RP Deterministic, with segmentation;

partially endogenous

MNL: multinomial logit, NL: nested logit, OGEV: ordered generalised extreme value, OLS: ordinary least squares and

EClogit: error components logit.
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154 needs to be reduced to allow maximum likelihood estimation (with non-standard software). The

155 simplest OGEV arises when all correlation parameters are equal and apply only to adjacent pairs

156 of alternatives. When Bhat (1998a) estimated a model with MNL for mode choice and OGEV for

157 time of day choice with two different correlation parameters (one more than in NL) he found that

158 the MNL–OGEV performed significantly better than the MNL and the NL model. He concluded

159 that the latter two specifications lead to biased level-of-service estimates and inappropriate

160 evaluations of policy measures.

161 An even more general model than OGEV was presented by Koppelman and Wen (1999): the

162 paired combinatorial logit (PCL) model. This model allows for a different correlation between

163 each pair of alternatives. This correlation does not depend on the distance between the alterna-

164 tives as in OGEV. This could be a useful step forward for modelling time of day because not only

165 can we assume that time periods that follow shortly after other time periods will be correlated, but

166 also similar but faraway periods (e.g. busiest hour of morning and evening peak) could be highly

167 correlated. The OGEV is a special case of the PCL. Koppelman and Wen also use the PCL in

168 estimation (non-standard software), though not on time of day choice but mode choice.

169 PCL has limits, but there are further more general models, even within the GEV family (Daly,

170 2001). An even more general discrete choice model is the multinomial probit (MNP) which could

171 involve estimating a complete variance–covariance matrix for all alternatives. The major disad-

172 vantage of MNP is that with many alternatives (meaning 3 or more), estimation is very cum-

173 bersome due to the multiple integrals in the likelihood function. Therefore researchers have been

174 investigating the possibilities––with some success––of simulating the likelihood function or the

175 moments of the distribution by drawing from statistical distributions (e.g. Bolduc, 1999). Also the

176 number of free parameters in the variance–covariance matrix in most empirical work is reduced

177 considerably. Liu and Mahmassani (1998) used MNP for their time of day and route choice model

178 for consecutive days, without applying such simulation methods, but they have access to a Cray

179 supercomputer.

180 The EClogit or mixed MNL model has been known for some time (Cardell and Dunbar, 1980;

181 Ben-Akiva and Bolduc, 1991) and was put forward by several authors (e.g. McFadden and Train,

182 1997; Bhat, 1998b) in the late nineties as a highly flexible, yet practical, model type. It is no less

183 general than the MNP model in that it can also estimate a complete variance–covariance matrix.

184 Unlike MNP it can also handle asymmetric disturbances. EClogit can approximate the MNP;

185 MNP is the limiting case of EClogit. According to McFadden and Train (1997), EClogit can

186 approximate as closely as one pleases not only MNP but also any other discrete choice model

187 based on random utility maximisation, including OGEV and PCL. Therefore, although MNP,

188 OGEV and PCL are not special cases of EClogit, EClogit can serve as an approximation for these.

189 We therefore have chosen to use EClogit to model mode and time of day choice (also see Section

190 4).

191 The basic idea of any error components model is that it parameterises the variance–covariance

192 matrix, by adding components to the MNL model. The utility function in the MNL is:

Uk ¼
X

r

brxkr þ ek ð2Þ
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194 In which, Uk is the utility for decision-maker from alternative k; br is the parameter to be esti-

195 mated for rth attribute; ek is the error term; follows extreme value type 1 distribution; xkr is the

196 measured attribute r for alternative k.

197 In the EClogit model, the utility function becomes:

Uk ¼
X

r

brxkr þ
X

s

X

t

gsw
k
stnt þ ek ð3Þ

199 In Eq. (3) the following new components are added to MNL: nt is the error component, dis-

200 tributed f ð0; 1Þ, for which there can be several error components; gs is the parameter to be es-

201 timated; wk a general weighting matrix, based on data and/or fixed by the analyst, for alternative

202 k, with rows s corresponding to the coefficients g and columns t corresponding to the error

203 components n.

204 If n and e follow the multivariate normal distribution, this model is MNP. In the EClogit

205 specification with e Gumbel distributed however, the choice probabilities conditional on the error

206 components take the familiar MNL form. The unconditional choice probabilities are derived by

207 integration of the conditional MNL choice probabilities over the distribution of the error com-

208 ponents. The latter distribution is usually evaluated using Monte Carlo simulation (drawing from

209 the distribution of n). The commonly used estimation method is called maximum simulated

210 likelihood. Different assumptions on the structure of the variance–covariance matrix for error

211 components can lead to different model specifications:

212 • MNL and NL are a special case of EClogit (NL by approximation).

213 • The varying and random coefficients model can be written as EClogit models.

214 • The model can be used for data sets with repeated measurements for the same individual (it is

215 therefore an alternative to estimating the t-values using the Jack-knife method, providing we

216 know the structure of the interpersonal variation) by including individual-specific components;

217 the same specification can be used for panel data.

218 • It can approximate all other known discrete choice random utility models (e.g. MNP, OGEV

219 and PCL).

220 3. The stated preference survey

221 The population from which respondents were recruited consists of persons travelling in the

222 extended peak periods (6.00–11.00 and 15.00–19.00 h during working days) as car drivers or train

223 passengers within The Netherlands. Respondents were recruited for participation in the actual

224 stated preference survey from an existing panel or from short recruitment interviews at train

225 stations and at a petrol station beside a motorway. The estimation sample contains information

226 on more than 1000 travellers.

227 The stated preference survey itself was done by computer-assisted personal interviews (pro-

228 grammed in the WinMint software) at the residence of the respondent. Target numbers of in-

229 terviews were used for strata by travel purpose and mode. During the stated preference interview,

230 information was gathered first on attributes of a specific tour that the respondent made recently
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231 within a pre-specified mode and purpose combination. This information was used to customise

232 the stated preference experiments.

233 Three different stated preference questionnaires were developed:

234 (1) a questionnaire for home-based (HB) tours by car drivers (travel purposes can be home to

235 work, HB business or other, including education);

236 (2) a questionnaire for non-home-based (NHB) business trips by car drivers; and

237 (3) a questionnaire for HB tours by train travellers (purposes can be home to work, business, ed-

238 ucation and other).

239 The stated preference questionnaires for car drivers (both the one for tours and the one for

240 trips) contain two choice experiments:

241 (1) a first experiment without road pricing focussing on the trade-off between departure time and

242 travel time (especially influenced by congestion); and

243 (2) a second experiment with peak pricing.

244 For the interviews with train passengers, a similar two-experiment structure was set up:

245 (1) the first experiment deals with choices using the present fare system; and

246 (2) the second experiment includes extra peak charges (also taking into account that there are re-

247 duced fares for travel after 9.00 AM already).

248 In each of the stated preference experiments three or four alternatives were presented on the

249 same screen:

250 • The first alternative contains departure time options close to the observed departure times (the

251 same or a little earlier/later).

252 • The second alternative contains departure times which are considerably earlier (in the road

253 pricing experiments all travel in the morning takes place before the morning peak charging pe-

254 riod; the car trips in the afternoon might coincide with the afternoon peak charges; in the train

255 peak charging experiments the travel takes place before the peak charging period, which refers

256 to the morning peak only).

257 • The third alternative contains departure times that are considerably later, to travel after the end

258 of the morning peak charging (using the same rules as mentioned above for earlier departure

259 times).

260 • The fourth alternative refers to another mode than that observed (public transport for car trav-

261 ellers and car for train travellers) and is presented only to travellers who state they could use the

262 alternative mode.

263 The attributes presented for these alternatives include:

264 (1) departure time from home;

265 (2) arrival time at destination;
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266 (3) departure time from destination;

267 (4) arrival time at home;

268 (5) tour travel time;

269 (6) duration of stay at destination;

270 (7) travel cost not including (extra) peak charge;

271 (8) peak charge (second experiment only);

272 (9) probability of a seat (train only); and

273 (10) frequency (train only).

274 The stated preference survey contains both relatively small (10–20 min) shifts in departure time

275 and large shifts (1 h or more).

276 By presenting the experiments this way, we have included the options that a respondent has in

277 reality (and thereby made the experiment look as much as possible like �reality�) when facing

278 (severe) congestion or peak pricing: staying with the chosen mode at or close to the chosen de-

279 parture times, travelling earlier, travelling later and changing mode (stop making this tour can

280 also be chosen). Furthermore, by presenting an alternative which is the same as the observed

281 situation, or close to it on each screen, the respondent is reminded of the present circumstances

282 with all the information on preferences and constraints that it contains, so that the choice will be

283 �tied to reality�. The number of screens per experiment is fixed at eight (giving eight choice ob-

284 servations for the experiment without peak pricing and eight for the experiment with peak pricing

285 per respondent, all 16 screens with up to four alternatives per screen).

286 The four-alternatives-on-a-screen presentation departs from the standard presentation in

287 transport applications of stated preference with binary choices. Comparing four alternatives at the

288 same time is more difficult for the respondents, but recent experiments have shown that re-

289 spondents are capable of giving consistent and plausible answers to complicated choice tasks

290 (Louviere and Hensher, 2000). In the pilot we tested whether respondents can cope with this task

291 of a four alternative comparison, and concluded that this was the case.

292 4. Estimation results

293 4.1. Model specification and estimation method

294 To account for the possible link between the outward and return legs of the same tour, we

295 presented alternatives to respondents that refer to both legs of a tour. For commuters this will

296 often coincide with a picture of the entire day. The link between both tour legs depends on the

297 duration of the activity performed at the tour destination. If the activity duration is fixed, a shift

298 in the time of travel for the outward leg will also affect the time of travel of the return leg.

299 However it would be very unsatisfactory to use the behavioural assumption that the time of day

300 choice for the return leg will follow automatically from decision-making about the time of day for

301 the outward leg. Rational or boundedly rational behaviour will imply simultaneous decision-

302 making about the time of day of both tour legs and activity duration. We estimated:
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303 (1) simultaneous models for time of day choice for both tour legs; and

304 (2) simultaneous models for time of day choice for the outward trip and activity duration, with

305 penalties for shorter or longer than preferred activity duration (following Polak and Jones,

306 1994).

307 Polak and Jones (1994) also used the tour concept for time-of-day choice instead of the

308 commonly used trip concept. In their paper they establish a link between the timing decision for

309 both legs of the tour and the activity scheduling, in which �. . . the timing of travel follows as a

310 consequence of the interplay between time varying patterns of destination utility and travel cost�.

311 This concept was implemented in the APRIL (assessment of pricing of roads in London) model to

312 assess road pricing schemes in London.

313 These specifications did not lead to completely identical model results, presumably because of

314 slight inconsistencies in preferences for activity duration and arrival time at home. The second

315 category of models performed best for all four travel purposes, and was used in the models

316 presented below. The utility functions of the estimated models are based on the Vickrey–Small

317 utility functions (Eq. (1)), with scheduling penalty terms measured in minutes.

318 For a person observed making a car tour for some travel purpose, the utility functions con-

319 sidered in the estimations include:

U0¼aCARTIME0þboEARLY0þcoLATE0þbrREARLY0þcrRLATE0þdCARCOST0þ���

U1¼aCARTIME1þboEARLY1þbrREARLY1þdCARCOST1þg1TIMDIF1n1þ���

U2¼aCARTIME2þcoLATE2þcrRLATE2þdCARCOST2þg2TIMDIF2n2þ���

U3¼aPTTIME3þb
oEARLY3þcoLATE3þb

rREARLY3þcrRLATE3

þdPTCOST3þg3n3þ���

ð4Þ

321 Many more variables (especially socio-economic attributes) have in practice been included, but

322 are not shown in this example to simplify the presentation. All utility functions include error terms

323 that follow the extreme value type I distribution.

324 The subscripts 0, 1, 2, 3 refer to the four alternatives presented on a screen in the stated

325 preference survey:

326 (1) observed mode and time of day;

327 (2) observed mode, considerably earlier;

328 (3) observed mode, considerably later; and

329 (4) different mode, observed time of day.

330 Furthermore a, b, c, d are the coefficients to be estimated (these can also be alternative-specific);

331 the superscripts o and r denote the outward and the return leg; CARTIME is the travel time by

332 car for both tour legs (minutes); CARCOST is the travel cost by car for both tour legs (guilders);

333 PTTIME is the travel time by public transport for both tour legs (minutes); PTCOST is the travel

334 cost by public transport for both tour legs (guilders); EARLY is the early schedule penalty for the

335 outward leg: the difference in minutes between the preferred departure time and the presented

336 departure time, if presented departure time is before the preferred departure time; otherwise zero;
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337 LATE is the late schedule penalty for the outward leg: the difference in minutes between the

338 presented departure time and the preferred departure time, if presented departure time is after the

339 preferred departure time; otherwise zero; REARLY is the early schedule penalty for the return

340 leg: the difference in minutes between the preferred departure time and the presented departure

341 time, if presented departure time is before the preferred departure time; otherwise zero; RLATE is

342 the late schedule penalty for the return leg: the difference in minutes between the presented de-

343 parture time and the preferred departure time, if presented departure time is after the preferred

344 departure time; otherwise zero; g1, g2 and g3 are the coefficients for the error components to be

345 estimated; TIMEDIF1 and TIMEDIF2 are the difference between presented time of day and

346 observed time of day in minutes; n1, n2 and n3 are error components drawn from a standard

347 normal distribution.

348 For a person observed making a tour by train the utility functions (again for the four alter-

349 natives presented on a screen) could for example be:

U4 ¼ aPTTIME4þboEARLY4þ coLATE4þbrREARLY4þ crRLATE4þ dPTCOST4þ�� �

U5 ¼ aPTTIME5þboEARLY5þbrREARLY5þ dPTCOST5þ g1TIMDIF5n1þ �� �

U6 ¼ aPTTIME6þ coLATE6þ crRLATE6þ dPTCOST6þ g2TIMDIF6n2þ �� �

U7 ¼ aCARTIME7þboEARLY7þ coLATE7þbrREARLY7þ crRLATE7

þ dCARCOST7þ g3n3þ �� �

ð5Þ

351 Finally for a person observed making a car trip (only for NHB business travel), the utility

352 functions are:

U8 ¼ aCARTIME8 þ boEARLY8 þ coLATE8 þ dCARCOST8 þ � � �

U9 ¼ aCARTIME9 þ boEARLY9 þ dCARCOST9 þ g1TIMDIF9n1 þ � � �

U10 ¼ aCARTIME10 þ coLATE10 þ dCARCOST10 þ g2TIMDIF10n2 þ � � �

U11 ¼ aPTTIME11 þ boEARLY11 þ coLATE11 þ dPTCOST0 þ g3n3 þ � � �

ð6Þ

354 Here, CARTIME, CARCOST, PTTIME and PTCOST refer to a trip, not a tour.

355 Some respondents have a choice between three alternatives, because the alternative mode was

356 not available (e.g. if no public transport available, or train users without a driving licence). Be-

357 cause we condition on car availability, we did not include a car availability measure, such as the

358 cars to licences ratio, in the utility functions.

359 The value of time (VOT) is defined as a=d. This gives the VOT in guilders/minute. After mul-

360 tiplying by 60 we obtain the VOT in guilders/hour. Furthermore we shall calculate trade-off ratios

361 for the scheduling penalties versus the travel time coefficients:

362 (1) being early on outward leg (bo=a);
363 (2) being early on return leg (br=a);
364 (3) being late on outward leg (co=a); and
365 (4) being late on return leg (cr=a).
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366 These ratios give the importance of being 1 min early or late in terms of a minute travel time. If

367 these ratios are between zero and one, a minute scheduling delay is not as bad as a minute travel

368 time.

369 The error components that were tested (the first three are represented in the above equations) are:

370 • A component that is proportional to the shift in departure time in the considerably earlier al-

371 ternative (U1, U5, U9, using the notation as in the utility functions in Eqs. (4)–(6)); the greater

372 the shift, the lower the correlation between alternatives should be.

373 • A component that is proportional to the shift in departure time in the considerably later alter-

374 native (U2, U6, U10); the greater the shift, the lower the correlation between alternatives should

375 be.

376 • A component for mode shift (U3, U7, U11); to test the hypothesis that shifting time is easier than

377 shifting mode.

378 • A component that is proportional to the change in cost in the considerably earlier alternative

379 (U1, U5, U9); the greater the shift, the lower the correlation between alternatives should be.

380 • A component that is proportional to the change in cost in the considerably later alternative (U2,

381 U6, U10); the greater the shift, the lower the correlation between alternatives should be.

382 • A component that is proportional to the change in travel time in the considerably earlier alter-

383 native (U1, U5, U9); the greater the shift, the lower the correlation between alternatives should

384 be.

385 • A component that is proportional to the change in travel time in the considerably later alterna-

386 tive(U2, U6, U10); the greater the shift, the lower the correlation between alternatives should be.

387 Below is a selection of the best time of day models obtained for each of the four purposes.

388 Results are presented for models with Jack-knife 2 and without (called �original model�) Jack-knife

389 estimation. The Jack-knife (see Cirillo et al., 2000) was used here to correct for the repeated

390 measurements bias, which leads to overstated t-ratios and may correct for other specification

391 errors as well. Future work may include using error components for this as well and comparing

392 the outcomes with those of the Jack-knife. The models were estimated using the discrete choice

393 model estimation software ALOGIT4. The error components are simulated from the normal

394 distribution using 1000 pseudo-random draws.

395 4.2. Estimation results for commuting

396 The estimation results for commuting are in Table 2. After the Jack-knife estimation, all the

397 estimated coefficients have the expected sign and are significant at the 95% confidence level, except

398 for the dummy for working at home regularly and one of the car cost coefficients. The latter

399 coefficient is significant at 90%. Younger persons, part-time workers and persons with a lower

400 education level have a lower likelihood of shifting to earlier or later periods. Single workers

401 travelling by train have an increased flexibility with regards to time of day choice.

2 The Jack-knife method re-samples from the original sample by deleting a small number of observations each time.

For each re-sample, statistics (e.g. estimated coefficients and standard errors) are calculated. The Jack-knife statistics

are computed as averages of the re-sample averages.
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Table 2

Estimation results for commuting (t-ratios in brackets)

Variable Jack-knife estimates Original estimates

Cost by car (in guilders) for households with gross annual

income below 60,000 guilders

)0.0130 ()1.7) )0.0143 ()7.5)

Cost by car (in guilders) for households with gross annual

income above 60,000 guilders

)0.0111 ()2.6) )0.0100 ()5.8)

Cost by train (in guilders) for persons not compensated

by employer

)0.0429 ()2.8) )0.0375 ()5.4)

Cost by train (in guilders) for persons compensated

by employer

)0.0142 ()2.2) )0.0132 ()5.4)

Travel time by car (in minutes) )0.0141 ()5.2) )0.0139 ()13.2)

Travel time by train (in minutes) )0.0162 ()3.6) )0.0155 ()12.7)

Early schedule penalty (in minutes) for the outward leg

for persons with flexible working hours

)0.0153 ()5.7) )0.0159 ()14.9)

Early schedule penalty (in minutes) for the outward leg

for persons without flexible working hours

)0.0166 ()5.9) )0.0172 ()14.2)

Late schedule penalty (in minutes) for the outward leg

for persons with flexible working hours

)0.0191()3.3) )0.0210 ()15.6)

Late schedule penalty (in minutes) for the outward leg

for persons without flexible working hours

)0.0290 ()6.6) )0.0304 ()15.7)

Increased participation time penalty (in minutes)

for persons with flexible working hours

)0.0098 ()4.7) )0.0096 ()6.5)

Increased participation time penalty (in minutes)

for persons without flexible working hours

)0.0071 ()2.6) )0.0074()4.7)

Decreased participation time penalty (in minutes)

for persons with flexible working hours

)0.0041 ()4.2) )0.0038 ()3.6)

Decreased participation time penalty (in minutes)

for persons without flexible working hours

)0.0055 ()4.0) )0.0063 ()4.5)

Constant for train earlier and later alternatives )1.05 ()6.6) )1.06 ()10.2)

Constant for car alternative for train users )1.63 ()3.3) )1.64 ()9.9)

Constant for train alternative for car users )1.15 ()2.5) )1.30 ()10.9)

1 if age under 40 years, 0 otherwise; for car earlier

and later alternatives

)0.510 ()5.8) )0.498 ()9.5)

1 if working part time (<32 h a week), 0 otherwise;

for car and train earlier and later alternatives

)0.471 ()2.8) )0.447 ()5.3)

1 if single worker; 0 otherwise; for train earlier

and later alternatives

0.761 (3.0) 0.771 (4.2)

1 if low education level; 0 otherwise; for car

and train earlier and later alternatives

)0.895 ()5.5) )0.886 ()10.0)

1 if working home regularly; 0 otherwise; for car

and train earlier and later and switch mode alternatives

)0.158 ()0.8) )0.139 ()1.9)

Error component: departure time difference between the peak

and the earlier retimed alternative

0.0093 (5.0) 0.0089 (11.2)

Error component: departure time difference between the peak

and the later retimed alternative

0.0117 (2.8) 0.0123 (10.1)

Rho-squared (0) 0.333 0.333

Rho-squared (c) 0.096 0.096

Number of observations 6156 6156
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402 To judge the estimation results for travel time, cost and delay, one can have a look at the values

403 of time and other trade-off ratios (see Section 4.1). In Table 3 are a number of trade-off ratios

404 derived from the commuting model in Table 2.

405 The values of time are clearly higher than the values used in The Netherlands for project

406 evaluation (about 17 guilders/h). 3 This has been found for some other time of day models as well

407 and is also found for the other purposes in this study (except business). It appears that cost

408 differences are not as strong in persuading travellers to shift time as are time differences, perhaps

409 because the time differences already imply a change to activity schedules.

410 The scheduling trade-off ratio of 1.08 for car drivers with flexible working hours being early

411 (Jack-knife estimation) in Table 3 is the result of dividing the coefficient )0.0153 from Table 2 by

412 the car travel time coefficient )0.0141 (but at higher precision). This result implies that 1 min too

413 early is valued to be slightly worse than 1 min of travel time. Most of the ratios of the schedule

414 delay penalty coefficients, both for too early and too late, to travel time are between 1 and 1.5; half

415 an hour earlier or later at work gives the same disutility as 30–45 min travel time. In the previous

Table 3

Trade-off ratios for commuting

Variable and mode VOT in guilders/hour

Jack-knife Original model

Car––gross annual income below 60,000 guilders 65 58

Car––gross annual income above 60,000 guilders 76 83

Train––not compensated by employer 23 25

Train––compensated by employer 69 71

Schedule penalty coefficient divided by travel time coefficient

Early schedule penalty

Car––flexible hours 1.08 1.14

Car––non-flexible hours 1.17 1.23

Train––flexible hours 0.94 1.02

Train––non-flexible hours 1.02 1.11

Late schedule penalty

Car––flexible hours 1.35 1.51

Car––non-working hours 2.05 2.18

Train––flexible hours 1.17 1.35

Train––non-flexible hours 1.79 1.96

Increased participation penalty

Car––flexible hours 0.69 0.69

Car––non-flexible hours 0.50 0.53

Train––flexible hours 0.60 0.62

Train––non-flexible hours 0.43 0.48

Decreased participation penalty

Car––flexible hours 0.29 0.57

Car––non-flexible hours 0.39 0.45

Train––flexible hours 0.25 0.24

Train––non-flexible hours 0.34 0.41

3 A guilder is an ancient currency that was worth approximately 0.45 EURO.

14 G. de Jong et al. / Transportation Research Part E xxx (2002) xxx–xxx

TRE 166 No. of Pages 24, DTD=4.3.1

21 September 2002 Disk used SPS, Chennai
ARTICLE IN PRESS



U
N
C
O
R
R
EC
T
ED

PR
O
O
F

416 1989 time of day stated preference survey in The Netherlands, these ratios were generally between

417 0.5 and 1 for commuting. Time of day shifting appears to be less sensitive now, perhaps because

418 many travellers have already shifted to less preferred time of day periods in response to increasing

419 congestion. The disutility from arriving early is now very similar to that of being late. The above

420 discussion referred to the outward leg. For the participation time decision, working too long or

421 too short is generally preferred to an equivalent amount of travel time.

422 The error components used in the best model for commuting are:

423 (1) a component that is proportional to the shift in departure time in the considerably earlier al-

424 ternative: the greater the shift, the lower the correlation between alternatives will be; and

425 (2) a component that is proportional to the shift in departure time in the considerably later alter-

426 native the greater the shift, the lower the correlation between alternatives will be.

427 For both error components, the closer the coefficient is to zero, the higher the degree of sub-

428 stitution. The sign of the error components is of no importance, but we would expect about the

429 same absolute size for both departure time shift error components. This is indeed what we find in

430 estimation. Error components proportional to the cost and travel time differences were tried as

431 well but did not significantly improve the models; nor did an error component for mode shift for

432 commuting. This finding implies that––all else equal––these models imply a greater elasticity for

433 mode shifting than for time shifting.

434 4.3. Estimation results for business travel

435 The estimation results for HB business tours and NHB business trips are in Table 4.

436 In the Jack-knife estimates of the business model, the coefficients for the early and late schedule

437 penalties for train are only significant at the 90% confidence level. Two participation time coef-

438 ficients, the education dummy and one of the intercept terms are not significant at the 90% level.

439 The other coefficients are significant at 95% and have the expected signs. Again younger persons

440 are less likely to shift to off-peak. The trade-off ratios are in Table 5.

441 To calculate the VOT in these models, which used the log cost formulation, the ratio of the time

442 coefficient to the log cost coefficient is divided by the average time travelled. This gives an ap-

443 proximate average VOT––in fact according to the model the VOT varies substantially among the

444 travelling population, proportionately to the journey cost.

445 The values of time are somewhat higher than the officially recommended values (almost 55

446 guilders, but also including the valuation by the employer). Again, several of the outward leg

447 scheduling penalty coefficients exceed the travel time coefficients, whereas for participation time,

448 the penalty coefficients are lower than those for travel time.

449 4.4. Estimation results for education tours

450 The estimation results for education are given in Table 6. The reported model is a MNL model,

451 not an error components model. Error components were tried but did not give a significant im-

452 provement for education tours.
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Table 5

Trade-off ratios for business

Variable and mode Approximate VOT in guilders/hour

Jack-knife Original model

Car 92 92

Train 73 75

Schedule penalty coefficient divided by travel time coefficient

Early schedule penalty

Car HB tours 1.29 1.32

Car NHB trips 1.37 1.36

Train 0.72 0.76

Late schedule penalty

Car HB tours 1.64 1.67

Car NHB trips 1.53 1.54

Train 0.57 0.56

Increased participation penalty––car HB tours 0.54 0.57

Decreased participation penalty––train 0.43 0.42

Table 4

Estimation results for business (t-ratios in brackets)

Variable Jack-knife

estimates

Original estimates

Log of cost by car in guilders )0.803 ()2.4) )0.790 ()5.3)

Log of cost by train in guilders )0.589 ()2.4) )0.578 ()5.3)

Travel time by car (in minutes) )0.0154 ()4.1) )0.0151 ()9.2)

Travel time by train (in minutes) )0.0185 ()3.6) )0.0185 ()9.6)

Early schedule penalty (in minutes) for the outward leg for HB car tours )0.0199 ()4.6) )0.0200 ()13.5)

Early schedule penalty (in minutes) for the outward leg for NHB car trips )0.0211 ()7.0) )0.0206 ()12.0)

Early schedule penalty (in minutes) for the outward leg for train users )0.0134 ()1.9) )0.0140 ()7.1)

Late schedule penalty (in minutes) for the outward leg for HB car tours )0.0252 ()4.8) )0.0252 ()14.3)

Late schedule penalty (in minutes) for the outward leg for NHB car trips )0.0235 ()5.0) )0.0232 ()11.3)

Late schedule penalty (in minutes) for the outward leg for train users )0.0106 ()1.9) )0.0104 ()5.9)

Increased participation time penalty (in minutes) for HB car tours )0.0083 ()1.7) )0.086 ()4.5)

Increased participation time penalty (in minutes) for train users )0.0041 ()1.2) )0.0037 ()1.9)

Decreased participation time penalty for HB car tours )0.0056 ()1.2) )0.0060 ()3.0)

Decreased participation time penalty for train users )0.0079 ()2.9) )0.0078 ()5.3)

Constant for train earlier and later alternatives )0.699 ()2.5) )0.696 ()6.8)

Constant for car alternative for train users )1.11 ()0.8) )1.07 ()1.5)

Constant for train alternative for car users )4.00 ()3.1) )3.87 ()4.9)

1 if age under 40 years; 0 otherwise; car and train earlier and later alternatives )0.559 ()3.7) )0.553 ()7.8)

1 if low–medium education level; 0 otherwise; car and train earlier and later

alternatives

)0.174 ()1.3) )0.179 ()2.2)

Error component––departure time differences 0.0089 (2.3) 0.0070 (6.7)

Error component––mode switch dummy 1.92 (2.7) 1.65 (4.6)

Rho-squared (0) 0.313 0.313

Rho-squared (c) 0.116 0.116

Number of observations 3812 3812
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453 In the model presented for education, some of the scheduling variables were clearly not sig-

454 nificant, even before Jack-knifing. These have been removed and the model has been re-estimated

455 without those variables. Persons with a low education level (going mostly to schools with fixed

456 school hours starting and ending in the peak periods) have a higher probability of selecting the

457 peak alternative.

458 The trade-off ratios for this travel purpose are in Table 7. The values of time for car are in line

459 with official recommendations, but those for train are particularly high. For education all

460 scheduling and participation penalty coefficients represent a lower disutility than travel time.

461 4.5. Estimation results for ‘other purposes’

462 Finally, the estimation results for �other purposes� are given in Table 8.

463 All the coefficients have the sign we expected and are significant at 95%, except for cost, two

464 alternative-specific constants and one of the participation time penalties for train. The departure

Table 6

Estimation results for education (t-ratios in brackets)

Variable Jack-knife estimates Original estimates

Cost by car (in guilders) )0.0831 ()2.4) )0.0869 ()6.1)

Cost by train (in guilders), for persons without seasonal tickets )0.0431 ()2.6) )0.0505 ()8.2)

Travel time by car (in minutes) )0.0140 ()2) )0.0122 ()3.2)

Travel time train (in minutes) )0.0375 ()7.1) )0.0353 ()9.5)

Early schedule penalty (in minutes) for the outward leg for train users )0.0107 ()1.9) )0.0123 ()7.1)

Late schedule penalty (in minutes) for the outward leg for train users )0.0088 ()2.2) )0.0099 ()6.5)

Increased participation time penalty (in minutes) )0.0024 ()0.7) )0.0022 ()1.2)

Decreased participation time penalty (in minutes) )0.0031 ()2.1) )0.0032 ()2.6)

Constant for train earlier and later alternatives )1.15 ()6.0) )1.11 ()10.8)

Constant for car alternative for train users )3.42 ()2.3) )3.36 ()7.1)

Constant for train alternative for car users 3.66 (1.9) 3.23 (6.1)

1 if low education level; 0 otherwise; car peak alternative 2.17 (2.0) 2.47 (5.2)

Rho-squared (0) 0.439 0.439

Rho-squared (c) 0.163 0.163

Number of observations 1250 1250

Table 7

Trade-off ratios for education

Variable and mode VOT in guilders/hour

Jack-knife Original model

Car 10 8

Train 52 42

Schedule penalty coefficient divided by travel time coefficient

Early schedule penalty––train 0.28 0.35

Late schedule penalty––train 0.23 0.28

Increased participation penalty––train 0.06 0.06

Increased participation penalty––car 0.17 0.18
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465 time difference component coefficients have about the same size. A housewife has a lower prob-

466 ability of being able to shift departure time (presumably because of time constraints at home).

467 Persons with a low education level have more difficulty in shifting departure time as well.

468 Trade-off values for other purposes are found in Table 9. The values of time are clearly higher

469 than the officially recommended values (about 11 guilders), but cannot be based on a significant

470 cost estimate. Three out of the four scheduling delay penalty coefficients exceed the travel time

471 coefficient and all the participation penalty coefficients are lower than the travel time coefficient.

472 4.6. Overview of estimation results

473 Many different specifications were tested for all four purposes, with the following results:

474 • EClogit generally outperformed MNL and NL, except for education tours.

475 • A separate model for NHB business travel did not give acceptable coefficients (probably due to

476 the limited number of observations); this was merged with HB business tours.

477 • For commuting, but not for all other purposes, quadratic scheduling penalties gave better re-

478 sults than linear scheduling terms only (to get comparable values of time and other trade-off

479 values in the above tables we presented only linear models).

480 • For business travel, but not for the other purposes, logarithmic cost performed better than lin-

481 ear cost.

Table 8

Estimation results for other purposes (t-ratios in brackets)

Variable Jack-knife

estimates

Original estimates

Cost (in guilders) )0.092 ()0.9) )0.0129 ()7.2)

Travel time by car (in minutes) )0.0157 ()2.6) )0.0156 ()11.2)

Travel time by train (in minutes) )0.0170 ()4.4) )0.0179 ()12.4)

Early schedule penalty (in minutes) for the outward leg for car users )0.0193 ()6.6) )0.0197 ()13.3)

Early schedule penalty (in minutes) for the outward leg for train users )0.0121 ()3.1) )0.0094 ()5.5)

Late schedule penalty (in minutes) for the outward leg for car users )0.0264 ()5.5) )0.0249 ()13.9)

Late schedule penalty (in minutes) for the outward leg for train users )0.0174 ()2.9) )0.0124 ()5.2)

Increased participation time penalty (in minutes) for car users )0.0056 ()3.1) )0.0059 ()4.0)

Increased participation time penalty (in minutes) for train users )0.0077 ()3.3) )0.0090 ()5.5)

Decreased participation time penalty (in minutes) for car users )0.0051 ()2.6) )0.0050()2.5)

Decreased participation time penalty (in minutes) for train users )0.0057 ()1.6) )0.0056 ()3.2)

Constant for train earlier and later alternatives )0.125 ()0.5) )0.265 ()2.7)

Constant for car alternative for train users )0.689 ()1.2) )0.849 ()3.8)

Constant for train alternative for car users )1.78 ()4.3) )1.76 ()10.6)

1 if housewife; 0 otherwise; car and train earlier and late alternatives )0.340 ()3.4) )0.342 ()4.2)

1 if low education level; 0 otherwise; car earlier and switch mode alternatives )0.624 ()3.5) )0.639 ()6.9)

Error component: departure time difference, earlier alternative 0.0100 (6.0) 0.0104 (10.2)

Error component: departure time difference, later alternative 0.0178 (3.3) 0.0107 (4.4)

Rho-squared (0) 0.262 0.262

Rho-squared (c) 0.108 0.108

Number of observations 3224 3224
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482 • Splitting the cost coefficients by income group did not produce satisfactory results, except for

483 commuting tours.

484 • A cost of zero for holders of seasonal passes worked best for education and other purposes, not

485 for commuting tours and business travel.

486 • For train commuters, cost coefficients that differentiate between employees receiving compen-

487 sation and employees not receiving compensation gave plausible values and a significant im-

488 provement in likelihood. Delay coefficients that differentiate between employees with and

489 without flexible work hours did the same for commuters by train and car.

490 5. Simulation results

491 To get a good impression of the substitution patterns in the models estimated (nearby versus

492 faraway periods, mode versus time of day alternatives), we carried out several simulation runs for

493 car and train commuters. Fig. 1 shows the effect of an increase in the AM peak travel time

494 (between 7:00 and 9:00) on the outward leg departure time (�out change� in the graph), on the

495 return leg departure time (�back change�) and on mode switching for commuters initially travelling

496 by car. For the other purposes, the results were mostly rather similar to those for commuting. On

497 the vertical axis are the percentage changes in the number of trips (car trips in Fig. 1 and train

498 trips in Fig. 2), using the estimation sample. The horizontal axis gives the distribution over the

499 time of day alternatives (aggregated to 11 time slices) during an entire 24-h day and the alternative

500 to switch mode. Note that only the points in the graph indicate a value, the lines are drawn to

501 improve readability.

Table 9

Trade-off ratios for other purposes

Variable and mode VOT in guilders/hour

Jack-knife Original model

Car 102 73

Train 111 83

Schedule penalty coefficient divided by travel time coefficient

Early schedule penalty

Car 1.23 1.26

Train 0.71 0.52

Late schedule penalty

Car 1.68 1.59

Train 1.02 0.69

Increased participation penalty

Car 0.36 0.38

Train 0.45 0.50

Decreased participation penalty

Car 0.32 0.32

Train 0.33 0.31
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502 Fig. 1 indicates that if the morning peak travel time increases, many commuters will change

503 their departure time for the outward leg. Instead of departing in the affected periods (7:00–9:00)

504 many will now depart during a neighbouring period, both of which increase by more than 4%.

505 One can also notice that quite a few make major shifts in outbound leg to 10:00–15:00 or 24:00–

506 6:00. As one could expect, this change has no impact on the travellers departing during the af-

507 ternoon and the evening (15:00–24:00).

508 The effect on the return leg departure time is less important than on the outward leg, fewer

509 travellers are switching period. We can notice interesting changes in profiles both out and return,

510 e.g. small increases in returns between 6:00 and 7:00 and between 9:00 and 10:00 are presumably

511 people returning home in AM peak, while increases in returns between 15:00 and 16:00 and be-

512 tween 19:00 and 24:00 are people affected on their outbound leg.

513 Some car commuters will also shift to the train. The number of train trips increases by 4%.

514 Given the small initial number of choices for train in the data base for this purpose, not as many

Fig. 1. Changes in time of day and mode choice (AM peak travel timeþ 10%), car commuters only.

Fig. 2. Changes in time of day and mode choice (AM peak travel timeþ 10%), train commuters only.
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515 go to the train as to neighbouring periods (of course this is also affected by the fact that the train is

516 also slowing down in the simulation).

517 Fig. 2 is similar to the previous one but deals with travellers initially using the train. Here the

518 car is much more important as an alternative relative to time shifts. One could assume that train

519 users are more scheduling-time constrained than car users and it is easier for them to change mode

520 than departure time. Also we should keep in mind when comparing the above two figures that

521 only for a limited number of trips where car (if available) is a good alternative there are good train

522 connections.

523 Shifts to neighbouring periods are even larger than on the previous chart for the outward leg as

524 well as for the return leg. No train users return in AM peak (night workers use cars), so all return

525 shifts are consequent on outward effect. One can note how these are earlier than for car users.

526 Many of those who change their choices switch to cars.

527 6. Conclusions and recommendations

528 A new stated preference survey into the time of day choice of travellers by car and train has

529 been carried out in The Netherlands. In this paper, these data have been used to estimate error

530 components models of time of day and mode choice.

531 In our estimation results, EClogit generally outperformed MNL and NL, except for education

532 tours. In the estimated models, for commuting, business and other purposes, arriving 30 min too

533 late or too early at the destination is valued to be worse than 30 min of travel time. For education

534 tours, the opposite is found. Longer than preferred activity participation time is generally valued

535 to be less important than an equivalent amount of travel time.

536 Simulation results with the estimated models show that for most purposes, the closer the two

537 time of day periods are in clock time, the greater will be the degree of substitution. If travel time or

538 cost in the peak increases, most travellers will shift to periods just before or after the peak. Many

539 train travellers will also shift to the car (more than will shift from car to train).

540 The new results indicate that time of day choice in The Netherlands is sensitive to changes in

541 peak travel time and cost and that policies that increase these peak attributes will lead to peak

542 spreading. However, the time of day sensitivities to travel time and cost changes in the (selective)

543 sample, in general seem to be lower than 10 years ago. 4

544 In this paper we applied the Jack-knife method to estimate coefficient values and standard

545 errors that do not suffer from the repeated measurements problem (multiple observations from the

4 The error components model needs to be simplified for integration with the Dutch national model system (LMS)

and to keep model run times within reasonable limits. For integration into the current NL framework of the LMS

through logsum variables, the new time of day choice model needs to be a GEV model. Because mode choice was

included in the joint mode and time of day choice model, an appropriate variance scaling between both models can be

determined. A simplified model was developed that represents mode choice and choice among eleven time periods for

each leg (outbound and return) of the tour, rather than the time-specific alternatives represented in the models of this

paper. It was tested whether within time of day choice, similar alternatives (e.g. adjacent time periods) had a higher

degree of correlation than other alternatives, by estimating the OGEV model specification (using the Biogeme

software). However, the OGEV models had log likelihood values that were lower than those for NL models. The new

simplified time of day models to be implemented into the LMS will therefore probably be NL models.
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546 same individual, taken to be independent) of the stated preference data. An alternative method

547 would be to include individual-specific components, as are sometimes used in panel data models,

548 in the error components model. Further research is needed to compare these two ways of solving

549 the repeated measurement problem.
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