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Abstract10

This paper considers the errors that arise in using outdated accident prediction models in road safety scheme evaluation. Methods
to correct for regression-to-mean (RTM) effects in scheme evaluation normally rely on the use of accident prediction models. However,
because accident risk tends to decline over time, such models tend to become outdated and the estimated treatment effect is then exaggerated.
A new correction procedure is described which can effectively eliminate such errors.
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1. Introduction18

The task of estimating the effect of a road safety scheme19

on the mean frequency of accidents is not straightforward.20

While observations of accidents before and after treatment21

can establish the change in mean accident frequency, it is22

unlikely that all of the observed change can be attributed23

to the effects of the scheme. The primary task in scheme24

evaluation is then that of separating scheme effects,S, from25

the changes that would have occurred without the scheme,N.26

In a recent paper (Hirst et al., in press) the authors considered27

in detail the various factors that can have a confounding28

effect in the evaluation of road safety schemes and suggested29

a simple additive model to describe these.30

The three main non-scheme sources of change in ob-31

served accident frequencies are regression-to-mean (RTM)32

effects; trends in accidents; and local changes in flow (due33

to transport or land use changes unrelated to the scheme un-34

der study). The observed change in annual accidents,B, can35

be written as36

B = S + N37

The non-scheme effects are then38

N = NT + NF + NR39

∗ Corresponding author. Tel.:+44-151-794-5226;
fax: +44-151-794-5218.
E-mail address:l.mountain@liv.ac.uk (L.J. Mountain).

whereNT is the change due to national trends in accidents40

over the period of observation arising as a result of the com-41

bined effect of trends in risk and in flow;NF the change in 42

accidents due to local changes in flow other than those at-43

tributable to trend but unrelated to the study scheme andNR 44

is the change in accidents due to the RTM effect. 45

The change in accidents attributable to the scheme may46

be in part due to the effect of the scheme on accident risk47

(accidents per unit of exposure),SR, and in part due to the 48

effect of the scheme on flow,SF. Thus 49

S = SR + SF 50

and 51

B = SR + SF + NT + NR + NF 52

The authors (Hirst et al., in press) have proposed a mod- 53

ification to current methods which allows the reduction in54

accidents attributable to each of the five causal factors to be55

separately evaluated. The proposed approach, in common56

with others that include a correction for RTM effects (see,57

for example,Hauer, 1997; Elvik, 1997), relies on the avail- 58

ability of suitable predictive accident models. These are as-59

sumed to represent the relationship between mean accident60

frequency and various explanatory variables (typically traf-61

fic flow and site characteristics) during the scheme evalua-62

tion period. The problem is that, in practice, this assumption63

will rarely be satisfied because of the effects of trends in64

accidents. 65

1 0001-4575/$ – see front matter © 2003 Published by Elsevier Ltd.
2 doi:10.1016/j.aap.2003.05.005
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2. Outdated accident prediction models66

To appreciate the problem, it is useful to briefly consider67

the nature of the evaluation process. In order to estimate68

the true scheme effect, it is necessary to estimate what the69

expected accident frequency in the period after treatment70

would have been had the scheme not been implemented. A71

common approach is to use an empirical Bayes (EB) method72

(see, for example,Maher and Summersgill, 1996; Hauer,73

1997; Elvik, 1997). In this the mean accident frequency74

in the before period is estimated as a weighted average of75

observed accidents before treatment,XB, and a predictive76

model estimate of expected accidents given the nature of77

the site and the level of traffic flow. The general form of78

predictive accident models is79

µ̂ = Cqβ
B80

whereC is a constant for each site (incorporating the rele-81

vant site characteristics for the particular model used),qB a82

measure of traffic flow in the period before treatment andβ83

is the predictive model coefficient for flow. The predictive84

model estimate oftotal accidents in a before period oftB85

years is then86

µ̂B = tBµ̂87

Generally such predictive models assume that the random88

errors are from the negative binomial (NB) family. IfK is89

the shape parameter for the NB distribution, the EB estimate90

of total accidents in the before period,M̂B, is calculated as91

M̂B = αµ̂B + (1 − α)XB92

where93

α =

(

1 +
µ̂B

K

)−1

94

The EB estimate of expected accidents in the after period in95

the absence of the scheme,M̂A , can then be estimated. The96

effects of general trends in risk and flow on accidents during97

the study period can be accounted for by using a comparison98

group ratio of accidents99

AA NAT

AB NAT100

whereAB NAT is the total national (or regional) accidents in101

the before period oftB years andAA NAT is the total national102

(or regional) accidents in the after period oftA years.103

The use of a comparison group ratio implicitly assumes104

that flows at the study site have changed in line with national105

or regional trends. To take account of the effects of any106

local flow changes, while avoiding double counting, it is107

necessary to have a representative measure of traffic flow108

at the scheme in the after period,qA , together with flow109

data for the comparison group. IfQB NAT : total national (or110

regional) flow in the before period,QA NAT : total national111

(or regional) flow in the after period, then the expected flow112

in the after period if flows at the study site had changed in113

line with general trends,q′
A , can be estimated using 114

q′
A =

(

QA NAT/tA

QB NAT/tB

)

qB
115

If the observed flow in after period,qA , differs from q′
A 116

then there have been local changes in flow at the site other117

than those attributable to trend. If, on the basis of local118

knowledge, these are judged to be due to transport or land119

use changes unrelated to the scheme under study, then the120

expected accidents in the after period in the absence of the121

scheme is 122

M̂A = M̂B

(

AA NAT

AB NAT

) (

qA

q′
A

)β

123

If, on the other hand, the local flow changes are judged to124

be a consequence of the scheme itself, then 125

M̂A = M̂B

(

AA NAT

AB NAT

)

126

If XA accidents are observed at the scheme site in the after127

period, the scheme effect is estimated as 128

Ŝ =
(XA/tA) − (M̂A/tA)

XB/tB 129

and the non-scheme effects as 130

N̂ =
(M̂A/tB) − (XB/tB)

XB/tB 131

It is clear that the EB approach implicitly assumes that the132

predictive model represents the relationship between acci-133

dents and flows in the before period at the study site. Equally,134

the comparison group approach implicitly recognises that135

there can be an underlying trend in risk within the study pe-136

riod. However, no allowance is made for the effects of trend137

in risk between the time period used for modelling and the138

time period used for scheme assessment: this in spite of the139

fact that available models are typically derived using histor-140

ical data, often for a period of time many years prior to the141

study period used for scheme assessment. 142

The standard form of the available predictive models as-143

sumes that the risk of accidents,C, per unit of exposure,144

qβ, is constant over time. The value ofC represents the av-145

erage risk per unit of exposure during the modelled period.146

In practice we do not expect accident risk per unit of expo-147

sure (C) to remain constant over time: the whole purpose of148

many road safety initiatives is to reduce risk at a regional or149

national level. Measures such as improvements in road user150

training, national road safety awareness initiatives, and speed151

enforcement campaigns are all believed to reduce accident152

risk per unit of exposure. In the UK there is evidence to sug-153

gest that accident risk as a function of exposure has been154

declining over time. For example, for the years 1975–1995,155

AAP 1003 1–13
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based on national data, the average rate of decline in acci-156

dent risk was found to be 2% per year while for a subset of157

roads in six English counties over the period 1980–1991 the158

rate of decline was estimated to be 5% per year on link sec-159

tions and 6% per year at major junctions (Mountain et al.,160

1997, 1998). It has recently become recommended practice161

in the UK (DfT, 2002) to allow for trends in accident risk,162

with the predicted annual change depending on the location.163

For most urban roads (speed limit≤ 40 mph) the predicted164

decrease in risk is 1.6% per year, with a decrease of 0.09%165

at major urban junctions and 2.4% at minor junctions.166

If it is accepted that there are trends in risk over time then167

it must also be recognised that predictive models that do not168

allow for trend in risk will rapidly become outdated: they169

represent the average accident risk per unit of exposure only170

over the modelled period. As a consequence, if the before171

period for the scheme to be evaluated is not contained within172

the modelled period, the estimates of accidents in the before173

period will be biased. Since predictive models are generally174

based on historical data, the elapsed time between the mod-175

elled period and the before period (and hence the effects of176

trend) may well be large. For example, a typical model for177

UK urban single carriageway roads was derived using ac-178

cident data for a 5-year-period from April 1983 to March179

1988 (Summersgill and Layfield, 1996). The models rou-180

tinely used to predict accidents at UK intersections (Binning,181

1996, 2000) are based on accident data for the 6-year-period182

1974–1979 in the case of four-arm roundabouts and for the183

period 1984–1989 in the case of urban priority intersections.184

While it would, of course, be theoretically possible to up-185

date predictive accident models at regular intervals, this is186

not normally done in practice because of the high cost of187

carrying out such studies.188

A more appropriate form of predictive model would be189

one which allows for trend in risk. One such model (Maher190

and Summersgill, 1996) takes the form191

µ̂t = C0γ
tq

β
t192

whereµ̂t is the expected number of accidents in yeart; C0193

the risk in year 0;γ the factor by which risk changes from194

year to year andqt is the flow in yeart.195

This model is a marginal model that avoids modelling196

the year-to-year variation but allows for trend in risk based197

on an annual change factor (γ). The merits of various trend198

models are discussed byLord and Persaud (2000)but this199

form of model is perhaps the most fruitful to consider here200

since the change in risk from year to year is fixed, allowing201

predictions beyond the modelled period.202

While models which allow for trend have been fitted203

to accident data (Mountain et al., 1997, 1998; Lord and204

Persaud, 2000) such models are not widely available: for205

most site types in most regions the only available predictive206

accident models do not include a trend term. This is in part207

because suitable data are not readily available: ideally acci-208

dent and traffic counts for many years are needed, with the209

traffic counts for each year treated as separate observations.210

In addition, the disaggregation of the data presents diffi-211

culties for traditional model fitting procedures (Maher and 212

Summersgill, 1996, Lord and Persaud, 2000). The aim in 213

this study was therefore to produce a correction for the bias214

introduced by using the more commonly available form of215

model: an outdated accident prediction model with no trend216

term. 217

3. Bias arising from using the model without trend 218

The underlying assumption is that the trend model out-219

lined above is the correct form of model. If a predictive220

accident model of the form̂µt = Cqβ
t is fitted when there 221

is actually a trend in risk, the model is mis-specified. It is222

necessary to consider what implications this may have for223

estimates of expected accidents. 224

It is assumed, for a sample of sites, that accident and225

flow data are available for each year of ann year modelling 226

period. Accidents will have a mean ofµ0 = C0q
β

0 in the 227

first year of the study period (t = 0) and in the final year 228

(t = n−1) a mean ofµ(n−1) = C0γ
(n−1)q

β

(n−1). The model 229

without trend is normally derived using a single estimate of230

the mean observed flow in the model period,q̄, and thus, for 231

the totaln-year-period, the fitted model is 232

Cq̄βn ∼ NB

(

n−1
∑

t=0

µi, K

)

, where
n−1
∑

t=0

µi = C0

n−1
∑

t=0

γ tq
β
t

233

A simple rearrangement of the model equation and the total234

true accident mean gives 235

C =
C0

∑n−1
t=0 γ tq

β
t

q̄βn
=

mean accidents

(mean flow)β 236

ThusC could be estimated as a function of mean accidents237

and flows. It can be assumed that the mean of accidents and238

the mean of flows occur at approximately the middle of the239

modelled period (at timet = (n − 1)/2). This is illustrated 240

for a specific example inFig. 1. In line with the results of 241

Mountain et al. (1997), the example is for a 12-year modelled242

period (1980–1991) for a site with typical flows withC0 = 243

3, β = 0.61 andγ = 0.95. It can be seen that the mean of244

accidents and of flows both occur close to the mid-point of245

the modelled period (t = 5.5 in this example). 246

In practice, the mean flow will only occur at the mid-point247

of the modelled period if flows follow an arithmetic progres-248

sion but this assumption should not be unreasonable if flows249

are not changing too dramatically over time. The assump-250

tion that the mean of accidents occurs in the middle year is251

also not likely to be strictly true since it is assumed that the252

decline in risk follows a geometric progression while flows253

are increasing: again if flows are not changing too dramati-254

cally over time, andγ is reasonably close to 1, this assump-255

tion should not be unreasonable. Under these assumptions,256

AAP 1003 1–13
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Fig. 1. Accidents for 1980–1991 (typical UK link flow withC0 = 3, γ = 0.95 andβ = 0.61).

it is possible to equate the models at the middle of the mod-257

elling period (t = (n − 1)/2). If it is also assumed that the258

power of flow (β) is the same for both models (not neces-259

sarily true since available models have a range of values for260

β and estimates ofβ andC are not independent) then261

C ≈
C0γ

(n−1)/2q̄β

q̄β
= C0γ

(n−1)/2
262

Assuming thatC = C0γ
(n−1)/2, Fig. 2 shows how the pre-263

dicted before mean accident frequency (µ̂B) for a study site264

some years after the modelled period would be affected by265

trend in risk. In this hypothetical example, the scheme site266

has a before period of 3 years (1997–1999) and the mod-267

elled period is 12 years (1980–1991) as before. There is268

thus a gap of 5 years (1992–1996) between the end of the269

modelled period and the start of the before period. Traffic270

flows are assumed to increase arithmetically over time (in271

line with the actual growth in traffic flow in the UK over the272

period 1980–1999). Thus the model without a trend in risk273

term shows an increase in expected accidents in each year,274

in line with the increase in flow. The model with a trend275

term reflects the combined effects of the increasing traffic276

flows together with the declining accident risk (γ = 0.95).277

The overall effect in this case is a decrease in expected ac-278

cidents over time.279

The two models, under these assumptions, are equivalent280

at the mid-point of the modelled period. Assuming that, for281

the 3-year before period at the scheme, the mean of flows282

also occurs in the middle year, the effects of trend between283

the middle of the modelled period and the middle of the284

before period can be estimated. For this it is convenient to285

shift the time datum point (t = 0) to the middle of the 286

modelling period. With this time datum, att = 0, µ0 = Cqβ

0 287

and for subsequent yearsµt = Cγ tq
β
t . The last year of the288

modelled period occurs att = 5.5 (i.e. t = (n − 1)/2), the 289

last year of the gap between the end of the modelled period290

and the start of the before period will be att = 10.5 (i.e. 291

t = ((n−1)/2)+g, whereg is the duration of the gap). The292

middle of the before period will occur in the second year of293

the 3-year-period att = 12.5. More generally, iftB is the 294

duration of the before period as before, 295

t =

(

n − 1

2

)

+ g +

(

tB + 1

2

)

= g +

(

n + tB

2

)

296

For this example, the estimated means (µ̂B or µ̂tB) obtained 297

using the models with and without trend would differ by a298

factor ofγ12.5 (the trend model giving the smaller estimate).299

This result leads to the possibility of a correction300

procedure which could be applied to any mis-specified301

model. Thus, more generally, if̂µB is estimated using a302

mis-specified predictive model which makes no allowance303

for trend, the estimate (µ̂B NO TREND) can be corrected using304

µ̂B CORRECTED= γ tµ̂B NO TREND 305

whereγ is the factor by which risk changes from year to year306

andt the elapsed time between the middle of the modelling307

and study periods= g + (n + tB)/2. 308

AAP 1003 1–13



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

W.M. Hirst et al. / Accident Analysis and Prevention xxx (2003) xxx–xxx 5

Fig. 2. Accidents for 1980–1999 (typical UK link flow withC0 = 3, γ = 0.95 andβ = 0.61).

This definition of the expected bias arising when fitting309

a model without a trend in risk term to data which exhibits310

trend relies on a number of assumptions. No attempt has311

been made to mathematically derive these suggested results312

and instead justification is now sought via simulation.313

4. Simulation studies to determine the magnitude314

of bias315

Simulations were carried out to assess the relationships316

suggested above. The aim in the simulations was to reflect317

the conditions that might be encountered in a typical acci-318

dent study. It was thus necessary to select typical time peri-319

ods; typical accident model parameters; and typical accident320

trends. It was also necessary to generate observed accident321

data for typical safety scheme study sites: sites which are322

normally selected (at least partially) on the basis of a high323

accident frequency in a particular time period and thus sub-324

ject to a RTM effect in a subsequent time period.325

Each simulation study followed a pre-defined time pe-326

riod. This comprised a modelling period of either 5 years327

or 12 years ending in 1991, a gap of 3 years between the328

end of the modelling period and the study period, and a329

7-year study period for new sites under investigation. The330

5-year modelling period is typical of the periods used to de-331

rive models with no trend term; the 12-year-period was that332

used byMountain et al. (1997)to derive a model with trend.333

The 7-year study period comprised a 3-year before period334

(1995–1997), a 1-year investigation and treatment period,335

and a 3-year after period (1999–2001). The underlying pop-336

ulation characteristics for the trend model (C0, β, γ andK) 337

were fixed in advance. The true parameters were chosen so338

thatC0 = 3 (reflecting an average value for treated sites cur-339

rently under investigation in a research project at the Uni-340

versity of Liverpool), withβ = 0.61 andK = 1.92 (in line 341

with the Mountain et al. (1997)model for link data). The 342

annual change in risk was set at 2.5 and 5% (γ = 0.975 and 343

0.95): in line with the UK national trend in risk over the pe-344

riod 1980–2001 (3%) and with theMountain et al. (1997, 345

1998)model for link data for 1980–1991 (5%). The number346

of sites (nmod) in the sample used to estimate the model347

parameters was also fixed at 100 (chosen to represent a typ-348

ically sized data set such as that used bySummersgill and 349

Layfield (1996)) and at 1000 (roughly the size of the data set350

used byMountain et al. (1997)to fit trend models for link 351

data). The different combinations of time period, number of352

sites and values ofγ meant that eight individual simulation353

studies were carried out. 354

Each simulation consisted of 500 realisations. For each of355

the 500 realisations, nmod sites were generated from the true356

underlying population characteristicsC0, β, γ andK. Each 357

of the nmod sites followed a randomly generated subset of358

the model period. 359

In order to calculate the mean accidents at each site it was360

necessary to simulate traffic counts. This was done so that361

overall flows followed an arithmetic progression (the best362

fitting model to UK national flow data for the hypothetical363

AAP 1003 1–13
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study period) and so that the overall total flows for the nmod364

sites increase by a factor of 1.9 from 1975 to 2000 (again in365

line with UK national flow data), although annual flows at366

individual sites could vary from this relationship from year to367

year. The distribution of flows across sites was generated to368

reflect the observed flows used by Layfield and Summersgill369

(1996) to derive a model for urban single carriageway roads.370

Once a flow vector for each of the nmod sites had been371

generated, the true underlying mean accidents for that site372

was known. This, together with the NB shape parameterK,373

was used to generate observed accidents at the site from a374

NB distribution.375

The models with and without a trend term were then fit-376

ted to the observed data for the nmod sites, giving estimates377

Ĉ0, β̂TREND andγ̂ for the trend model and̂C andβ̂NO TREND378

for the model without trend. Estimation for the trend model379

was achieved via the algorithm outlined byMaher and380

Summersgill (1996). This is an approximate fit based on381

linearising the predictors using constructed variables (see,382

for example,Atkinson, 1985; Cook and Weisberg, 1982).383

For each of the eight simulations (consisting of 500 model384

realisations), 100 study sites were generated following an385

overall average (but not individually fixed) observed change386

in accidents of either−50% or−75%. Observed accidents387

in the before period were generated from the true mean,388

µTRUE for each study site. An unknown, but definite RTM389

effect was achieved by rejecting any generated before period390

accidents less than twice the true mean and re-sampling (i.e.391

sites withXB < 2µTRUE rejected, as might typically be the392

case in selecting candidate sites for safety schemes).393

For both the correctly specified trend model and the394

mis-specified model without trend, the bias in the estimate395

of the true mean was defined asτ, where396

τµTRUE = µ̂B397

For the model without trend398

τ =
µ̂B NO TREND

µTRUE
=

tBĈq̄β̂ NO TREND

C0
∑

t∈BEFORE PERIODγ
tq

β
t399

For the model with trend400

τ =
µ̂B TREND

µTRUE
=

Ĉ0
∑

t∈BEFORE PERIODγ̂
tq

β̂ TREND
t

C0
∑

t∈BEFORE PERIODγ
tq

β
t401

For the trend model (if the parameter estimates are un-402

biased) it would be expected that the mean ofτ would403

be 1 while, for the model without trend (for a study pe-404

riod after the modelled period), it would be expected that405

τ >1. The main reason for examining any bias resulting406

from a correctly specified trend model was to examine407

the stability of the approximation in estimating the model408

parameters.409

It is important to examine the biases that may arise, not410

only in the predictive model estimates (µ̂B), but also in the411

EB estimates (̂MB). This is used to estimatêMA and hence412

the scheme and non-scheme effects (SR, SF, NT, NR andNF) 413

(Hirst et al., in press). The bias in the EB estimate is 414415

ρ =
M̂B

MB TRUE
=

(KTRUE + µTRUE)(K̂ + XB)µ̂B

(K̂ + µ̂B)(KTRUE + XB)µTRUE 416

=
(KTRUE + µTRUE)(K̂ + XB)

((K̂/τ) + µTRUE)(KTRUE + XB) 417

if K̂ ≈ KTRUE then 418

ρ ≈
(KTRUE + µTRUE)

((K̂/τ) + µTRUE) 419

The bias in the EB estimates for individual sites, and in the420

estimates of the effects of regression-to-mean (NR), trend 421

(NT) and treatment effects (SR andSF) were examined for 422

each of the 500 studies of 100 sites. (It was assumed in this423

study thatNF = 0.) 424

5. Results from the simulation studies 425

The simulation studies demonstrated that the relationship426

betweenC0 andC was consistent with that suggested (C ≈ 427

C0γ
(n−1)/2) and the estimate ofβ from both models was428

unbiased. The bias in the predictive model estimate of mean429

accidents in the before period was thus also consistent with430

that suggested previously. Thus 431

E(τ) = γ−t, wheret = g +

(

n + tB

2

)

432

A simple correction to the estimate from the model without433

trend is therefore to multiply the estimated before mean from434

the mis-specified model by the inverse of the expected bias435

µ̂B CORRECTED= µ̂B NO TREND(E(τ)−1) 436

which is equivalent to the correction procedure proposed,437

namely 438

µ̂B CORRECTED= γ tµ̂B NO TREND 439

Clearly this correction requires an estimate ofγ. If total 440

annual flows (QNAT i) and accidents (ANAT i) are available 441

for an appropriate comparison group over the relevant time442

period, then an estimate ofγ can be obtained by fitting a443

model of the form 444

ANAT i = A0γ
iQNAT i for i = 0, . . . , ((n − 1) + g + st) 445

Table 1summarises the bias in the predictive model esti-446

mates of mean accidents in the before period (µ̂B) and the 447

bias in the EB estimates (M̂B) obtained using the three ap-448

proaches: the trend model, the mis-specified model without449

trend and the proposed correction procedure. Using a data450

set of 1000 sites and a modelling period of 12 years, the451

estimates obtained using the trend model were as expected,452

with the mean and median of the bias (τTREND) close to 1. 453
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Table 1
Bias in the predictive model estimates of mean accidents in the before period (τ) and the EB estimates (ρ)

γ, model period
(years),n

τTREND τNO TREND τCORRECTED ρTREND ρNO TREND ρCORRECTED

Mean Median S.D. Mean Median S.D. Mean Median S.D. Mean Median S.D. Mean Median S.D. Mean Median S.D.

0.95, 5, 100 3.97 1.07 11.6 1.44 1.43 0.16 1 1 0.11 0.92 1.01 0.27 1.05 1.04 0.03 1 1 0.03
0.95, 5, 1000 1.14 1.01 0.58 1.43 1.43 0.05 1 1 0.03 0.99 1 0.08 1.05 1.04 0.03 1 1 0.01
0.95, 12, 100 1.16 0.98 0.70 1.72 1.71 0.19 1 1 0.11 0.97 0.99 0.14 1.09 1.07 0.05 0.99 1 0.03
0.95, 12, 1000 1.02 1.01 0.18 1.72 1.72 0.06 1 1 0.03 1 1 0.04 1.09 1.07 0.05 1 1 0.01
0.975, 5, 100 3.31 0.93 7.9 1.2 1.19 0.13 1 1 0.11 0.9 0.99 0.26 1.02 1.01 0.03 1 1 0.03
0.975, 5, 1000 1.14 1.02 0.59 1.2 1.19 0.04 1 1 0.04 0.99 1 0.07 1.02 1.02 0.01 1 1 0.01
0.975, 12, 100 1.18 1.01 0.79 1.31 1.3 0.15 1 1 0.11 0.98 1 0.11 1.03 1.03 0.03 0.99 1 0.03
0.975, 12, 1000 1.02 1 0.17 1.3 1.3 0.04 1 1 0.03 1 1 0.03 1.04 1.03 0.02 1 1 0.01

Mean: mean of bias; med: median of bias; S.D.: standard deviation of the bias. Results are shown to two decimal places.τTREND: bias in predictive model estimates using trend model;τNO TREND: bias
in predictive model estimates using model without trend;τCORRECTED: bias in predictive model estimates using correction procedure;ρTREND: bias in EB estimates using trend model;ρNO TREND: bias in
EB estimates using model without trend;ρCORRECTED: bias in EB estimates using correction procedure.
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Fig. 3. Density of 500 estimates ofγ for four cases in the simulation study (whereC0 = 3, β = 0.61 andγ = 0.95). The dashed lines represent the true
value ofγ = 0.95.

However, the algorithm for fitting the trend model proved454

inefficient using a data set of only 100 sites or a modelling455

period of only 5 years: the distribution of bias was skew,456

with the mean bias tending to be much greater than 1. This457

is illustrated inFig. 3. It can be seen that, withn = 5 and458

nmod= 100, in the extremes of the distribution the before459

mean can be greatly under- or over-estimated. This result460

would suggest that the successful fitting of a trend model of461

the type used here requires data for a large number of sites462

over many years.463

As expected, the bias in the model without trend464

(τNO TREND) is substantial, particularly whenγ is apprecia-465

bly less than 1 andn (and hencet) is large. For the case of466

γ = 0.95 andn = 12 (t = 10.5), the mean over-estimate of467

µ̂B using the model without trend was 72%. The correction468

procedure proved extremely effective in estimating the be-469

fore mean: both the mean and median ofτCORRECTEDare470

1 for all cases.471

The results for the distribution of bias in the EB esti-472

mates (Table 1) show that, using the model without trend,473

the before mean (̂MB) was consistently over-estimated474

(ρNO TREND > 1) although the bias was much closer to 1475

than that in the estimates of̂µB (τNO TREND). In the most476

extreme case, withγ = 0.95 andn = 12, the model with-477

out trend over-estimated̂MB by 9%. Although the model478

with trend (τTREND) performed well when the model period479

was 12 years, the trend models derived from 5 years data480

for 100 sites introduced more bias than the model without481

trend. For example, in the case ofγ = 0.95 (with n = 5 482

and nmod= 100), the model with trend led to a mean483

under-estimate ofM̂B of 8% (τTREND = 0.92) compared 484

with a mean over-estimate of 5% using the model without485

trend (τNO TREND = 1.05). Again the correction procedure486

proved extremely effective in estimating the before mean487

(M̂B), with τCORRECTED≈ 1 in all cases. 488

The distribution of estimates of scheme and non-scheme489

effects for studies of nmod= 1000 are shown inTable 2 490

for γ = 0.95 andTable 3for γ = 0.975. The use of the491

model without trend tended to result in under-estimates of492

regression-to-mean effects (NR) and over-estimates of treat-493

ment effects (SR + SF), although the bias is not particularly494

large. The correction procedure was successful in eliminat-495

ing bias in all cases: even when the underlying trend in496

risk was large, the correction consistently estimated the true497

treatment effect. 498

6. Application of correction method to real data 499

The uncorrected and corrected models without trend were500

also applied to a group of 50 real sites at which a variety of501

speed management measures had been applied. Total per-502

sonal injury accidents and fatal and serious accidents were503

analysed. All of the sites were in 30 mph speed limits and504
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Table 2
The distribution of estimates of scheme and non-scheme effects for studies of nmod= 1000 withγ = 0.95

Properties Model type B = −0.5 B = −0.75

NR NT SF SR NR NT SF SR

Model time = 5 years,
size of model data
set = 1000

True data −0.07 {−0.07} [0] −0.13 {−0.13} [0] −0.03 {−0.03} [0] −0.26 {−0.26} [0.04] −0.07 {−0.07} [0] −0.13 {−0.13} [0] −0.03 {−0.03} [0] −0.51 {−0.51} [0.02]
Trend model −0.08 {−0.07} [0.05] −0.13 {−0.13} [0.01] −0.03 {−0.03} [0] −0.25 {−0.26} [0.06] −0.08 {−0.07} [0.05] −0.13 {−0.13} [0.01] −0.03 {−0.03} [0] −0.5 {−0.51} [0.05]
Without trend −0.04 {−0.04} [0] −0.14 {−0.14} [0] −0.03 {−0.03} [0] −0.29 {−0.29} [0.04] −0.04 {−0.04} [0] −0.14 {−0.14} [0] −0.03 {−0.03} [0] −0.54 {−0.54} [0.02]
Corrected model −0.07 {−0.07} [0.01] −0.13 {−0.13} [0] −0.03 {−0.03} [0] −0.26 {−0.26} [0.04] −0.07 {−0.07} [0.01] −0.13 {−0.13} [0] −0.03 {−0.03} [0] −0.51 {−0.51} [0.02]

Model time = 12 years,
size of model data
set = 1000

True data −0.1 {−0.1} [0] −0.13 {−0.13} [0] −0.03 {−0.03} [0] −0.24 {−0.24} [0.04] −0.1 {−0.1} [0] −0.13 {−0.13} [0] −0.03 {−0.03} [0] −0.49 {−0.49} [0.03]
Trend model −0.1 {−0.1} [0.03] −0.13 {−0.13} [0] −0.03 {−0.03} [0] −0.23 {−0.24} [0.05] −0.1 {−0.1} [0.03] −0.13 {−0.13} [0] −0.03 {−0.03} [0] −0.49 {−0.49} [0.03]
Without trend −0.04 {−0.04} [0] −0.14 {−0.14} [0] −0.03 {−0.03} [0] −0.29 {−0.29} [0.04] −0.04 {−0.04} [0] −0.14 {−0.14} [0] −0.03 {−0.03} [0] −0.54 {−0.54} [0.03]
Corrected model −0.1 {−0.1} [0.01] −0.13 {−0.13} [0] −0.03 {−0.03} [0] −0.24 {−0.24} [0.04] −0.1 {−0.1} [0.01] −0.13 {−0.13} [0] −0.03 {−0.03} [0] −0.49 {−0.49} [0.03]

Cells contain the arithmetic mean,{median} and [standard deviation] of the distribution of each estimate to two decimal places.B: observed proportional change in annual accidents;NR: RTM effect; NT: trend in accidents within study period;SF: scheme
effect attributable to a change in flow;SR: scheme effect attributable to a change in risk.
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Table 3
The distribution of estimates of scheme and non-scheme effects for studies of nmod= 1000 withγ = 0.975

Properties Model type B = −0.5 B = −0.75

NR NT SF SR NR NT SF SR

Model time = 5 years,
size of model data
set = 1000

True data −0.08 {−0.08} [0] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.33 {−0.34} [0.05] −0.08 {−0.08} [0] −0.05 {−0.05} [0] −0.03 {−0.04} [0] −0.58 {−0.59} [0.03]
Trend model −0.09 {−0.08} [0.05] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.33 {−0.33} [0.07] −0.09 {−0.08} [0.05] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.58 {−0.58} [0.05]
Without trend −0.07 {−0.07} [0] −0.05 {−0.05} [0] −0.04 {−0.04} [0] −0.35 {−0.35} [0.05] −0.07 {−0.07} [0] −0.05 {−0.05} [0] −0.04 {−0.04} [0] −0.6 {−0.6} [0.03]
Corrected model −0.08 {−0.08} [0.01] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.33 {−0.34} [0.05] −0.08 {−0.08} [0.01] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.58 {−0.58} [0.03]

Model time = 12 years,
size of model data
set = 1000

True data −0.1 {−0.1} [0] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.33 {−0.33} [0.05] −0.1 {−0.1} [0] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.57 {−0.57} [0.03]
Trend model −0.1 {−0.1} [0.02] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.32 {−0.33} [0.05] −0.1 {−0.1} [0.02] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.57 {−0.57} [0.03]
Without trend −0.07 {−0.07} [0] −0.05 {−0.05} [0] −0.04 {−0.04} [0] −0.35 {−0.35} [0.05] −0.07 {−0.07} [0.01] −0.05 {−0.05} [0] −0.04 {−0.04} [0] −0.59 {−0.59} [0.03]
Corrected model −0.1 {−0.1} [0.01] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.33 {−0.33} [0.05] −0.1 {−0.1} [0.01] −0.05 {−0.05} [0] −0.03 {−0.03} [0] −0.57 {−0.57} [0.03]

Cells contain the arithmetic mean,{median} and [standard deviation] of the distribution of each estimate to two decimal places.B: observed proportional change in annual accidents;NR: RTM effect; NT: trend in accidents within study period;SF: scheme
effect attributable to a change in flow;SR: scheme effect attributable to a change in risk.
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the schemes included both speed cameras and a variety of505

traffic calming measures. There were a total of 733 personal506

injury accidents in the before period, with 434 in the after507

period, and the mean durations of the before and after periods508

were 2.98 and 2.75 years, respectively. There were 131 fatal509

and serious accidents in the before period with 67 in the510

after period. The mean of the before period for the 50 sites511

occurred in September 1997.512

The predictive accident models used were the models513

without trend presented byMountain et al. (1997)with a514

modelling period of 12 years (1980–1991). Hence the mean515

time difference from the mid-point of the modelling period516

to the mid-point of the before periods was roughly 12 years.517

Correcting for the effects of trend in risk from the model pe-518

riod to the study period was therefore desirable. The estimate519

of γ used in the correction procedure was obtained from a520

comparison group consisting of UK accidents and flows for521

the years 1980–2001: the entire study period for modelled522

sites and scheme sites. This gaveγ = 0.97 for all accidents523

and γ = 0.94 for fatal and serious accidents. Calcula-524

tion of traditional confidence intervals for the scheme and525

non-scheme effects was achieved by thebootstrap(Efron526

and Tibshirani, 1993). This is a Monte-Carlo technique527

where samples (of the same size as the original sample) are528

taken from the data with replacement and the statistic of529

interest (saySR) is calculated for each sample. The distribu-530

tion of the estimates from (say 1000 samples) is then used to531

calculate the standard error of the estimate and the 2.5th and532

97.5th percentiles give an empirical 95% confidence inter-533

val. The results for the 50 sites are summarised inTable 4.534

As was predicted by the simulation studies, ignoring535

the effects of trend in risk between the modelling pe-536

Table 4
Estimates of scheme effects at 50 sites

Accident type Method Estimate

Scheme effect,̂S (standard error)
{95% empirical bootstrap CI}

Non-scheme effect,̂N (standard error)
{95% empirical bootstrap CI}

All accidents Simple before and after comparison S = −36.0% (5.8){−46.3,−24.4}

EB with comparison group and flow
correction—model without trend

S = −32.1% NR = −4.2% (1.2){−6.5, −1.8},
NT = 0.3% (2.0){−3.5, 4.4}SR = −27.1% (5.3){−36.6,−15.8}

SF = −5.0% (1.3){−7.8, −2.7}

EB with comparison group and flow
correction—corrected model (γ = 0.97)

S = −28.3% NR = −8.3% (1.5){−11.5,−5.6},
NT = 0.6% (1.9){−2.9, 4.6}SR = −23.4% (5.6){−33.5,−11.4}

SF = −4.9% (1.3){−7.5, −2.5}

Fatal and serious
accidents

Simple before and after comparison S = −48.8% (9.3){−65.1,−28.3}

EB with comparison group and flow
correction—model without trend

S = −42.8% NR = +3.4% (6.3){−7.3, 17.8},
NT = −9.5% (1.8){−13, −6}SR = −37.9% (7.4){−51.5,−23.2}

SF = −4.9% (1.3){−7.6, −2.5}

EB with comparison group and flow
correction—corrected model (γ = 0.94)

S = −22.2% NR = −20.2% (5.3){−29.6,
−9.4}, NT = −6.4% (1.6){−9.2,
−3.1}SR = −18.0% (7.4){−31.6,−1.9}

SF = −4.2% (1.2){−6.7, −2}

S: scheme effect;SR: scheme effect attributable to a change in risk;SF: scheme effect attributable to a change in flow;NT: trend in accidents within
study period;NR: RTM effect.

riod and the study period leads to under-estimates of the537

regression-to-mean effect (NR), with over-estimates of the538

scheme effects (S). The impact of the correction procedure539

was particularly important for fatal and serious accidents:540

the estimated effect of treatment on fatal and serious acci-541

dents using the correction (−22%) is only half that obtained542

assuming a constant risk (−43%). The estimates of the543

regression-to-mean effect with and without the correction544

were −20.2 and+3.42% respectively. This is a rather545

greater impact than might have been anticipated from the546

simulation results. The simulations, however, were based547

on a representative value ofC0 for total accidents. As fatal548

and serious accidents represent only a proportion of all ac-549

cidents, the value ofC0 for fatal and serious accidents will550

be smaller than for total accidents (with correspondingly551

smaller values ofµ̂B and XB). The models presented by552

Mountain et al. (1997)also give an estimate of the negative553

binomial shape parameter (K) of 2.65 for fatal and serious554

accidents compared with 1.92 for total accidents. These555

factors will clearly affect the EB estimation process and556

may indicate that for fatal and serious accidents the need557

for the correction procedure is greater. Further simulation558

studies (withC0 = 0.75, i.e. only a quarter of the value559

used in the original simulation studies) have indeed shown560

this to be true. 561

7. Discussion 562

The majority of available models assume that the un-563

derlying risk of accidents per unit of exposure is constant564

over time and yet, if road safety programmes are effective,
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a decline in risk per unit of exposure would be expected.565

The results of simulation studies show that trend in risk566

can lead to substantial errors in predictive model estimates567

of mean accident frequencies if the period for which esti-568

mates are required is several years after the modelling pe-569

riod (as is typically the case). The simulation studies also570

show that, if there is a trend in accident risk, the use of a571

model which ignores trend will result in errors in estimates572

of both the regression-to-mean effect and the treatment ef-573

fect. The size of these errors will depend on the size of the574

factor by which risk changes from year to year (γ) and on575

the elapsed time between the mid-points of modelling pe-576

riod and the study period (t). The errors also tend to be577

larger for sub-groups of accidents (such as fatal and seri-578

ous accidents) for which the observed and predicted acci-579

dent frequencies are smaller, and the NB shape parameter is580

larger.581

Given a reliable estimate of the factor by which risk582

changes from year to year (γ), the correction procedure out-583

lined in this paper allows an appropriate adjustment for trend584

in risk to be made to any accident prediction model. Indeed,585

for models derived from data for a relatively small number586

of sites over a short time period (say 100 sites over 5 years),587

it could be preferable to use the correction procedure rather588

than attempting to fit a model incorporating a trend term:589

the simulations show that it is not possible to reliably fit a590

trend model of the type considered here to such data. Since591

the majority of existing models are derived from data for592

relatively small number of sites over short time periods, this593

is an important result.594

Clearly the quality of the estimates obtained using the595

correction for trend will rely on the quality of the estimate596

of γ. The trend models presented byMountain et al. (1997)597

for the period of 1980–1991 for link accidents estimateγ as598

0.95 and 0.98 for total accidents and fatal and serious ac-599

cidents, respectively. This was based on data for 1268 sites600

and hence the simulations presented here suggest these esti-601

mates should be stable. There is clearly a discrepancy, how-602

ever, between these estimates and those obtained using na-603

tional data for the period 1980–2001 which gave estimates604

of γ of 0.97 and 0.94 for all accidents and fatal and serious605

accidents, respectively (and which were used in the correc-606

tion for the 50 real sites). Discrepancies between the trend607

estimates for individual links and the national data could be608

due to various factors: the national data may not be repre-609

sentative of link sites (the accident totals include all acci-610

dents not just those on links); the sample of link sites used611

by Mountain et al. (1997)may not be representative of na-612

tional trends (the data were for only six of the English coun-613

ties); the factor by which risk changes from year to year (γ)614

may not be constant over time. There is a need for this to615

be addressed in future research.616

In the simulation studies presented in this paper, overall617

mean flows were assumed to follow an arithmetic progres-618

sion. This was a strong assumption as it meant the mean of619

flows occurred at the middle of the study period. Some fur-620

ther investigations involving other possible representations621

of flow (such as a geometric progression or a sigmoid curve622

for flows over the study period) have shown that the correc-623

tion is still valid. 624

It is perhaps also worth noting that if the true value ofγ 625

is close to 1 (i.e. trend in accidentrisk is negligible) then 626

observed trends in accidents will be entirely attributable to627

trend inflow. In this case it could be preferable to estimate628

expected accidents in the after period using the actual before629

and after flows at the study site rather than observed acci-630

dents for a comparison group in the before and after periods631

(which might not be truly representative of the site under632

investigation). However, if the true value ofγ is close to 1 633

it would raise questions about the effectiveness of current634

road safety strategies. 635

8. Conclusions 636

This paper has considered the problems of bias when us-637

ing a mis-specified predictive model in the estimation of638

confounding factors in before and after studies of road safety639

schemes. Under the assumption of a genuine change in risk640

over time simulations showed that, if this is ignored, the es-641

timation of RTM and treatment effects can be biased. How-642

ever, the nature of the bias in the predictive model was es-643

tablished and a simple correction procedure outlined. The644

correction procedure was effective in eliminating bias and645

was also shown to be easily applicable to real data in an646

analysis of 50 treated sites. 647
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