This is a repository copy of Wolcott-Rallison syndrome: pathogenic insights into neonatal diabetes from new mutation and expression studies of EIF2AK3.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/245/

Article:

https://doi.org/10.1136/jmg.40.9.685

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
LETTER TO JMG

Wolcott-Rallison syndrome: pathogenic insights into neonatal diabetes from new mutation and expression studies of EIF2AK3

S Brickwood, D T Bonthron, L I Al-Gazali, K Piper, T Hearn, D I Wilson, N A Hanley

Wolcott-Rallison syndrome (OMIM 226980) is a rare autosomal recessive disorder characterised by permanent insulin requiring diabetes developing in the newborn period or early infancy, an early tendency to skeletal fractures, and spondyloepiphyseal dysplasia. The syndrome results from mutations in the gene encoding the eukaryotic translation initiation factor 2-α kinase 3 (EIF2AK3, also called PERK or PEA1). This enzyme phosphorylates EIF2A at Ser51 to regulate the synthesis of unfolded proteins in the endoplasmic reticulum. Targeted disruption of the Eif2ak3 gene in mice also causes diabetes because of the accumulation of unfolded proteins triggering β cell apoptosis. Although these murine models have provided significant insight into the pathogenesis of Wolcott-Rallison syndrome, only three human cases have been characterised genetically. Here, we report genetic analysis of two further cases, and demonstrate new features of the expression pattern of human EIF2AK3 that offer possible explanations for important clinical features of the syndrome that are not apparent in the transgenic mouse models.

METHODS

Primers were designed to amplify all EIF2AK3 exons and splice site sequences from genomic DNA (table 1). Sequences were amplified by 35 cycles of polymerase chain reaction (PCR) using a proof-reading DNA polymerase in 50 μl reactions and purified (Qiaguck, Qiagen, Crawley, Sussex, UK). Products were sequenced using the BigDye terminator reactions and purified (Qiaquick, Qiagen, Crawley, Sussex, UK). The syndrome results from mutations in the gene encoding the eukaryotic translation initiation factor 2-α kinase 3 (EIF2AK3, also called PERK or PEA1). This enzyme phosphorylates EIF2A at Ser51 to regulate the synthesis of unfolded proteins in the endoplasmic reticulum. Targeted disruption of the Eif2ak3 gene in mice also causes diabetes because of the accumulation of unfolded proteins triggering β cell apoptosis. Although these murine models have provided significant insight into the pathogenesis of Wolcott-Rallison syndrome, only three human cases have been characterised genetically. Here, we report genetic analysis of two further cases, and demonstrate new features of the expression pattern of human EIF2AK3 that offer possible explanations for important clinical features of the syndrome that are not apparent in the transgenic mouse models.

RESULTS AND DISCUSSION

Case reports and mutational analyses

Case 1

The clinical history has been detailed previously, and causative mutation of the PAX4 gene (required for β cell development) was excluded. This individual, born prematurely at 28 weeks gestation, was the offspring of consanguineous Saudi parents. The diagnosis of diabetes was made on the fourth day of postnatal life, although insulin was withdrawn on day 28 until the child re-presented with laboratory, S. Brickwood, D. T. Bonthron, L. I. Al-Gazali, K. Piper, T. Hearn, D. I. Wilson, N. A. Hanley. Wolcott-Rallison syndrome: pathogenic insights into neonatal diabetes from new mutation and expression studies of EIF2AK3. J Med Genet 2003;40:685–689. www.jmedgenet.com

Key points

- Wolcott-Rallison syndrome, a rare cause of permanent neonatal diabetes and spondyloepiphyseal dysplasia, results from mutations in the gene encoding EIF2AK3.
- We have identified two novel mutations in the EIF2AK3 gene from unrelated cases of this syndrome, including the first example of splice site mutation as the pathogenic mechanism.
- Additional phenotypic features included a predilection to severe unexplained hypoglycaemic episodes suggestive of hepatic impairment, and to renal failure. These features are not seen in Eif2ak3 knockout mice.
- Immunohistochemical analysis of human adult and fetal tissues showed that EIF2AK3 was widely expressed in the epithelial cells of the early fetal pancreas, and was present in adult β cells and exocrine tissue. It was also expressed in developing bone, kidney, and adult liver, consistent with the extended phenotype of Wolcott-Rallison syndrome.
- These results both broaden the previous molecular genetic description of this syndrome and provide new information relevant to the pathogenesis of those clinical features in affected patients that are not manifested by transgenic mouse models.
diabetic ketoacidosis at the age of four months. Management was complicated by recurrent hypoglycaemia until death at two years from severe diabetic ketoacidosis and infection. Skeletal findings were consistent with spondyloepiphyseal dysplasia and included bilateral femoral fractures.

Direct sequencing of EIF2AK3 revealed a homozygous deletion of four nucleotides (1563delGAAA) at the site of a GAAA 4 base pair (bp) direct repeat in exon 9. This generates an immediate premature termination codon at amino acid 523 (fig 1). DNA from both the parents and from the proband’s unaffected sister was sequenced and heterozygous deletions confirmed in all three individuals. No other alterations were observed in the exons or immediately adjacent intronic regions in the affected individual or in either parent.

Case 2
Clinical features of the second case up to the age of four and a half years were described previously and included spondyloepiphyseal dysplasia and generalised osteoporosis. This child, again the offspring of consanguineous Saudi parents, was diagnosed at two months with diabetes requiring insulin therapy, but subsequently died of renal failure. The clinical course was marked by severe intellectual impairment and frequent unpredictable hypoglycaemic episodes. A brother,
now nine years old, also has insulin dependent diabetes. Diagnosed two weeks after birth, his management is complicated by frequent hypoglycaemia. Two additional siblings are unaffected. No DNA was available from these latter three siblings, or from either parent. Direct sequencing was previously identified by immunohistochemistry only in

diabetic

cell failure.

\[\text{Expression of EIF2AK3 in human tissues} \]

Targeted mutation of the mouse Eif2ak3 gene results in animals that appear normal at birth but have progressive postnatal β cell failure.\(^9\) \(^11\) However, in humans, EIF2AK3 was previously identified by immunohistochemistry only in somatostatin positive β cells of the pancreatic islet.\(^9\) To try to resolve this anomaly, we studied fixed sections of human adult pancreas by immunohistochemistry with a polyclonal antibody to EIF2AK3. In adult pancreas, we found that EIF2AK3 was expressed extensively in the islet, with a predominance in β cells (fig 2, panels A to C). Furthermore, in keeping with the exocrine pancreatic insufficiency reported in a human patient\(^1\) and in one of the knockout mouse models,\(^9\) weaker EIF2AK3 staining was also apparent within the acinar tissue (fig 2, panel D).

The normal birth weights of infants with Wolcott-Rallison syndrome and the unremarkable pancreatic organogenesis in Eif2ak3\(^{-/-}\) mice\(^1\) \(^12\) might suggest a minimal role for EIF2AK3 during pancreatic development in utero. However, pancreatic hypoplasia/hypotrophy has characterised several cases of Wolcott-Rallison syndrome, either at diagnosis by ultrasonography or at necropsy.\(^1\) \(^11\) \(^12\) Also, we find that EIF2AK3 is widely expressed within the human fetal pancreas at eight weeks postconception, at which stage the organ is composed of epithelial progenitor cells before islet or exocrine differentiation\(^9\) (fig 2E). Furthermore, in our first case (case 11 of table 2), diabetes developed only four days after premature birth at 28 weeks' gestation. Taken together, these observations indicate that the human fetal pancreas may not be normal in Wolcott-Rallison syndrome. Consistent with this suggestion, mutation of the Eif2ak3 enzyme target (Ser51Ala of Eif2a) resulted in a 50% diminution of pancreatic insulin content between mouse embryonic days 16.5 and 18.5.\(^1\) EIF2AK3 is only one of four kinases known to phosphorylate EIF2A. It is therefore feasible that the precise phenotype of the Wolcott-Rallison syndrome could depend not only on the severity of the EIF2AK3 mutation, but also on the co-expression and activity of the other kinases. In both humans and mice, there appears to be an absolute requirement for EIF2AK3 in postnatal pancreatic β cells. In contrast, in the murine liver, Eif2ak3 function appears dispensable.\(^9\) \(^12\) It is therefore interesting to note the recurrent hypoglycaemic episodes and hepatic dysfunction/enlargement that characterises eight of the 15 described cases of Wolcott-Rallison syndrome.
syndrome (ours* and those of others** (table 2)). These clinical data are reminiscent of the fatal hypoglycaemia of the Eif2ak3 mutant mice.** In combination, it appears likely that in the human but not the mouse hepatic EIF2AK3 may have an important metabolic role that is not compensated for by other enzymes capable of phosphorylating EIF2A. Certainly, Eif2ak3 may be a key player in the activation of the endoplasmic reticulum stress response. This work was supported by funding from the Juvenile Diabetes Research Foundation. NAH is a UK Department of Health clinician scientist.

Table 2 Reported human cases of Wolcott-Rallison syndrome and transgenic mouse models

<table>
<thead>
<tr>
<th>Features</th>
<th>Human</th>
<th>Mouse</th>
<th>Harding Eif2ak3/−/+</th>
<th>Zhang Eif2ak3/−/−</th>
<th>Schweizer Eif2aser1Ala/−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset of DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epilepsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoglycaemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical exocrine diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic hypoglosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver dysfunction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal abnormalities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cases 1–3: cases 1, 2, and 3 (siblings) from Wolcott and Rallison,** 1972.†
Cases 4 and 5: cases 1 and 2 from Goumy et al., 1987.‡
Cases 6 and 7: cases 1 and 2 (siblings) from Sassi et al., 1982. §
Cases 8 and 9: cases 1 and 2 (siblings) from al-Gazali et al., 1995. ¶
Case 10: Stewart et al., 1996,† Thornton et al., 1997.‖ Enlarged kidneys, abnormal shape with minor histological abnormalities.
Case 11: Bonthron et al., 1998.
Case 12: Castelnuovo et al., 2000.¶
Cases 13 and 14: Delépine et al., 2000. Although a diagnosis of Wolcott-Rallison syndrome was made, no clinical description was provided.
Where possible a positive phenotypic comment is made, otherwise a box is left blank. An asterisk indicates the cases sequenced in the present study.
†Premature birth at 28 weeks’ gestation.
‡The Eif2aser1Ala mice die of hypoglycaemia in the newborn period, although pancreatic insulin content is significantly reduced.
*Death from hypoglycaemia if untreated.
† Untreated

Conclusions
We have described two novel mutations in Eif2ak3, both of which reinforce the pathogenic significance of loss of the kinase domain—a finding consistent across all five Wolcott-Rallison syndrome mutations characterised to date.§ The phenotypic features of these cases and of the knockout mouse models are entirely concordant with the expression profile of Eif2ak3 that we observe in human islets of Langerhans and elsewhere in the pancreas, including the lower levels of detection in exocrine tissue. These expression patterns appear much more in keeping with the known clinical features of Wolcott-Rallison syndrome than do previous results that indicated localisation of Eif2ak3 limited to islet β cells.¶ Furthermore, the likelihood of interspecies differences in the phosphorylation of EIF2A is suggested by the presence in Wolcott-Rallison syndrome of hypoglycaemic complications, hepatic dysfunction, and renal complications that are not observed in transgenic mice models.

ACKNOWLEDGEMENTS
This work was supported by funding from the Juvenile Diabetes Research Foundation. NAH is a UK Department of Health clinician scientist.

Authors’ affiliations
S Brickwood, D I Wilson, N A Hanley, K Piper, T Hearn, Division of Human Genetics, Southampton University, Southampton, UK
D T Bonthron, Molecular Medicine Unit, University of Leeds, St James’s University Hospital, Leeds, UK
L I Al-Gazali, Department of Paediatrics, FMHS, UAE University, Al Ain, UAE
Correspondence to: Dr Neil A Hanley, Division of Human Genetics, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; n.a.hanley@soton.ac.uk

www.jmedgenet.com
REFERENCES