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Abstract 

The temporal output of a Ni-like Ag x-ray laser of wavelength 13.9 nm has been 

recorded using a streak camera with ultra-short (700 fs) temporal resolution.  We 

present a model to calculate the degree of coherence and Fourier transform limit of x-

ray laser pulses produced by amplified spontaneous emission and relate the results 

from the model to previous interferometric measurements of the coherence length of 

the same Ni-like Ag x-ray laser and our measured duration of temporal output.  Our 

modeling shows that the interferometer and streak camera results are consistent and 

close to the Fourier transform limit at longer gain medium lengths.  



I. Introduction 

Saturated x-ray lasing at wavelengths in the range 5.9 – 30 nm [1, 2] and with pulse 

durations down to ≈  3 ps [3, 4] has been produced in plasmas pumped by optical 

lasers.  In these experiments, a first laser pulse incident onto a solid in a line focus 

creates a pre-formed plasma of Ne- or Ni-like ionization and a second pulse heats free 

electrons that produce population inversions by monopole electron collisional 

excitation.  Lasing occurs in Ne- or Ni-like ions between 3p – 3s and 4d – 4p levels 

respectively as the upper levels are metastable to decay to the ground 2p and 3d states 

respectively [1, 2].  It has been shown that this mechanism of pumping x-ray lasers 

works with pumping laser pulses of duration from ≈100 ps down to < 1 ps, but that 

gain is always present for times  10 ps with minimum observed x-ray lasing 

duration of 3 ps [3].   

≥

≈

 

Observations of x-ray lasing arise from amplified spontaneous emission (ASE) and 

mirrors are not needed.  With plasma based x-ray lasers, the output is spectrally 

narrow (
410>∆υυ ) due to gain narrowing of the already spectrally narrow Doppler 

or pressure broadened gain profile.   Koch et al. [5] constructed a spectrometer with a 

spectral resolving power of 35000 and measured x-ray laser spectral widths.  Similar 

direct measurements of the linewidth have been conducted by G. Yuan et al [6].  

Other measurements of the spectral profiles of x-ray lasers have been undertaken 

using interferometry [7 – 9].   The longitudinal coherence length and hence the 

spectral output of the x-ray laser can be measured by recording fringe visibility as a 

function of the difference in optical path length of an interferometer [10]. 

 



From estimates of the frequency width of the gain coefficient of x-ray lasers, x-ray 

laser pulses of 3 ps duration are calculated to be close to the Fourier transform limit 

[3, 4, 8].  However, there has not been a direct measurement of the frequency 

bandwidth of x-ray laser output alongside a measurement of the pulse duration of the 

same x-ray laser pulses.  There are, in addition, several features of the interpretation 

of frequency bandwidth from interferometric measurements and the determination of 

the exact Fourier transform relationships between frequency bandwidth and the pulse 

duration that have not previously been clarified for x-ray lasing produced by ASE.   

≈

 

The frequency bandwidth of the Laboratoire pour l’Utilisation des Lasers Intenses 

(LULI) x-ray laser operating with Ni-like Ag at 13.9 nm wavelength at Ecole 

Polytechnique in Paris has been measured using a Fresnel bimirror interferometer [9].  

In this paper, we report measurements of the temporal duration of this x-ray laser 

using an ultra-fast streak camera.  A model is introduced that relates the fringe 

visibility of interferometry results to the frequency bandwidth of the gain coefficient 

and evaluates the Fourier transform limit allowing for gain narrowing in ASE lasers.  

Using the model, the proximity of the LULI x-ray laser to the Fourier transform limit 

is demonstrated and analysed.   

 

II. Experiment 

X-ray lasing at 13.9 nm in a 4d – 4p Ni-like silver line has been produced with double 

pulse pumping at the LULI laser facility.  The background pulse was 600 ps in 

duration with an intensity of 10
12

 Wcm
-2

 and was followed by a 400 fs duration pulse 

of peak intensity 10
15

 Wcm
-2

.  The two pulses were separated by a peak-to-peak time 



of 250 ps and were focused to lines of widths of 200µ m and 60 µ m respectively 

onto a silver slab target. 

 

A scanning Fresnel bimirror wavefront division interferometer has been used to 

investigate the longitudinal coherence of the 13.9 nm Ni-like silver x-ray laser 

pumped by the LULI laser [9].  Interferometry results were recorded for a L = 10 cm 

target length with the Fresnel bimirror located 3.5 m from the x-ray laser target.  By 

varying the optical path length difference between the two arms of the interferometer, 

the fringe visibility as a function of path length difference up to 1.4 mm was measured 

[9].   

 

The temporal variation of the 13.9 nm Ni-like silver x-ray laser pumped by the LULI 

laser has been measured using a fast streak camera with a KI photocathode, 700 fs 

resolution and ~ 5 ps mm
-1

 sweep rate [11] for a range of target lengths.  The streak 

camera has a limited dynamic range of the incident x-ray intensity arising from the 

rapid streak rate, but this has been characterised in previous experiments.  Using 

filters care was always taken to operate the streak camera with sufficiently low 

incident x-ray laser intensities to avoid saturation effects on the pulse duration 

measurements.  The x-ray laser output was relayed to the streak camera via a plane 

and spherical multilayer imaging mirror and a gold surface grazing-incidence 

reflection over a path of 6 m from the x-ray laser target.  The multilayer mirror 

reflected over a narrow wavelength range (less than 1.5 nm).  Together with 0.2µ m 

thick zirconium filters, this ensured that only the x-ray laser output was recorded by 

the streak camera. 



III. Theory 

A. Effect of short duration pulses on fringe visibility 

When interfering beams of equal intensity, the visibility of fringes is equal to the 

degree of coherence γ of the two beams.  However, the absolute scaling of the 

visibility with γ recorded in an interferometer needs to be adjusted if there are 

mismatches in intensity between the interfering beams.  For pulse durations much 

longer than the coherence time, the relationship between visibility and γ  is a constant 

(< 1) with optical path difference.  We show quantitatively here that using 

interferometry to measure fringe visibility for pulses close to the Fourier transform 

limit results in a reduction in visibility that increases with the optical delay [12].   

 

Considering laser output of Gaussian temporal shape, the electric fields of the two 

interfering pulses in an interferometer can be written as. 
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where T is the FWHM pulse duration of the light intensity.  When tc∆  is the path 

difference present between the two arms of the interferometer for c the speed of light, 

the maximum ∫ ∆++∝ dtttEtEI
2

21max )()( and minimum 

∫ ∆+−∝ dtttEtEI
2

21min )()(  average intensities in an interferometer can be 

calculated.  The fringe visibility is given by 
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For Gaussian temporal profiles (equation 1) this leads to [13] 
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Equation 3 is identical to that developed by, for example, Born and Wolf [10] for the 

visibility in an interferometer except for the factor ( )
⎥
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allowing for the pulse duration T.   

 

We can write generally for the visibility of fringes in an interferometer 
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where the value of f(∆t) is dependent on the shape of the pulse.  Experimental work 

using fast streak cameras has found that the temporal profiles of x-ray laser pulses are 

closer to fitted asymmetric sech functions.  The corresponding electric fields have the 

following form 
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where A and B are constant values chosen to fit the experimental temporal profiles. 

The f value for the asymmetric sech function has been solved numerically.  Figure 1 



shows the behaviour of f with optical path difference for Gaussian and asymmetric 

sech pulse profiles with A=1 and B=8.  All temporal pulse shapes give a decrease in f 

with optical path difference and hence have a greater effect for longer path 

differences.   

 

B. The effect of gain narrowing on the degree of coherence 

To be able to model the degree of coherence γ of the x-ray laser we need to calculate 

the spectral variation in the intensity.  We can write for a normalized lineshape 

function g(ν) that φ(ν) = g(ν)/g(0) where frequency ν is measured from the line 

center.   For Gaussian, Lorentzian and Voigt profiles respectively 
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where Gυ∆ , Lυ∆  are the full width at half maximum (FWHM) of the Gaussian and 

Lorentzian profiles respectively and ∗  is the convolution operation.   

 

The degree of coherence ( )t∆γ  and the spectral variation in a source of intensity ( )νI  

are related through a Fourier transform [10] such that  
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where  is the optical path difference in one arm of an interferometer.  For an 

x-ray laser, the source intensity profile 

tcd ∆=∆

( )υI  can be expressed as 

 

( ) ( ) ( )( )[ 10exp)0(0 ]−= υφυ LGgII      (10) 

 

where G(0)L is the actual gain coefficient length product at line center and g(0) is the 

normalized lineshape function for the gain coefficient at line center.  The x-ray laser 

theory derived by Pert [14] and Casperson [15] gives an approximation for the 

saturation effects on the spontaneous and stimulated emission for a homogenous laser 

expressed as 
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where g0 is the small signal gain coefficient at line centre, ( )( )LG 0α  is an 

amplification factor which is a function of the actual gain coefficient length product 

G(0)L, I0 is a measure of the spontaneous emission at line centre and Is is the 

saturation intensity.  We assume homogeneous broadening in this paper as Pert [14] 

has shown that gain coefficient profiles are homogenised due to minor collisional 

broadening components.  This leads to the situation assumed for the later analysis of 

experimental results where the gain coefficient is homogeneous and Gaussian shaped 

with a width largely determined by thermal Doppler broadening.  We also consider 



Lorentzian and Voigt gain coefficient profiles in this theory section and show that 

results for the degree of coherence and Fourier transform limit are similar to those for 

Gaussian shaped gain coefficient profiles, particularly at longer gain length products. 

 

Equations 9 and 10 allow us to express the degree of coherence as 
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Figure 2 shows the spectral profiles for a Gaussian gain coefficient profile calculated 

using equations 6 and 10 assuming homogeneous broadening.  The spectral width 

decreases with increasing actual gain coefficient length product G(0)L due to gain 

narrowing.  Using equations 6 and 12 we can calculate the subsequent degree of 

coherence for different gain length products (figure 3).  The Fourier transform of the 

gain narrowed spectral profiles gives an increasing width with increasing G(0)L for 

the degree of coherence profiles.  The spectral intensity variation for a Lorentzian 

gain profile has been calculated in a similar way using equations 7 and 10 (figure 4).  

We find that the intensity profile remains Lorentzian for low G(0)L, but at the higher 

G(0)L values the profiles become Gaussian-like in shape.  The degree of coherence 

for a Lorentzian gain profile is shown in figure 5.  A Lorentzian function Fourier 

transforms to an exponential decay function of the form ( )Lt υ∆−exp .  We see that at 

low G(0)L the degree of coherence follows an exponential decay profile, while at 

larger G(0)L values the variation of the degree of coherence approaches a Gaussian 

shape. 

 



We have calculated the spectral profile and the resultant degree of coherence for a 

sample Voigt profile of the gain coefficient (figures 6 and 7) calculated from 

equations 6 – 8, 10 and 12.  The Voigt profile is produced by convoluting a Gaussian 

profile with a Lorentzian profile of equal spectral width.  We find that the spectral 

gain narrowing behaviour and the subsequent change in the degree of coherence 

profile is similar to the Lorentzian profile. 

 

We can define the coherence length of a source as the FWHM in optical path length 

difference υ∆∆t of the degree of coherence ( )t∆γ [16].  Here υ∆  is the frequency 

bandwidth (FWHM) of the gain coefficient.  From figures 3, 5 and 7 we can plot the 

variation in coherence length with actual gain coefficient length product G(0)L (figure 

8).  There is little difference in the results for Gaussian, Voigt and Lorentzian profiles, 

but there is a small variation with the value of the gain length product G(0)L. 

 

IV. Comparison to experiments 

A. The LULI x-ray laser 

Figure 9 shows the variation of fringe visibility as a function of optical path length 

difference measured by Klisnick et al. [9] together with adjusted visibilities as 

outlined in section IIIA to allow for the short duration of the output pulses measured 

with a streak camera.  Superimposed on figure 9 are values of the degree of coherence 

calculated as outlined in section IIIB for a Gaussian gain coefficient of bandwidth 

Hz for different gain length G(0)L values.  The calculated degree of 

coherence values are adjusted in amplitude by a multiplying factor of 0.41 for all 

optical path length differences to fit the visibility data.  This is justified as various 

effects can uniformly reduce the visibility.  For example, the interfering beams can be 

11105.6 ×



of unequal intensity or transverse coherence effects can be important.  In our analysis, 

we assume that there are no changes in transverse coherence with changes in the 

longitudinal optical path length.  

 

The fit of our theory to the Klisnick et al. [9] experimental data of figure 9 is worse 

than for previous x-ray laser coherence measurements [7, 8] (discussed later, see our 

figures 12 – 14).  There are large shot – to – shot variations in the figure 9 visibilities 

possibly arising because of random changes in transverse coherence.  For example, 

there is a range from 0.31 – 0.46 at zero path difference.  Nevertheless, a gain-length 

product  and gain coefficient frequency bandwidth ∆ν  = 6.5 – 9.5 × 10( ) 180 ≈LG
11

 

Hz approximately fits the experimental fringe visibilities of figure 9 (only ∆ν  = 6.5 × 

10
11

 Hz is shown on figure 9, see figure 3 for the effect of increasing ∆ν). A gain 

coefficient cm( ) 180 ≈G
-1

 for the L = 1 cm medium is consistent with a measurement 

of the gain coefficient from a scan of X-ray laser flux as a function of length obtained 

using our streak camera and with previous experiments for this x-ray laser [17].  A 

gain coefficient ( ) 180 ≈G cm
-1

 indicates operation well into saturation for lengths L ≥ 

5 mm with a small signal gain coefficient 320 ≈g cm
-1

 obtained using equation 11 

with the assumption that I0/Is = 10
-6

.  Simulations with the EHYBRID fluid code with 

a RAYTRACE post-processor [18] predict an almost identical small signal gain 

coefficient of 300 =g cm
-1

.   EHYBRID calculates the gain coefficient and electron 

density profiles normal to the target surface by solving the fluid equations coupled to 

atomic physics calculations of quantum state populations.  The RAYTRACE post-

processor uses the EHYBRID gain and electron density profiles to calculate X-ray 



laser output assuming amplified spontaneous emission along ray paths subject to 

refraction. 

 

New results showing the variation of the output pulse duration as a function of target 

length measured using the fast streak camera on the LULI x-ray laser are presented in 

figure 10.  The pulse duration is predicted to drop with increasing target length L 

according to the EHYBRID/RAYTRACE [18] simulation (also shown on figure 10) 

rather than increase as observed experimentally. Diffraction and other wave properties 

of the laser light are not considered in these simulations.  Wave effects on the pulse 

shape  due to the transform limit can be found from the Fourier transform of the 

electric field variation in frequency 

( )tI

( )υE  (from equation 10) giving .  The 

intensity is then calculated using 

( )tE

( ) ( )[ ]20
2

1
tEctI ε= .  The Fourier transform limited 

pulse durations found using this procedure are dependent upon the gain bandwidth 

υ∆  and the gain-length product ( )LG 0  and increase with target length L in 

agreement with the experimental observations.  Using the values found from the fits 

to the longitudinal visibility data of figure 9, figure 10 includes some sample temporal 

durations for the expected Fourier transform limit.  The Fourier transform values for 

∆ν  = 6.5 × 10
11

 Hz and cm( ) 180 ≈G
-1 

when convoluted with the 

EHYBRID/RAYTRACE prediction give values approaching the experimental pulse 

duration variation. 

 

The numerical RAYTRACE temporal profiles and the Fourier transform of the 

appropriate electric field variations arising from equation 10 can be convoluted 

together and superimposed on experimentally measured temporal profiles of x-ray 



laser output.   A worst case example is shown in figure 11 assuming ∆ν  = 9.5 × 10
11

 

Hz (the upper bound for the frequency bandwidth for the experimental data of figure 

9).  The agreement between the experimentally measured x-ray laser pulse variations 

and the RAYTRACE simulation convoluted with the Fourier transform temporal 

‘smearing’ effect is good.  This procedure and the results of figure 10 show that the 

dominant effect contributing to the X-ray laser pulse duration for longer lengths of x-

ray laser medium arises from the Fourier transform limit.   

 

The frequency bandwidth for the gain coefficient of ∆ν  = 6.5 – 9.5 × 10
11

 Hz 

obtained from the published visibility plot (figure 9) implies ion temperatures of 17 - 

35 eV assuming Doppler broadening of the gain coefficient.  However, EHYBRID 

simulations predict that ion temperatures of 70 eV are present in the peak gain region 

of the plasma.  Dicke narrowing of the Doppler line profile due to ion-ion collisions 

could explain this discrepancy [19].  From EHYBRID simulations, we estimate that 

the ratio Γ of ionic electrical potential energy and ionic thermal energy is such that Γ 

≈ 0.3 in the gain region of the plasma.  The calculations of Griem [20] suggest that 

Dicke narrowing may occur for these Γ values, though molecular dynamic 

simulations of Pollack and London [21] indicate that Dicke narrowing only becomes 

important for Γ > 5.  The discrepancy in ion temperature between the experimental 

bandwidth measurement and simulation has been discussed by Guilbaud et al [22] 

who suggest that random changes in transverse coherence with a limited number of 

observations have affected the interferometric measurements and hence would cause 

the bandwidth to be underestimated in our analysis.  However, this argument is not 

consistent with the agreement of the streak camera results (e.g. figure 11) with our 

calculated temporal variations in laser output (taking account of ray tracing 



simulations convoluted with transform limit effects using the interferometrically 

measured ∆ν).   

 

B. Other x-ray lasers 

Our Fourier transform limit modeling has been fitted in a similar manner as described 

above to longitudinal coherence measurements by Celliers et al. [7] and Smith et al. 

[8] (see figures 12 – 14).  The Celliers et al. experiment used a single long pulse (600 

ps) laser pump and so the gain coefficient was low at ( ) 5.03.50 ±≈G cm
-1

 [23].  A 

Gaussian with 1/e half-half-width of 100µ m was fitted to the experimental visibility 

variation with optical path length by the authors.  Our calculated visibility plots 

assuming Gaussian gain coefficient profiles have been fitted to this experimental 

visibility assuming G(0)L = 7 (see figure 12).  In addition, the variation of visibility 

for a Gaussian shaped intensity profile for the x-ray laser is also superimposed on 

figure 12.  For the Celliers et al. results, the fitting of our calculated γ  to the 

published visibility results gives Hz and so implies an ion 

temperature of 780 eV assuming that the gain coefficient is Doppler broadened.  

Simulations by Celliers et al. predicted ion temperatures of 600 eV in the gain region 

[7].  The ion temperature from the bandwidth quoted by Celliers et al. [7] was ~ 125 

eV, clearly different to their fluid code simulation.  The ion temperature deduced 

using our visibility calculation is much closer to the temperature predicted by the 

code. 

12100.4 ×=∆ Gυ

 

Smith et al. [8] used a Michelson interferometer to measure the frequency bandwidth 

of a 14.68 nm Ni-like Pd x-ray laser.  Fringe visibility measurements were taken for 

two different pumping beam durations of 6 and 13 ps.  The resulting visibility plots 



were fitted with Gaussians with 1/e half-half-widths of 342 and 400 µm respectively 

by Smith et al.  The Smith et al. visibility data is now fitted with our calculated 

visibility plots assuming Gaussian gain coefficient profiles for G(0)L = 18 in figures 

13 and 14.  A value of G(0)L = 18 is consistent with the small signal gain coefficient 

of g0=65 cm
-1

 simulated by Smith et al. [8] for the L = 1.25 cm medium length. Our 

fitting implies an ion temperature of 120 or 150 eV for figures 13 and 14 respectively 

assuming the gain coefficient is Doppler broadened.   

 

V. Conclusion 

We have developed a model to calculate the degree of coherence of an x-ray laser 

source and evaluate the Fourier transform limit of x-ray laser pulses produced by 

ASE.  The model includes gain narrowing effects and the effect of pulse duration on 

measurements of longitudinal coherence for pulses close to the Fourier transform 

limit.  Measurements of the temporal duration of a Ni-like Ag x-ray laser are 

presented and shown to be consistent with previous measurements of the longitudinal 

coherence.  Our modeling shows that the temporal durations and longitudinal 

coherence are consistent and close to the Fourier transform limit at longer gain 

medium lengths. 
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Captions 

Figure 1: The short pulse duration reduction f in fringe visibility as a function of 

optical path difference (in units of pulse duration T), for Gaussian (     ) and 

asymmetric sech (A=1 and B=8) (     ) shaped pulses (see equation 5). 

t∆

 

Figure 2: (Color online) Spectral intensity variation of the x-ray laser output assuming 

a Gaussian gain coefficient profile of FWHM Gυ∆ .  Intensities are shown for 

difference gain length products G(0)L (as labelled) relative to the line center. 

 

Figure 3: (Color online) The variation in the degree of coherence with path difference 

for different actual gain coefficient length products G(0)L assuming a Gaussian gain 

coefficient profile of frequency FWHM Gυ∆ . 

 

Figure 4:  (Color online) Spectral intensity variation of the x-ray laser assuming a 

Lorentzian gain coefficient profile of FWHM Lυ∆ .  Intensities are shown for 

different gain length products G(0)L (as labelled) relative to the line center. 

 

Figure 5: (Color online) The variation in the degree of coherence with path difference 

for different actual gain coefficient length products G(0)L assuming a Lorentzian gain 

profile frequency FWHM Lυ∆ . 

 

Figure 6:  (Color online) Spectral intensity variation of the x-ray laser assuming a 

Voigt gain coefficient profile produced by convoluting Gaussian and Lorentzian gain 

coefficient profiles of equal spectral widths.  The width of the resulting Voigt gain 

coefficient is Vυ∆ (FWHM). 



Figure 7: (Color online) The variation in the degree of coherence with path difference 

for different actual gain coefficient length products G(0)L assuming a Voigt gain 

coefficient profile produced by convoluting Gaussian and a Lorentzian gain 

coefficient profiles of equal spectral widths.  The width of the resulting Voigt gain 

coefficient is Vυ∆ (FWHM). 

 

Figure 8: (Color online) The variation in the longitudinal coherence length υ∆∆t with 

actual gain coefficient length product G(0)L for Gaussian  (     ), Lorentzian (     ) and 

Voigt (     ) gain coefficient profiles of FWHM υ∆ .  The sample Voigt profile is 

assumed to have equal spectral width contributions from Gaussian and Lorentzian 

components. 

 

Figure 9: Measured visibilities (ν) from Klisnick et al. [9] with L = 1 cm and averaged 

corrected visibilities (9) as a function of optical path difference in the interferometer.  

The corrected visibilities are adjusted to allow for the short pulse duration of the pulse 

and are shown with error bars following the published range of experimental 

observations.  Calculated variations of the degree of coherence for different gain-

length G(0)L  products (as marked) for a Gaussian gain coefficient of bandwidth υ∆  

= Hz are also shown. 11105.6 ×

 

Figure 10: The variation of the full width at half maximum of the x-ray laser pulse 

duration with target length measured experimentally (data points) and simulated with 

the EHYBRID and RAYTRACE codes (solid curve).   The transform limited values 

for  Hz and  Hz for different gain coefficients  are also 

shown (as labeled). 

11105.6 ×=∆υ 11105.9 × ( )0G



 

Figure 11a-d: (Color online) Experimental (solid line) and the convolution of the 

transform limit intensity variation (arb. Units) with an EHYBRID/RAYTRACE 

calculated temporal profile of the x-ray laser output (broken line) for target lengths of 

5, 7, 10 and 15 mm (a, b, c, and d respectively).  A gain profile width of 

 Hz and gain coefficient 11105.9 ×=∆υ ( ) 180 =G  cm
-1

 is assumed for the calculated 

temporal profiles. 

 

Figure 12: The experimental visibility data ( ) for a plasma of 30 mm length reported 

by Celliers et al. [7], the Gaussian best fit (     ) and our calculated visibility fitting for 

G(0)L=7 (     ) for the experiment. 

 

Figure 13:  The raw experimental visibility data ( ) for a plasma length of 1.25 cm, 

the Gaussian best fit (     ) and calculated visibility fit for G(0)L=18.00 (     ) for a 6 ps 

CPA pumping beam and  Hz.  The visibility data and the Gaussian 

best fit are taken from Smith et al. [8]. 

121095.1 ×=∆ Gυ

 

Figure 14: As figure 13 except for a 13ps CPA pulse and Hz. 121067.1 ×=∆ Gυ
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