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ABSTRACT 
 
WATLING, DP (1992).  The day-to-day dynamics of route choice.  Work Pap 372, Institute for 

Transport Studies, University of Leeds, Leeds. 
 
This paper reviews methods proposed for modelling the day-to-day dynamics of route choice, 
on an individual driver level.  Extensions to within-day dynamics and choice of departure time 
are also discussed.  A new variation on the approaches reviewed is also described.  Simulation 
tests on a simple two-link network are used to illustrate the approach, and to investigate 
probabilistic counterparts of equilibrium uniqueness and stability.  The long-term plan is for 
such a day-to-day varying demand-side model to be combined with a suitable microscopic 
supply-side model, thereby producing a new generation network model.  The need for such a 
model - particularly in the context of assessing real-time transport strategies - has been 
identified in previous working papers. 
 
KEY-WORDS: Route choice; day-to-day variability; traffic network model; stochastic process; 

departure time choice. 

 
Contact: David Watling, Institute for Transport Studies (tel: 0532-335342). 



CONTENTS  
 
 
 Page 
 
1.INTRODUCTION 1 
 
2.REVIEW 1 
 
3.MODELLING REQUIREMENTS 7 
 
4.THE MODEL DEVELOPMENT IN CONTEXT 8 
 
5.THE MODEL 9 
5.1Model A 11 
5.2Model B 12 
5.3Model C 13 
5.4Model D 14 
5.5Model E 17 
5.6Model F 19 
5.7General comments on the modelling approaches 20 
 
6.SIMPLE SIMULATION TESTS 23 
 
7.CONCLUSIONS 25 
 
8. ACKNOWLEDGEMENTS 25 
 
9.REFERENCES 25 
 
APPENDIX 30 
 



 

 
 
 4 

THE DAY-TO-DAY DYNAMICS OF ROUTE CHOICE 
 
 
 

1. INTRODUCTION 
 
This note describes some possible models of the day-to-day dynamics of driver route choice.  
The motivation for the work is the study of dynamic route guidance systems.  The models 
considered include approaches which have been proposed in the literature, as well as a new 
variation on these models. 
 
The purpose of this review is to determine the most appropriate model, which will be used as a 
component in a much larger network model.  This particular component is concerned only with 
the demand side of route choice decisions made at the trip origin - it is intended that it may be 
used with any supply model (although the expectation is that a stochastic, capacity-restrained 
supply model will be used). For the main part of the note, attention will be restricted to the 
case where demand is constant over the modelled period in any given day, departure times are 
fixed, and the attractiveness of competing routes is constant within a day. However, towards 
the end of the note, a possible specification is given for the day-to-day evolution of the within-
day dynamic problem of joint route and departure time choice. 
 
 

2. REVIEW 
 
The first notable piece of work on this subjects seems to be that of Horowitz (1984).  His work 
related to the stability of stochastic equilibrium.  In the study of dynamic route guidance 
systems, the notion of equilibrium is of questionable use (Watling and Van Vuren, 1992) and so 
stability issues are not of great concern to us.  Of greater interest are the various models 
proposed by Horowitz for describing the day-to-day adjustment in perceived travel costs (and 
hence route choice).  He describes three basic models; all are studied in conjunction with a 
deterministic supply model (link performance functions), and in all cases drivers choose the 
minimum perceived cost route.  They work at a macroscopic (route flow) level of detail. 
 
Horowitz's first model (Model 1) assumes that the travel cost on day k is made up of a mean 
value (same for all drivers) and a driver-dependent error term.  The mean value is obtained as 
a weighted average of the measured costs for all previous days.  These weights may vary with 
respect to the day k, but for simplicity are assumed to be constant for all links.  On any given 
day k, there are no restrictions on the weights, except that they must sum to one.  For 
example, they could be chosen to put a successively decreasing weight on previous times, the 
further in the past they were experienced - thus, costs in the recent past have the greatest 
effect on perception.  Alternatively, the weights could be highest in the more distant past, 
suggesting that habits are formed early on in drivers' experiences.  Horowitz suggests some 
specific forms of weighting scheme, based on a moving averages adjustment process. 
 
The error term is a random variable whose distribution is independent of the day k; thus, the 
magnitude of the errors does not tend to decrease with experience.  The error term is said to 
represent a number of factors: 
 
i)perception errors in evaluating travel costs; 
ii)omission of variables relevant to route choice in the cost definition; and 
iii)differences in cost definition between individuals. 
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In spite of this we shall henceforth refer to such errors as `perception errors', with the 
intention that this embraces points (i) and (iii); the model mis-specification errors of point ii) 
are not of concern at the moment. 
 
Horowitz's Model 3 differs from Model 1 in that route choices are based on weighted averages 
of perceived route costs on previous days.  In this case, however, the notion of a `perceived cost' 
becomes somewhat ambiguous - we should distinguish between: 
 
i)perceived experienced cost on day k - that is, what a driver perceives the experienced travel 

cost was on links used during his day k trip;  and 
ii)perceived predicted cost on day k - what the driver, prior to his day k trip, perceives the link 

costs to be. 
 
The route choice on day k can only be based on perceived predicted costs.  Model 3 appears to 
be somewhat strange in that in forming the perceived predicted cost, the weighting process 
seems to act upon the sum of the actual experienced cost (the deterministic, measured cost 
component of (i)) and the perception error in the predicted cost (the random component of (ii)). 
[NB: The weighting scheme leaves unchanged, perceived predicted costs for links not used on 
day k]. A more justifiable scheme would seem to be forming perceived predicted costs from a 
weighted average of previous days' perceived experienced costs.  This latter scheme is almost 
certainly what Horowitz intended. 
 
Model 2 differs from Model 3 only in the sense that drivers are assumed to form a day k 
perceived experienced cost even for links they did not use on day k.  The justification is that 
they received information on unused links from broadcasts or conversations with other 
travellers.  The main reason for Horowitz considering Model 2 appears to be that it is possible 
to prove a number of theoretical results regarding stability.  However, it has some relevance to 
the modelling of dynamic route guidance systems, and the representation of the increased 
information available. 
 
Van Berkum and Van Der Mede (1990) describe a framework for a model of route, mode and 
departure time choice - we shall only consider the route choice component of this framework.  
It is a microscopic, stochastic model with no `within-day dynamics', and may be described in 
three steps.  For each driver on each day: 
 
a)Define the set of known routes.  The subset of routes assumed to be available to each driver 

for each origin-destination movement is specified externally to the program, and is 
assumed not to vary with time (i.e. day). 

 
b)Form the perceived costs of each route.  Each driver remembers costs previously experienced 

on each route - this memory is stored as an experienced travel cost mean and variance 
per route.  The perceived (predicted) route cost is formed by generating a pseudo 
random number from a Normal distribution with parameters given by the experienced 
travel cost mean and variance.  This randomisation is used to represent drivers' 
uncertainty about the route cost.  For routes not previously used by an individual, the 
mean experienced travel cost is set to the free-flow value and the variance set 
arbitrarily high. 

 
c)Choose a route.  The choice process takes account of the costs currently perceived and of 

habit effects.  For each previously-used route, a probability is calculated of a driver 
using that route again merely out of habit (independent of currently perceived costs).  
This probability depends upon how long ago the route was last chosen and how many 
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times it has been chosen.  The authors suggest a possible functional form for this 
probability - although they do not justify it and it appears to depend on a number of 
unknown quantities which they do not suggest how to estimate.  If the driver chooses 
to use none of the routes out of habit, then he chooses the minimum perceived cost one. 

 
A final comment to make on the approach of Van Berkum and Van Der Mede is the fact that 
the model is based entirely on routes, rather than on links.  The reason given is that they 
believe drivers perceive route costs and not link costs - an opinion which may well have some 
justification.  However, dealing with routes requires somewhat more care because of 
correlation issues.  For example, consider two competing routes which coincide except for a 
very small part of their length.  Because drivers' memory is built up in terms of route costs in 
the model, a driver may have a great deal of experience of one route but be assumed to have no 
idea of travel costs on the very similar, competing route.  Furthermore, even if a driver has 
experienced very similar travel costs on these two routes, the model would still allow him to 
perceive the route costs as very different (since perceived route costs are independent between 
routes).  The latter problem could be overcome by use of a Multivariate Normal for route costs; 
the former problem is somewhat more difficult to solve in terms of routes, without 
disaggregating to links. 
 
Cascetta (1989) describes a general framework for studying day-to-day dynamics, in which the 
state occupied by the transportation system on any particular day is the realisation of a 
stochastic process.  The `state' of the system can be defined at a number of levels - at the most 
detailed, it represents individual route choices.  Horowitz, in the work described earlier, 
investigated `stability' in the context of equilibrium models - that is, the existence of a unique 
self-reproducing state, which the system attains independent of the starting conditions.  
Cascetta considers a probabilistic counterpart of this property, in which a system is said to be 
`dynamically stable' if there exists a unique, steady-state probability distribution which gives 
the long-term probability of the system occupying any feasible state, independent of the initial 
state.  This arises from the premise that no system remains in the same state over successive 
`days', due to (random) variations in demand and supply conditions as well as users' choices. 
 
Cascetta considers the case in which the network and the potential demand remain unchanged 
for a large enough number of days for a steady-state evolution eventually to take place.  Under 
this assumption, sufficient conditions on the driver route choice decision process to allow 
`dynamic stability' were deduced.  These are that the route choice probabilities 
 
i) depend on not more than a finite number of previous states; 
ii) are non-zero for all feasible paths (the set of feasible paths is defined a priori); and 
iii)depend only on the time at which previous states occurred relative to the current state (i.e. 

the driver decision rules do not vary with time, even though the measures used by the 
rules are time-dependent). 

 
It is noted that property (i) still allows route choice probabilities to depend on a possibly large 
number of previous states which need not be the same for all drivers. 
 
These properties also ensure that the resulting process is `ergodic'.  This means that 
expectations and higher order moments can be estimated from a single, pseudo-realisation of 
the process.  Although the properties given are with respect to the highest level of detail 
(individual route choices), if they are satisfied then dynamic stability and ergodicity also hold 
at the route flow and link flow levels.  Cascetta suggests a scheme for computing link flow 
means and variances from a single pseudo-realisation of the process, by which moment 
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estimates are formed as soon as the `steady state' hypothesis is not rejected by a suitable 
statistical test (e.g. t-test on flows from successive days). 
 
As well as proposing a general framework for studying day-to-day evolution, Cascetta goes on 
to suggest a specific model known as STODYN.  This is a macroscopic model, with link flows as 
output.  In a similar vein to Horowitz's model 2, drivers base their route choice on a weighted 
average of travel costs from a given number of previous days. This weighted average gives the 
mean of the perceived predicted cost distribution.  The supply model is a stochastic one, based 
on randomised link impedance functions (alternatively, the stochastic element can be regarded 
as a perception error in evaluating experienced travel times).  Cascetta carried out a 
theoretical comparison of this model with a conventional stochastic user equilibrium (SUE) 
model - that is, he compared expected steady state STODYN route flows with those produced 
by SUE.  He found that the quality of the approximation given by SUE to STODYN expected 
route flows could be reasonable, but deteriorated with an increase in day-to-day variability of 
route flows.  At the link flow level, the approximation may be expected to be better; however, 
Cascetta notes that `higher variances and an autocorrelation structure should be expected for 
STODYN link flows'. 
 
Cascetta and co-workers (1991a) later extended the above simple model, to produce `STODYN 
2'.  The most important differences with STODYN are that STODYN 2: 
 
i)simulates day-do-day evolution in terms of within-day variable route flows;  
ii)within-day dynamic link flows are then obtained from these route flows via a dynamic 

network loading model (supply model); 
iii)models the combined choice of route and departure time using a nested logit formulation; 
iv)includes a crude `habit' effect, by which only a pre-specified proportion of drivers consider 

their previous day's choices; 
v)forms the mean perceived predicted travel cost (assumed to be equal to mean perceived 

predicted travel time) for each route and departure time interval as a weighted average 
of the previous day's perceived predicted travel time and the previous day's average 
`experienced' travel time (i.e. the average travel time for drivers who used that route 
and departure time); 

vi)models en route path switching; 
vii)is able to simulate the effect of route guidance/information systems. 
 
STODYN 2 appears to be at present the most complete model for simulating the effect of DRG 
systems.  However, we shall remain - for the moment - with the issue of modelling day-to-day 
dynamics in the route choice process. 
 
A final comment we make in passing regarding Cascetta's work is that he appears earlier to 
have proposed a somewhat different way of modelling a driver's "habit" (Cascetta & 
Cantarella, 1991). In this, it was assumed that drivers follow the route and departure time 
used on the previous day, as long as the previous day's actual "experienced" disutility (or, 
alternatively, they suggest the perceived experienced disutility) is within a pre-specified 
percentage tolerance of the previous day's perceived predicted disutility. [This has some 
passing resemblance to Iida et al's (1992) experiments on route choice behaviour, described 
later in this review, in which the proximity of predictions and experience is also a factor in day-
to-day choices]. 
 
An approach which is similar to STODYN has been independently proposed by Ben-Akiva et al 
(1991), for modelling driver information systems. They were specifically concerned, as in this 
note, with the impact of pre-trip information. The choice dimensions available to the user are 
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route and departure time. The primary objective of Ben-Akiva et al's work was to propose a 
general framework for simulating the day-to-day adjustment of these decisions when pre-trip 
driver information is provided. The work focuses, therefore, on a `demand side' formulation, 
with no en route path switching. 
 
There are two components to this part of the model, for each individual: 
  
i)the updating of historic perceptions of travel times (for each route and departure time) and 

the prediction of times (and hence costs) for the current journey; 
ii)a decision based on the predicted costs. 
 
Prior to a trip on any particular day, a driver computes his current perceived historic travel 
times as a weighted average of (with pre-specified, fixed weights): 
 
a)the previous day's perceived historic travel times and the previous day's experienced travel 

times (for the route and departure time chosen on the previous day); 
b)the previous day's perceived historic travel times and the travel times deduced from any 

exogenous information acquired regarding the previous day (for other route and 
departure time combinations). 

 
The exogenous information includes weather conditions, accidents, media reports and advice 
from the driver information system for the previous day. (Compare with Horowitz's Model 2, 
mentioned earlier). 
 
Having computed the perceived historic travel times, each driver then associates a perceived 
predicted travel time with each route/departure time combination. This latter is computed as a 
weighted average (again with pre-specified, day-independent weights) of the current perceived 
historic travel time and the travel time information supplied exogenously for the current day. 
These perceived predicted travel times are then used as a component in the perceived 
predicted generalised travel costs. A cost is then associated with each route and departure 
time, as a combination of the generalised travel cost and the schedule delay.  
 
On any given day, the drivers' choice mechanism is as follows. 
 
i)A pre-specified proportion of drivers update their perceived historic travel times (in the 

manner described above). The remainder do not update their historic perceptions. 
ii)A pre-specified proportion of drivers receive media reports about the trip to be made, and 

combine them with their historic perceptions to obtain perceived predicted costs. The 
remainder have perceived predicted costs which are equal to their perceived historic 
costs. 

iii)A pre-specified proportion of drivers who by this stage have different perceived predicted 
costs to their previous day's perceived predicted costs then review their choice of route 
and departure time. The remainder make the same choice as the previous day. 

iv)Of the drivers reviewing their travel choice, a pre-specified proportion seek and acquire 
driver information and revise their predicted costs accordingly. 

v)The drivers reviewing their travel choice then choose a route / departure time combination 
according to a random utility model, where the random error terms have a fixed 
probability distribution.  

 
A number of points of criticism could be levelled at the approach of Ben-Akiva et al. In 
particular it suffers from the route-based learning deficiencies mentioned earlier in relation to 
Van Berkum and Van der Mede's approach; the learning process only affects the mean 
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perceived predicted travel times, but has no effect on the perception error variance; and the 
pre-specified proportions mentioned above do little to make the model more general, but would 
be expected to be rather difficult to estimate.  
 
An interesting series of tests were conducted by Iida et al. (1992), their work being in the 
realms of part simulation, part behavioural experimentation. A simple, artificial network was 
considered, consisting of one origin-destination pair and two parallel, uni-directional routes. 
Forty participants were involved in the study, and were told that: they were making a daily 
journey to work; they had a choice between two routes, but the departure time was fixed; and 
they were to choose the route with the minimum (perceived predicted) travel time. Journeys 
were made over a series of twenty days. The participants made one trip per day - thus the 
origin-destination demand was constant from day to day. On any given day, the actual travel 
time on a given route was computed from a link performance function. Travel times thus did 
not vary between individuals using the same route on the same day, nor did the performance 
function vary from day to day. The participants performed each of two experiments. In the 
first, each participant was told - prior to his trip - the actual travel time for the route he used 
on the previous day. In the second experiment, each participant was given the entire history of 
actual and perceived predicted travel times for all his previous trips (the perceived predicted 
travel times had previously been stated by the individual before the start of each trip). The 
main conclusions were as follows. 
 
i)Route flows in both experiments were quite unstable, more so for experiment 1. Notably, 

after about ten days, they appeared to be stabilising but later became unstable again. 
ii)There appeared to be evidence that some drivers anticipate the effect of other drivers 

switching route for the forthcoming day, by taking into account the previous day's 
travel times (and the fact that they know the O-D flow to be constant). 

iii)Each day, the participants stated their predicted travel times before selecting a route. Iida 
et al attempted to fit a regression relationship between the current day's predicted 
travel time and the previous day's actual and predicted travel times (experiment 1) or 
the previous three days' actual and predicted times (experiment 2). In both cases the 
previous day's actual and predicted times had a significant effect on the current 
prediction. However, the regression models were found to provide a poor fit to the data. 

 
Two final remarks will be made in this review.  Smith (1984) considered a dynamical system 
formulation of day-to-day route choice, in terms of route flows.  Drivers were assumed to 
switch between routes according to the difference in route travel costs; Smith showed that such 
a system converged to a stable equilibrium under the usual assumptions. Mahmassani and co-
workers (1991) have proposed a route choice model which appears to be particularly suited to 
modelling day-to-day evolution.  In fact, Cascetta et al (1991a) suggest the possible use of 
Mahmassani's model within their stochastic process framework; as far as the author is aware, 
this is a possibility presently being investigated by Mahmassani.  The route choice model is 
derived from the premise that drivers base their decisions on minimum perceived travel time 
differences, or thresholds. This is known as `boundedly rational' behaviour, with a boundedly 
rational user equilibrium occurring when every driver is satisfied with his current choice of 
route (eg there is no alternative route which is perceived more than the threshold percentage 
quicker than the current choice). The model also makes sense in non-equilibrium contexts. The 
threshold values may vary across the population, according to driver characteristics and the 
propensity to switch; thus, a kind of habit effect is achieved. 
 
 

3. MODELLING REQUIREMENTS 
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The purpose of this note is the specification of the demand side of a day-to-day route choice 
sub-model, to be used in a much larger model for evaluating dynamic route guidance and 
dynamic information systems.  The modelling requirements of a dynamic route guidance 
model were discussed at length by Watling and Van Vuren (1992).  The conclusions they drew 
have the following implications for a `demand side' day-to-day route choice model (ignoring, for 
the moment, within-day dynamic effects and the operation of the route guidance control 
system).  Such a model must: 
 
i)be behaviourally driven, recognising the effect of habit, the driver learning process and 

uncertainty; 
ii)accommodate a diverse range of behaviour, according to (for example) personal and trip 

attributes and familiarity with the network.  The response to the provision of route 
guidance information may be expected to vary significantly with respect to these 
characteristics; 

iii)represent day-to-day variations in demand; 
iv)be able to handle `normal' day-to-day variations in network supply conditions (e.g. due to 

weather or lighting), as well as `incident' conditions. 
 
The review of past work in this area revealed some interesting approaches which address some 
of the above issues, but it is the author's belief that none adequately addresses all of the above 
points.  The primary reasons for this are as follows: 
 
a)The process by which a driver `learns' about network conditions is an individual one - it is a 

function of the driver's own personal experience.  Drivers may have some rough idea of 
travel costs on unused routes, but they will not learn about these costs in the same way 
that they do for used routes.  Thus, the approaches of Horowitz's model 2 and 
Cascetta's STODYN and STODYN 2 are difficult to justify.  Indeed, providing 
increased information about unused (or infrequently used) routes is surely one of the 
aims of a dynamic route guidance/information system. Further, since journey times on 
a route vary from trip to trip on a given day, a user will only learn about his own 
individual travel cost for that day, rather than the average of all users travelling that 
day.  Therefore, Horowitz's model 3 is also unsuitable.  The conclusion is that a proper 
simulation of the learning experience can only be gained by a microscopic model, taking 
account of individual route choice decisions. 

 
b)Uncertainty about network conditions arises because these conditions will vary from trip to 

trip (on the same day) and from day-to-day, even in incident free conditions.  The 
behavioural model must therefore be sufficiently flexible to account for such variability 
in the information acquisition process of the driver (an issue not addressed in Ben-
Akiva et al's model).  Uncertainty is also a function of a driver's experience of travelling 
along different parts of the network, again supporting the need for a microscopic model. 
 Van Berkum and Van der Mede go some way to representing these effects, but their 
approach has some serious flaws for general networks.  In particular, they treat routes 
as independent entities in terms of the learning process and in terms of their perceived 
attributes (this point will be discussed at greater length later, when the proposed 
modelling approach has been introduced). 

 
c)A driver's propensity to form a `habit' has an essential role in the context of this model.  

Firstly, a driver may not divert away from his usually chosen route just because of one 
bad experience on the previous day (e.g. an accident).  Secondly, when providing 
dynamic route guidance information, a driver's habit may be too strong for him to be 
persuaded to switch to an alternative route, even though it may reduce his travel cost 
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(either in actual or perceived terms). Simplistic notions of habit-like effects can easily 
be introduced, such as in the approaches of Van Berkum and Van der Mede, Ben-Akiva 
et al and Cascetta et al.  The question remains as to whether such devices have any 
behavioural foundation, are sufficiently driver specific and can be calibrated.  There is 
little use in developing a `flexible' model with a number of new parameters, if 
calibration in practical situations is impossible or requires a good deal of guesswork. 
Mahmassani's concept of bounded rationality appears to be particularly useful in this 
context. 

 
 
 

4. THE MODEL DEVELOPMENT IN CONTEXT 
 
As has been mentioned earlier, the day-to-day route choice modelling considered in this paper 
is intended to provide a component to a much larger network simulation model. This 
simulation model will be a microscopic, dynamic, stochastic representation of the day-to-day 
evolution of supply and demand in the network. It will incorporate effects such as daily 
fluctuations in network conditions (eg due to weather) and travel demand, incidents (eg 
accidents), day-to-day and within-day dynamics of route and departure time choice, en route 
path switching, and a detailed supply model incorporating the dynamics of queuing, junction 
interactions, lane choice behaviour and any controls in operation (eg traffic signals). It should 
also ultimately be able to handle the introduction of a dynamic route guidance system. The 
development and implementation of such a model is clearly a huge task - the first aim is to 
decide upon a suitable model specification. In developing this specification, a number of factors 
need to be borne in mind (aside from the modelling requirements outlined in the previous 
section): 
 
i)A great deal of research has been carried out individually into many of the model components 

described above, and there is even work in the literature on day-to-day simulations. It 
is not the purpose of the research described in this note to propose new theoretical 
constructs purely for their own sake, but rather to develop a practical simulation tool. 
Therefore, when suitable specifications exist in the literature these will be adopted or 
modified. 

 
ii)The model as a whole is certain to put great demands on computer processing time and 

memory, and so the efficiency of each component is of prime concern. 
 
iii)For the model to be eventually used in practice, there will certainly be the need to collect a 

large amount of new data - for example, on variability and behavioural characteristics. 
This, coupled with point (ii), suggests that each component should be as simple as 
possible. Additional parameters should be avoided as far as possible, particularly when 
they require more data to be collected. The introduction of parameters which are 
difficult to estimate from basic data (because, for example, they are highly correlated 
with other unknown factors) should be avoided, since uncertainty in the values 
assigned to them would make interpretation of such a large, complex model extremely 
difficult. [An example of such a parameter is the link travel time variance used in 
stochastic user equilibrium models]. 

 
iv)The issues of convergence and the existence of a unique solution, which notably arise in 

network equilibrium models, are less apparent within the modelling framework 
proposed. However, it will be important to ensure that any outputs which will be used 
in evaluation (e.g. twenty-day average link flows) are unaffected - within the bounds of 



sampling variability - by the particular pseudo-random numbers generated in any 
single run. Ultimate stability (in some sense) of the process generated and 
independence of the final state from the initial state are not seen as pre-requisites of 
the model. Traffic networks may indeed exhibit instability. Almost certainly after a 
new measure is introduced into a network, driver behaviour is dependent to some 
extent on conditions (e.g. habits formed) before the measure was introduced. 
Nevertheless, the importance of these issues for evaluation make them worthy of 
consideration. 

 
v)It would be expected that such a simulation model would be applied over a similar 

evaluation time-scale to existing network models, in which the underlying pattern of 
travel demand and level of service in the network are approximately constant 
(notwithstanding daily and seasonal fluctuations. 

 
vi)Without a good deal of data, it may not be possible to decide upon a single, best specification 

for each component of the model - so for the moment a number of candidate 
specifications will be considered. 

 
 

5. THE MODEL 
 
The modelling requirements ideally indicate the need for a blend of psychology and statistics; 
the proposed model, however, owes much more to the latter, with little psychological 
foundation. The proposed model is based upon a statistical estimation procedure, in an 
analogous way to which the behavioural element in equilibrium techniques is essentially an 
economic model.  It assumes, to some extent, that drivers are able to process (albeit in a 
subjective way) the information they learn from their travel experiences in some kind of 
optimal way.  The process used is a simple standard Bayesian method of combining subjective 
beliefs with objectively measured data (experienced travel costs, in this case).  Route choice 
decisions are then made on the basis of posterior expected travel costs. 
 
The idea of using a statistical estimation process, as opposed to a true behavioural model, may 
be defended in a number of ways.  Nisbett et al (1982) discussed the use of probabilistic models 
in everyday thinking.  They stated `the suspicion that in most cases where a formal 
probabilistic model can be usefully applied by a statistician there are analogues in the 
everyday world in which a similar intuitive use of probabilistic thinking occurs frequently in 
intelligent laypeople'.  In fact the equations that arise for combining information in the 
proposed model will be seen to be reasonably intuitive. Secondly - and more importantly - the 
aim of the model is to provide a useful representation of the way in which route choice decisions 
occur, rather than directly to simulate the driver's cognitive process.  The model has all the 
necessary tools for this purpose - a representation of daily perceptions, learning and 
uncertainty. Furthermore, it satisfies the requirement mentioned in section 4 of being a 
reasonably simple formulation. 
 
We shall firstly make a number of basic assumptions: 
 
 i)the total demand for travel between origin p and destination q on day k (during modelled 

period) is dpqk - this may vary from day to day, and in that case it is natural to model 
dpqk as a realisation of a random variable (ignore `seasonal' effects); 

 ii)given the demand dpqk, the group of individuals who actually travel on day k,  

}Ii: k∈  
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are drawn at random from the complete set of individuals who could possibly travel, I; 
 iii)there is no en route path switching; 
 iv)the random components of actual travel time are distributed independently between links 

(ie there is no between-link correlation in the day-to-day variability in supply 
conditions, as may occur in adverse weather conditions, for example). 

 
Under these assumptions, a number of different model specifications - along the same theme - 
are proposed. Each specification is characterised by an additional set of assumptions 
   (A1, A2, A3, A4, A5) 
where 
A1  =Sif there are no within-day dynamics (`S' for static) 
Dif the attractiveness of routes varies within a day and drivers make a choice of departure 

time (`D' for dynamic) 
 
A2  =∞if all previously experienced travel times contribute to a driver's current perception of 

travel costs 
Nif only at most a pre-specified number of the most recently experienced travel times 

contribute to the perceived predicted costs 
 
A3  =DEif distance (link length) is perceived exactly by all drivers, regardless of their 

experience 
DLif drivers learn about distance through their own travel experiences 
 
A4  =MINif the choice process is a conventional utility maximising / cost minimising one 
BRif choices are made based on the bounded rationality principle 
 
A5  =DTNif departure time and route choice is handled in a nested process 
DTSif drivers simultaneously choose a route and departure time 
0if departure time choice is irrelevant as there are no within-day dynamics 
 
The possible specifications are introduced below, and then a number of comments are made on 
them. 
 
 
5.1 MODEL A:  (S, ∞, DE, MIN, 0) 
 
DAY O
 
For each individual i (in I) and for each link a, select a `normalised perception error' İia, by 
generating pseudo-random numbers from a Normal (0,1) distribution. 
 
 
DAY k  (k≥1) 
 
Step 1.Generate the total demand dpqk for day k and each origin-destination pair (p,q) from 

some specified probability distribution. Randomly select the set of individuals Ik who 
actually travel on day k, according to the total demands. 

 
Step 2.For each individual i in Ik (travelling on day k): 
 



The predicted journey time yiak on link a is perceived as an observation of a Normal random 
variable with mean µiak and standard deviation ȡiak.  ȡiak is a measure of the 
current `uncertainty' for individual i on link a. 

 
Step 2a.Values for µiak and ȡiak are obtained from subjective evaluations of (i) prior 

beliefs/information, (ii) previously experienced journey times. 
 
According to a Bayesian analysis (details given in Appendix), these are given by: 
 
  µiak = E [µ ŇPrior beliefs + Previously experienced times by individual i on link a] 
 
  ȡia

k = var (µ Ň . . . ). 
 
Since ȡiak depends on the journey time variance ıiak for individual i on link a, also form: 
 
  ıia

k = E [ı Ň . . . ]. 
 
 
Step 2b.To represent correlation in perception errors between days (for a given i and a), in 

fact form perceived journey times from: 

ρεµ k
iaia

k
ia    +   =  

 
where İia was determined at `DAY O' above. 
 
Step 3.Individual i selects his minimum cost route, according to his perceived predicted 

link costs {Uia(yiak): ∀a}, where Uia(y) is the perceived predicted generalised cost 
for individual i and link a corresponding to a perc. predicted link travel time of y. 

 
In the Appendix, it is shown how values for µiak and ȡiak may be computed, given suitably 
specified prior distributions. It is also shown how "recursion formulae" may be set up to 
compute the posterior parameters on day k from their values on day k-1.  (µiak and ȡiak are 
functions of these posterior parameters).   
 
 
5.2 MODEL B:  (S, N, DE, MIN, 0) 
 
This is identical to Model A, except that Step 2(a) on day k is replaced by: 
 
Step 2a.Values for µiak and ȡiak are obtained from subjective evaluations of (i) prior 

beliefs/information, (ii) the most recently experienced journey times. 
 
According to a Bayesian analysis, these are given by: 
 
  µiak = E [µ ŇPrior beliefs + Previously experienced times by individual i on link a 

in the last ri [journeys on that link] 
 
  ȡia

k = var [µ Ň . . . ]. 
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Since ȡiak depends on the journey time variance ıiak for individual i on link a, also form: 
 
  ıia

k = E [ı Ň . . . ]. 
 
Note that if on a particular day, individual i has made less than ri journeys previously on 

link a, then all previously experienced times by i on link a are used to form µiak 
and ȡiak. 

 
 
For links a and individuals i where the number niak of journeys made before day k is less 
than or equal to ri, the formulae given in the Appendix for µiak and ȡiak, as well as the 
recursion relationships, are still valid. When niak > ri, the recursion formulae are replaced 
by: 
 
i)If no journey made on (previous) day k using link a:  
 
 Set miak+1, Ĳiak+1, ȣiak+1 and Ȧiak+1 to their values at day k. 
 
ii)If a journey was made on day k on link a, with a link journey time of s, then: 
 
If soiak is the `most distantly remembered' journey time for individual i on link a at day k 

(i.e. the journey time corresponding to the journey made ri trips ago), then: 
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It is not clear that this recursion is as useful as for the niak ≤ ri case considered in the 
Appendix, due to the need to keep track of the most distantly remembered times soiak. 
 
 
5.3 MODEL C:  (S, ∞, DE, BR, 0) 
 
This is identical to Model A, except that Step 3 is replaced by the following boundedly 
rational choice process: 
 
Step 3.Individual i first forms his current perceived predicted link costs {Uia(yiak): ∀a}, 

where Uia(y) is the perceived generalised cost for individual i and link a 
corresponding to a perceived predicted link travel time of y.  

 
Based on these costs, he compares the attractiveness of the minimum cost route with that 

of the route he used on his previous trip between that origin-destination pair. If 
the travel cost on the minimum cost route is at least a given `threshold' 
percentage less than the cost of the route used on his previous trip, he chooses to 
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use the minimum cost route. Otherwise, he chooses the route used on his 
previous trip. 

 
A number of comments may be made about this choice process. In proposing it, 
Mahmassani and colleagues have recommended that the decision to switch route from 
that previously used should only be made subject to the additional constraint that the 
absolute saving in travel cost is greater than some fixed minimum value (any smaller 
savings being imperceptible to the user). Furthermore, the question arises as to how this 
choice process should be implemented for the individual's first trip between this origin-
destination pair; this is an important issue, as it has been shown that the final state of a 
network under such decision rules is very likely to be dependent on the initial conditions. 
The most obvious starting condition of choosing the minimum perceived cost route may 
therefore be inadvisable (It may prove difficult to move away from an unrealistic initial 
pattern). An alternative would be to apply a straight cost minimising rule for a number of 
days, as a start-up period, before introducing boundedly rational choice. When the aim of 
the study is a before-and-after assessment of some measure, then a sensible starting point 
for the simulation of the `after' situation are the choices which prevailed from the `before' 
scenario. 
 
 
5.4 MODEL D:  (D, ∞, DE, MIN, DTS) 
 
For the purposes of this model, the study period (typically, say, of an hour's duration) is 
divided into a number of smaller time periods of equal length (of around five minutes, 
say).  A time period is denoted by the additional superscript t. 
 
Step 1.As per model A 
 
Step 2.For each individual i in Ik: 
 
The predicted journey time yiakt on link a when entering the upstream end of link a in time 

interval t, is perceived as an observation of a Normal random variable with mean 

µiakt and standard deviation ȡiakt. 
 
Step 2aValues for µiakt and ȡiakt are obtained separately for each interval t, according to the 

same Bayesian analysis used in model A (with an additional superscript t added 
to all prior and posterior parameters).  That is, they are formed from a subjective 
evaluation of prior beliefs and previously experienced journey times when 
entering link a in time period t. 

 
Step 2bPerceived predicted link journey times are then formed from  

ρεµ ia

kt
iaia

kt  +  =  

 
 
Step 3.For each i in Ik, form perceived predicted route journey times for each route r and 

departure time interval t: 
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Step 3aChoose a representative departure time d(t) within the interval t.  (For example, 
the centre of the interval or a time-point chosen at random within the interval). 

 
Step 3bWithout loss of generality, label the links on route r in the order in which they 

would be traversed: a=1,2,...,R.  Thus define inductively the perceived predicted 
travel time Yairkt for each link a on route r when departing from the origin in the 
interval t and using route r: 

) Y  + d(t)(H y  =

y = Y

bir
kt

1-a

=1b
sai

ks

s

1i

kt
1ir

kt

∑∑ _
 

 
for a=2,3,...,R, where 
 
Hs(x)= 1if the time x is in the interval s  
= 0 otherwise 
 
 

 

 

Step 3cFinally, form the perceived predicted travel time wirkt on route r for a departure in 
time interval t: 

δ arair
kt

a

 Y  =∑  

 
where 
 
  įar= 1if route r uses link a 
= 0otherwise. 
 
 
Step 4.For each i in Ik, form the perceived predicted generalised travel cost for route r and 

departure time t: 

.  ) w (G = ir
kt

ir
kt

 

For example, if the only components of cost are time and distance, then 

δφθ ara
a

iir
kt

i  l   + w  = ∑  

where la is the length of link a, and ĳi and Ĭi are generalised cost weightings. 
 
 
Step 5.For each i, r and t, define the perceived predicted disutility -Uirkt of individual i 

using route r and departing at time t as a sum of the generalised travel cost and 
a penalty for not arriving at the desired time: 
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) D | B( P + G  = iir
kt

iir
kt

i
kt _α  

where 
 
Piis the early/late arrival penalty function 
Diis the desired arrival time of individual i 
Birktis the arrival time at the destination for individual i when using route r and departure 

time interval t 
Įiis a constant. 
 
In the notation of step 3, it follows that 

.    Y  + d(t) = arair
kt

a

δ∑  

 
 
Step 6.Each individual i in Ik selects the route and departure time combination with the 

smallest perceived predicted disutility. 
 
 
 
Comments
 
i)The most straightforward approach for handling dynamic travel costs is to deal with 

route costs by departure time from the origin.  In the learning process (step 2) 
above, a link-based method is used, in order to overcome problems with route-
based techniques identified earlier in this note, of correlations being ignored 
between partially overlapping routes.  In reality, drivers may not be able to 
perceive and store information on experienced dynamic link travel times.  
However, the above scheme could be regarded as a route-based learning process 
(with the learning taking place in steps 2 and 3 combined) with perceived 
predicted route travel times correlated between departure time periods.  The 
disaggregation into perceived link travel times is then regarded only as a 
convenient means of implementation. 

 
ii)The penalty function Pi introduced in Step 5 could take one of a number of forms (it 

would be expected that the general form would be the same for all individuals, 
but with individual-specific parameters).  The approach is a generalisation of the 
schedule-delay concept of Vickrey (1969), which has later been adopted in a 
number of different modelling schemes (Vythoulkas, 1990, Ben-Akiva et al., 
1991; Cascetta et al., 1991a).  A direct application of this work would involve a 
penalty function of the form: 

εεγ
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εεβ
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where 

] + D   , - 2ii1i εε  

is a tolerance interval around the desired arrival time, and ßi and Ĳi are constants. Thus, 
the penalty increases linearly with the extent to which the predicted arrival time 
is outside the tolerance interval.  It is reasonable to expect that late arrivals will 
be valued differently to early ones, thus ßi and İ1i  may not be the same as Ĳi and 
İ2i. 

 
Clearly, many other forms could be considered - for example, a general power law case 

with no tolerance interval: 

.   D  B for      ) D - B(  = 

D < B for     ) B - D(  = ) D| B

iir
ktv

iir
kt
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kt
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In practice, the penalty relationship may be calibrated from the results of a stated 

preference experiment - choosing the form which gives the best overall fit.  For 
the meantime, the relationship is just considered in a general form. 

 
 
iii)Steps 3 to 6 are useful for introducing the general concept of the model, but would make 

very inefficient use of computer power and storage.  By using a sensible search 
strategy in step 6, route/departure time disutilities (steps 3 to 5) and possibly 
even link travel times (step 2) should only need to be calculated as required.  
Should it not prove possible to develop an exact method to achieve this, an 
efficient yet approximate technique would be more than adequate.  Indeed, in 
practice drivers have to resort to heuristics when comparing the utilities of 
different choices.  For example, a strategy could be (for trips after the first one): 
From the choice on the previous trip, consider only the time interval chosen then 
and the interval before and after and select a route from a set of reasonable ones. 
 The reasonable ones could be defined `a priori', or defined relative to the 
previous route chosen (cf Dial's method).  The minimisation problem of step 6 is 
similar to that arising in the iterations of a conventional static equilibrium 
model.  the differences are that the problem of step 6 has an extra choice 
dimension and is specific to each individual.  Thus, for each individual a cost 
minimisation problem is solved for a single origin and single destination.  The 
tree-building algorithms used in static equilibrium methods, whereby one origin 
and all destinations are simultaneously considered, therefore appear to be of 
limited use.  It is noted that techniques for determining minimum time (though 
not minimum cost) routes in the dynamic case have been proposed (Hall, 1987; 
Chen and Underwood, 1991; Kaufman et al, 1991). 

 
 
5.5 MODEL E  (D, ∞, DL, MIN, DTS) 
 

 

 
 
 16 



In reality a driver will probably experiment with only a fairly small number of departure 
time and route combinations - thus, in the above model, many of the disutilities will be 
computed based only on the prior information.  However, drivers in fact do learn - from 
their experience at one time of day - about travel costs in other time periods (because the 
travel cost on a link is correlated between the two periods).  One possibility would be to 
assume that with experience, a driver builds up some general, network wide picture of the 
temporal variation of travel costs, and uses this to modify his prior information for unused 
links (this would also require the ability to project this temporal variation through the 
network, in much the same way as route travel times are deduced from link travel times 
in step 3 of Model D).  Unfortunately, this would seem to be rather complicated to 
implement and difficult to calibrate.  As an alternative, the modification to Model D 
proposed below assumes that the temporal correlation between travel costs on a given link 
is due only to the distance component of generalised cost (for simplicity, it is assumed that 
generalised cost is defined solely in terms of time and distance).  That is, drivers do not 
perceive distance precisely when they travel along a route/link, but learn about it with 
experience. 
 
Model E is the same as Model D, except replace Step 4 by: 
 
Step 4.The perceived predicted length laik of link a by individual i on day k is obtained from 

the following adjustment process: 
 
Step 4aFor day 0: 

q =

q

ai

ai

aiη
 

 
Step 4bIf individual i did not travel on link a on day k-1: 

l 1 - k
ai  

 
If individual i used link a on day k-1 and perceived the link length to be L: 

. 
q

L + l q

1 + q = q

k
ai

ai
1 - k

ai

1 - k

1 - k
ai

k
ai

 

 
In the process above, Șai and qai represent prior information. The perceived predicted 

generalised travel cost on route r when departing in time interval t is then: 

.    l   + w  = arai
k

a
iir

kt
i δφθ ∑  
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Comments
 
i)The above modification requires that perceived link lengths are generated at some stage 

during the application of the supply model.  For example, a Normal distribution 
could be used for this purpose, with the true link length as the mean. 

 
ii)Unlike the link travel time learning process, perceptions errors are not made in forming 

the perceived predicted link length.  The errors in the former (travel time) case 
were due to inherent variability in those times, whereas the link length is fixed.  
The errors in the process above are solely due to the drivers inability to estimate 
accurately the experienced link length.  In order to be consistent, perceived 
experienced link travel times ought also to incorporate a mis-perception 
component, since these too may be estimated with error. 

 
 
 
 
 
 
 
 

5.6MODEL F:  (D, ∞, DE, MIN, DTN) 
 
This is the same as Model D, except that the choice rule (Step 6) is replaced by some kind 
of nested process.  For example: 
 
Step 6.For each individual i in Ik: 
 
Step 6aSelect a departure time according to the perceived predicted disutility of each, 

defined as the average perceived predicted disutility over all routes in individual 
i's current route consideration set Rikt at departure time t for the moment 
individual i wishes to make on day k, ie. 

) U (-  
|R|

1
 = ir

kt

R    r
kt
i

t

i
kt

∑
∈

 

 
where |A| is the number of elements in the set A.  Individual i selects the departure time 

with the minimum average perceived predicted disutility. 
 
Step 6bGiven the departure time t determined in (a), select the minimum cost route 

according to the dynamic route costs Girkt. 
 
 
Comments
 
i)-Uikt is a rather crude measure of the attractiveness of departure time interval t, since it 

ignores any correlation between the disutilities for different routes.  Again, the 
justification may be given that such an approximation may, however, be an 
adequate representation of the human choice process. 
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ii)In two respects it could be claimed that this nested approach is behaviourally sounder 

than the simultaneous approach of Model D.  Firstly, it is unlikely that drivers are 
able to process the large amount of information on all route/departure time 
combinations in order to determine an optimal choice.  Secondly, when a driver is 
dissatisfied with his current choice, it would be expected that he would consider a 
change of route before attempting a change of departure time (which disrupts his 
daily schedule).  The averaging process by which departure time disutilities are 
calculated means that departure time choice is less sensitive than route choice to a 
change in the disutility associated with a particular route. 

 
iii)The definition of the route consideration set Rikt could take one of a number of forms: 
 
 (1)Rikt = Ri (for all k, t), where Ri is the set of all possible routes for the movement 

to be made by individual i. 
 
 (2)Rikt = Ri* ⊆ Ri (for all k, t), where Ri* is a set of a priori "reasonable" routes. 
 
 (3)Rikt = Rik (for all t), where Rik is the set of all previously used routes (at any 

departure time) by individual i (but what to do before a trip is made?). 
 
 (4)Rikt is the n `shortest' routes at departure time t based on the current perceived 

predicted route costs Girkt (for some small, given n). 
 
Of the above, (1) is unlikely to be feasible.  (4) is quite appealing, but a rather difficult 

problem, although there do exist methods for determining the n shortest routes 
when link costs are static (Shier, 1979; Lee and Ho, 1992). 

 
iv)A nested approach to route and departure time choice has previously been proposed by 

a number of authors (eg Cascetta et al., 1991a; Ben-Akiva et al., 1991).  In these 
cases, a probabilistic discrete choice model was used (eg nested logit or probit).  It is 
straightforward to adapt the above departure time choice sub-model to include a 
random error term in the perceived predicted disutilities; for the moment, however, 
a simple deterministic choice process is considered. 

 
 
5.7GENERAL COMMENTS ON THE MODELLING APPROACHES 
 
a)The additional restriction could be made in any of the proposed models that the 

subjective estimates of the perceived predicted journey times are formed using 
experienced journey times from no more than M days ago (for some large, given M). 
 If the network and potential demand are constant for a sufficiently long period of 
time that a steady state is reached, then the results of Cascetta (1989) may be 
applied.  That is, the process generated by the above scheme is `dynamically stable' 
and ergodic.  Thus, in the steady state case, link flow means and variances (for 
example) could be estimated from a single pseudo-realisation of the process, using 
a statistical test to determine when steady state conditions had been reached. With 
regard to this latter comment, we note that Cascetta et al (1991b) in applying the 
STODYN2 model, used a t-test on link flow means over successive ten-day periods 
(since, as they mention in their later Cascetta et al (1991a) paper, using a larger 
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number of days to produce the means just delays `acceptance' of the stationarity 
hypothesis). In their tests, stationarity was reached after 50 days (although they do 
not mention to what significance level, and whether this had to be achieved across 
all links), and `a further 50 days of simulation were needed to keep link flow mean 
estimates within a pre-specified sampling error'. 

 
b)In order to carry out the subjective evaluation of experienced travel times, it is necessary 

for the modeller to specify appropriate values of (in the within day static case) the 
prior parameters mia, Ĳia, ȣia and Ȧia for each link a and individual i (and in the 
within day dynamic case, additionally for each departure time interval t). When 
such models are first used to study a network, the prior parameters are probably of 
little value. In this case, the parameters should be chosen so that the variance in 
the prior estimates is large. In this way, after the first one or two days, the route 
choice process will be based almost entirely on experienced travel costs. The 
interpretation of the prior parameters is much more natural, however, when the 
aim is a before-and-after study of some measure or strategy (e.g. traffic 
management schemes, dynamic route guidance). Here, the prior expected values in 
the `after' situation may be set equal to the posterior expectations at the end of the 
model run in the `before' case. Values controlling the prior variances in the `after' 
situation (e.g. Ĳia) the may be treated as calibration parameters or, in the case of Ĳia 
specifically, can be set to some reasonable number of days over which conditions 
simulated in the `before' situation have in reality prevailed (which may not be the 
same as the number of days actually simulated in the `before' case).  

 
The assumption here seems a reasonable one - that choices made in the `before' situation 

affect choices made in the `after' situation, independently of the conditions actually 
experienced in the `after' case (a kind of habit effect). This may be contrasted with 
equilibrium methods of analysis (whether static or dynamic), where it is seen as a 
pre-requisite that the final modelled situation is independent of the starting 
conditions. Within the framework proposed here, the extent to which the prior 
affects later states of the system depends upon the specific model used. For 
example, if all previously experienced journey times contribute to a driver's current 
perceptions (as in Model A, for example), then as a link is used more times the 
effect of the prior diminishes, until it ultimately may only be negligible. For the 
modification proposed in Model B, the prior potentially has a larger effect on later 
states. Likewise, when a boundedly rational decision rule is used (Model C), the 
later states of the system depend upon the initial state. 

  
c)At the first step of the schemes described above, the normalised perception errors İia are 

drawn and kept fixed during the simulation.  This achieves two things.  Firstly, if a 
link is not traversed by individual i on day k (and during time period t, in the 
dynamic case), then the perceived predicted travel time on day k+1 will be the 
same as it was on day k.  That is, perceptions only change when a link is used.  
Secondly, it means there is a correlation in the perception errors between days (and 
time periods t) for a given link and individual, even when additional experience is 
gained of that link. Thus, an individual will tend to always either over- or under-
estimate the travel time on a particular link. 

 
d)The weighting scheme used for forming the mean perceived predicted journey time is 

somewhat cruder than Horowitz's.  All experienced times which contribute to the 



 

 
 
 21 

perceived predicted time are given equal weight - whether this means all 
experiences (as in Model A, for example) or only the more recent ones (e.g. Model 
B), in which case less recent ones are essentially given zero weight. Whilst it is 
intuitively appealing to have a scheme in which greater weight is given to 
experienced travel times, the more recently they occurred, there is no evidence as 
yet to suggest a suitable form for the weights. 

 
e)A driver's `uncertainty' (and hence perception errors) is related directly to (i) his 

experience in different parts of the network; (ii) travel time variability.  This may 
be contrasted with Van Berkum and Van der Mede, where perception errors are 
primarily caused by (ii); experience only has the effect of changing the mean 
perceived cost.  Thus, in this latter model, if a driver increases his experience by 
travelling on a link, and the experienced travel time is approximately the same as 
his previous mean perceived travel time, then his uncertainty is not reduced.  In 
the new model, on the other hand, the perception error will be smaller with the 
additional travel time experienced (until the limit ri is reached, in the case of Model 
B type of modifications). 

 
f)Although drivers make choices in terms of routes, their perceptions and predictions are 

built up in terms of links.  This overcomes the problems of a route-based learning 
process as given by Van Berkum and Van der Mede and by Ben-Akiva et al.  
Firstly, a driver travelling on one route will learn something about conditions on an 
overlapping route.  Secondly, there will be a correlation in perception errors 
between overlapping routes.  For example, two routes which overlap for most of 
their length will be compared only on the basis of their non-overlapping parts, the 
remainder being perceived as identical. 

 
g)In the departure time choice process, it has been assumed that drivers discretise the 

possible departure times into a finite number of alternatives. Intuitively, this is 
almost certainly the kind of heuristic used by drivers. Continuous time models, 
such as that used by Ben-Akiva et al (1984) are difficult to justify behaviourally. 

 
h)In the microscopic modelling framework proposed, a number of individual -specific 

parameters arise.  In comment (b) above, it has been suggested how parameters of 
the prior may in certain cases be estimated from a previous simulation.  Other 
parameters which have arisen include: the number of previous trips which 
contribute to current perceptions (as in Model B); generalised cost weightings; 
those related to the distance learning mechanism of Model E; and the departure 
time choice parameters (eg desired arrival time, Model F).  It is not expected that 
information will be available down to such a fine level of detail, but two approaches 
are possible: 

 
     1.For each attribute (to which a number of parameters may relate), divide the 

population into a small number of groups, and assume that each individual within 
a group takes an average, estimated group value.  Note that these groups need not 
be defined in the same way for all attributes. 

     2.Assume some statistical distribution of parameter values, and use data to estimate 
this distribution (eg assume a Normal distribution of desired arrival times across 
the driver population, and use data to estimate the mean and variance).  Then, 
during the modelling stage, use a pseudo-randomisation process to select values for 
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each individual.  Of course, this approach could be combined with the grouping 
approach mentioned in point 1. 

 
i)For a network of a realistic size, the model proposed will put a great demand on 

computational power.  In the dynamic case, such as in Model F, the most 
demanding stage will be the determination of a minimum cost departure time and 
route over a network with dynamic link costs, which must be carried out separately 
for each individual on each simulated day.  A natural first stage would be to 
attempt to express this as a shortest route problem with static link costs over an 
extended network.  Since for each individual, the interest will only be in `feasible' 
routes for a single origin-destination movement, intuition suggests that it should 
be possible to restrict such an extended network to a manageable size. Existing 
algorithms for determining dynamic minimum time routes are also worthy of 
investigation. Approximate methods for determining a near-optimal solution 
should also be investigated, possibly by restricting the range of choice open to the 
user relative to the previous day's choice.  If one of these latter approaches led to a 
significant saving in computer processing time, then they should be preferred, even 
if the solution is not exact.  In any case, if a computer has difficulty finding an 
optimal-choice with a purpose-built algorithm, then an individual will surely have 
similar difficulty.  If the approximation methods used in the model in any way 
reflect human heuristics, it could be claimed that the model is then more realistic. 

 
 
j)If the notation [ ] is used to denote `the number of ...', the computer storage space 

required at any one time to store perceived travel costs is of the order: 
 
  [links] x [time periods] x [individuals] x [history parameters] 
 
where the history parameters may be the parameters of the posterior distribution  (in fact, 

three would be adequate) or recently experienced travel times (in the case of Model 
B formulation).  In order to ease the burden on storage space (and possibly save 
some time in retrieving the relevant array elements), an individual-independent 
`typical' range for each of the history parameters could be stored, with the 
parameters relating to a particular individual only saved if they fall outside the 
typical range.  Equally, the history parameters could be stored only approximately, 
according to a grouped data approach. In addition, computer memory compression 
techniques may be adopted to make best use of the resources. The quality of these 
approximations need, of course, to be investigated. If the storing of all such 
experiences proves infeasible, then the use of some kind of weighting scheme (à la 
Horowitz) may be the only alternative, despite the problem of calibrating the 
weights. It is notable that Cascetta (1989) appears to have found it feasible to 
implement an averaging process of the type described in Model B in the current 
paper, based on seven previous days. This was achieved using the within-day static 
model STODYN, applied to a realistic size network. Later, however, in thw within-
day dynamic (yet still macroscopic) STODYN2, experiences were formed using 
weighting schemes. It is not clear to what extent this change of methodology was 
due to computational/storage considerations. 

 
k)Possible extensions/modifications to the approaches include: 
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�In its current state, the driver `uncertainty' modelled represents some kind of lower 
bound, with the only source being supply/demand variability.  This could be 
extended in two ways, to represent 

-taste variation, with possibly an additional, additive variance component for perceived 
predicted travel cost; 

-errors in evaluating experienced travel costs, with perceived experienced costs being 
stochastic instead of deterministic. 

 
�An investigation into exploiting the learning process of perceived travel time variability - 

with route choice optionally based on risk minimising or minimax 
principles. 

 
�Introduce dynamic route guidance into the choice process. 
 
 

6.SIMPLE SIMULATION TESTS 
 
To gain an insight into the workings of the models proposed, a small number of tests were 
carried out on a simple, two-link (two parallel routes) network.  The Model B formulation 
was used - that is, conditions were assumed to be static within a given day (and there was 
consequently no departure time choice) and only a pre-specified number of previous 
experiences of a link contributed to the perceived predicted travel times. 
 
In addition to the specification given in Model B, the following particular assumptions 
were made. 
 
     1.Drivers assess generalised cost purely in terms of travel time. 
     2.In order to ensure that the model satisfied Cascetta's (1989) conditions for `dynamic 

stability' and ergodicity of the process, the additional restriction was made that at 
most M previous states contribute to the current perceived predicted costs, for some 
given M. 

     3.The demand randomisation process was implemented as follows: The number of 
drivers in the whole population was specified.  Furthermore, the lower limit on the 
probability of a driver making a trip on any given day was given, and assumed to 
be the same for all drivers.  Denoting this lower limit Pmin, then on any given day, 
the probability of travelling is generated as a random number on the interval  

[Pmin, 1].  Then on that day, each driver travels with this day-specific probability. 
     4.Network supply conditions were generated via randomised link performance 

functions.  Power law performance functions were used in conjunction with Normal 
random error terms.  The standard deviation of the error terms was defined as a 
link-specific constant multiplied by the user equilibrium travel costs.  The 
distribution of error terms was the same for all individuals and all days. 

     5.The randomisation elements were made repeatable by the specification of a `seed' 
value. 

     6.The stability of the process was monitored by use of a two-sample t-test, with an exact 
significance level computed.  This was achieved by comparing the mean flow on one 
of the links over the last n days with the mean flow for n days previous to this (ie 
the flows which were between 2n and n+1 days ago). 

     7.The parameters of the prior were assumed to be the same across all individuals. 
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The values assumed for the various parameters were: 
 
a)Prior distribution: 
 
 Link  m  Ĳ  Ș  w 
 1   10  0.01  4.8  1.17 
 2   20  0.01  7.2  2.89 
 
b) Supply model: 
 
 Link  a  b  p  ș  cUE

 1   10  1.0  1.0  0.2  50.0 
 2   20  0.5  1.0  0.2  50.0 
 
where the link performance functions are of the form 
 
 a + b vp

 
where v is the link flow, and where perceived travel times are the sum of the link 

performance function and a random element which follows a Normal distribution 
with mean 0 and standard deviation șcUE. 

 
c)Sundry parameters: 
 
O-D demand = 100 
Maximum number of previous trips which contribute to a driver's current perceived 

predicted cost = 10 
Number of days over which averaging takes place, for testing of stability = 20. 
Lower limit Pmin for probability of travelling = 0.8. 
 
The tests consisted of simulating 100 days, for each of three seed values for the 
randomisation processes.  The daily flows on link 1 are given in Figure 1, and the average 
link 1 flow over the last 20 days is given in Figure 2 (colour, original versions of figure 1, in 
which the three processes are rather easier to distinguish, are available on request from 
the author). 
 
Although the simulations offer limited evidence, a number of points are worthy of note.  
Figure 1 appears to show that the process does indeed settle down to a stable form of 
oscillation.  Furthermore, this stable form does not appear to depend greatly upon the 
starting conditions (represented by the different seed value used), being within the bounds 
of sampling variability.  Figure 2 gives further evidence of these points.  It should be noted 
that the significance test of dynamic stability was accepted (at the 1% significance level) 
the first time it was applied (i.e. after 40 simulated days). 
 
 

7.CONCLUSIONS 
 
This note discusses possible approaches to the modelling of day-to-day dynamic route 
choice, as well as extensions to within-day dynamics and departure time choice. In order to 
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apply the methods to realistic networks, there are two main areas which need to be 
considered: 
 
     �the feasibility of applying methods such as Model B, with particular regard to 

computational and storage requirements - see the comments in point (i) in section 
5.7; 

 
     �the identification and development of suitable algorithms (possibly approximate ones, 

based on the premise that drivers too use heuristics) for selecting `optimal' 
departure time and route combinations. 
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Figure 1: Flow on link 1 versus day 
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Figure 2: Average flow (over last 20 days) on link 1 versus day 



APPENDIX: Calculation of µiak and ıiak

 
Data:
 
Denote previously experienced journey times by individual i on link a up to day k by: 
 
{siakj : j = 1, 2, ... niak} 
 
Assume these times represent a sample of size niak from a Normal(µ,ı2) population. 
 
 
Prior:
 
Assume conjugate prior distribution for (µ, ı); that is 
 
(µ, ı) ~ Normal-Gamma (mia, Ĳia, ȣia, Ȧia) 
 
with density function 
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where - ∞<µ<∞, 0<ı<∞, -∞<m<∞, Ĳ>0, ȣ>0, Ȧ>0. 
 
The first and second moments of such a density are given by: 
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Posterior:
 
The joint posterior distribution of µ and ı is given by 
 
 g(µ, ı Ň {siakj} )   Į   f (µ, ı) L(µ, ı Ň {siakj}) 
 
where L is the likelihood. It may be shown that 
 
 µ, ı Ň {siakj} ~ Normal-Gamma (miak, Ĳiak, ȣiak, Ȧiak) 
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Intuitively, one can think of these parameters miak, Ĳiak, viak and wiak as subjective 
evaluations of (respectively) sample mean, sample size, divisor for variance calculations, 
and average squared deviation from the mean. 
 
 
Posterior means:
 
It follows that the posterior expected values of µ and ı are: 
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Notes on implementation:
 
1.In order to make it easier to specify the parameters of the prior, there may be some 

advantage in reparameterising: 
 
 (m, Ĳ, ȣ, Ȧ)  → (m, Ĳ, Į, Ȗ) 
 
where 
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In this way, Į is the prior mean of ı and Ȗ the prior variance of ı. Having specified Į and 
Ȗ, it is possible to return to the original parameterisation by using: 
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2.Recursion formulae may be set up to compute the values of the parameters of the 

posterior on day k+1 from the values on day k. 
NB:These formulae are to be updated every day, even if the individual does not travel. 
 
   i)If no journey made on (previous) day k using link a: 
 
 Set miak+1, Ĳiak+1, ȣiak+1 and Ȧiak+1 to their values at day k. 
 
   ii)If a journey was made on day k on link a, with a link journey time of s, then: 
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