This is a repository copy of *Issues arising from the HASTE experiments*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/2009/

Article:

https://doi.org/10.1016/j.trf.2005.04.004

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
This is an author produced version of a paper published in Transportation Research Part F: Traffic Psychology and Behaviour. This paper has been peer-reviewed but does not include final publisher proof-corrections or journal pagination.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/2009/

Published paper
Issues Arising from the HASTE Experiments

Oliver Carsten1\# and Karel Brookhuis2

1Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK
Tel +44 113 343 5348, Fax +44 113 343 5334, Email o.m.j.carsten@its.leeds.ac.uk

2Department of Psychology, University of Groningen / Delft University of Technology, The Netherlands
Tel +31 50 363 6772, Fax +31 50 363 6784, Email k.a.brookhuis@ppsw.rug.nl

*Corresponding author
The HASTE project work discussed in the foregoing papers can be depicted as being aimed at answering two questions: “Does greater secondary task load from an In-Vehicle Information System (IVIS) lead to an identifiably worse performance in the primary task of driving?” and “How much distraction is too much?” There is, of course, a huge amount of literature examining the effect of distraction on driving. Some of this concerns visual distraction (e.g. Holohan, Culler & Wilcox, 1978; Dingus, Antin, Hulse & Wierwille, 1989; Wierwille & Tijerina, 1996; Wallace, 2003), while other parts cover distraction from cognitive (auditory) tasks such as mobile phone use (e.g. Stevens & Paulo, 1999; Svenson & Patten, 2003). But, in spite of this large background of research, it can be argued that the HASTE work was pioneering in the sense that it attempted to differentiate between the effects of visual and cognitive distraction and at the same time it attempted to carefully control the “dose” of distraction administered at any one time. These dose-response studies were carried out in three common but quite different experimental settings, a laboratory set-up, advanced driving simulators, and in instrumented vehicles in the field. The project also examined the reliability of the evaluation, with for example six replications of the rural road studies across a variety of driving simulators in five different countries.

In many respects this very structured approach has paid off. In particular quite contrasting effects on driving have been found for the two types of distraction (Carsten, 2004). The visual task, not unexpectedly, led to poor steering behaviour and degradation of lateral control of the vehicle. By contrast, with the cognitive task, the major negative effect was more on longitudinal control, particularly in car following, rather than on lateral control. Thus in the Leeds simulator study, there was a tendency for minimum time headway to decrease as the cognitive task becomes more difficult. In addition, with the cognitive task, there was the phenomenon of an apparent ‘improvement’ in steering behaviour with increased cognitive task load, as shown, for example, in steering patterns: reversal rates decreased with increased level of the surrogate IVIS indicating ‘better’ lateral control. This phenomenon has been observed before (e.g. Brookhuis, De Vries & De Waard, 1991), however, as discussed in Victor, Harbluk and Engström (this issue), eye movement analysis, carried out in some of the studies, provides a possible explanation. With increased task load there was greater concentration of glances on the road straight ahead as opposed to the periphery, i.e. greater visual funnelling. This greater concentration of gaze and the accompanying “improvement” in steering behaviour with increased cognitive task load, as shown, for example, in steering patterns: reversal rates decreased with increased level of the surrogate IVIS indicating ‘better’ lateral control. This phenomenon has been observed before (e.g. Brookhuis, De Vries & De Waard, 1991), however, as discussed in Victor, Harbluk and Engström (this issue), eye movement analysis, carried out in some of the studies, provides a possible explanation. With increased task load there was greater concentration of glances on the road straight ahead as opposed to the periphery, i.e. greater visual funnelling. This greater concentration of gaze and the accompanying “improvement” in steering has two possible explanations. One is that it is a conscious adaptation by drivers to the presence of distraction: aware of the increased risk, they focus on road ahead to maintain stable control. The other possible explanation is that the change in the concentration of gaze is autonomic and accounts for the improved tracking in that the drivers are then subconsciously aiming for the point at which they are gazing. A detailed investigation of the phenomenon should be able to identify the causal mechanism.

Nevertheless, identifying that secondary visual and cognitive tasks have different impacts on driving does not directly indicate how to specify a test regime for the assessment of an IVIS. In some ways, the finding complicates matters. For example, how is one to interpret an observed improvement in steering? It may well be necessary to combine assessment of steering with assessment of eye movement patterns. There is also the additional complication that most real-world IVISs are likely to impose a combination of task loads — visual, cognitive and manual. This may well be the case even for a single task, such as reading and interpreting a screen or destination entry. Any real-world visual task is likely to have more substantial cognitive elements than the arrows task used in the HASTE experiments. If so, real-world tasks could even produce effects that vary within the task duration — poorer lateral performance during the initial visual phase of looking at a screen, followed by improved lateral performance as the information acquired is digested and interpreted.

Next there is the problem of translating the observed effects into some overall criterion such as increased accident risk. This is a notoriously difficult area in that taking an single parameter of
driving performance such as speed and translating that parameter into a calculation of risk of
possibly or change in risk with a change in behaviour is notoriously difficult. Brookhuis, De
Waard and Fairclough (2003) have proposed the use of both absolute thresholds and relative
changes for a number of measures of driving performance (e.g. speed, time headway, standard
deviation of lateral position, time to line crossing, etc.) as indicators of individual driver
impairment. Hoedemaker and Janssen (2000) have proposed the use of certain mathematical
relationships from the literature on speed, speed variance, lane keeping performance and headway
as a method for assessing the safety impacts from the introduction of a driver support system. It
should be noted that this latter assessment is to be carried out on group overall performance,
rather than at the individual level.

But even if agreement can be reached on what are the appropriate thresholds for severely elevated
risk or on what relationships should be applied to observed indicators to calculate changes in risk,
there is still the problem of what to do when there are changes in more than one of the criteria. It
is highly likely that, for example, an increase in speed combined with a reduction in time
headway will have a multiplicative effect on risk of a crash occurring. But there is little literature
on exactly what is the relationship between the effects on risk of those two parameters and
various others in combination with each other. In the future it may be possible to use micro-
simulation models without constraints against unsafe behaviours to make predictions about the
safety implications of changes in behaviour with, for example, new in-vehicle technologies
(Carsten, 2002). This would allow the assessment of complex changes in behaviour. But
currently such models are not available. For this reason, the HASTE project has been conducting
a survey among safety experts to obtain estimates of how the impacts of various safety-related
criteria interact with each other. This survey, which has not yet been analysed, should provide
some guidance for interpreting the results obtained in HASTE and elsewhere.

However, even with such additional information on the relationship between driving performance
and safety, it will not be possible to assess the overall effects on safety in driving from the
distraction caused by using a given IVIS. An additional factor, namely the exposure to the
distraction, needs to be considered. Whereas fatigue and alcohol, for example, impose continual
risk, distraction imposes only momentary risk (although there may be a time halo effect of
cognitive load). Therefore we need to consider the duration of the distraction in predicting its
impact and we need to consider the trade-off between duration of effect and intensity of effect.
What is worse: a short but very substantial distraction or a longer but more moderate distraction?
There is no obvious and immediate answer to this question and part of the answer must depend on
the traffic context in which the distraction occurs. The COMUNICAR project (Amditis,
Montanari, Polychronopoulos & Bellotti, 2002) and the CEMVOCAS project (Bellet et al., 2002)
have been developing strategies for suppressing or delaying messages at times of high workload,
for example around intersections or when making manoeuvres. However, such strategies are not
always viable: it is precisely while negotiating a complex intersection that a driver may require
immediate support from a navigation system, in order to be told, for example, which exit to take
in a gyratory.

Another important issue for a future safety assessment regime for in-vehicle information systems
is where the assessment is to be conducted. Efficiency and reproducibility of assessment
environment would argue for the evaluation to be conducted in a driving simulator. Field studies
may have final validity in their favour, and, depending on the conditions, even genuine
naturalness. So it is important to examine whether the simulator studies captured the same
performance and behavioural responses to the presence of distraction from an IVIS as is observed
in the on-road drivers. The real-road drives are expected to constitute a “ground truth”, i.e. we
can generally assume that effects observed in such circumstances are not open to questions about
validity, as can be the case with effects observed in an artificial laboratory environment. But the
real road data also suffer from the extra noise induced by the varying conditions of each drive — it is not feasible to reproduce precise scenarios in real traffic. Simulators offer the capability of precise duplication of scenarios, so that each driver can be exposed to the same conditions and the same set of events. It is even possible to control the severity of the events. In the simulator car-following scenarios on the rural roads (Jamson & Merat, this issue), we attempted to have the “time headway” of the lead car constant, so that the lead car would close up to the subject’s car when the subject was driving more slowly and move further away when the subject drives faster.

In fact there was quite substantial difference between effects observed in the simulators and effects observed in real road driving. In part this can be attributed to what data was captured in each environment: lateral position could not be collected systematically in the field, while observer ratings of driving quality were omitted in the simulators. But aside from data issues, there were some important differences in the effects of distraction on driving in the two environments. In particular, greater amounts of distraction produced an almost total breakdown in some situations of the driving task on real road, but this same breakdown could not be observed while driving in the simulator. It might be argued that simulator driving is, because of the more simple visual environment in a simulator, less demanding than real-road driving, but the contrary has been shown as well: driving on a simulator is generally more demanding than comparable driving in the real world. For example, De Waard and Brookhuis (1997) found that the amount of effort subjects put into driving in a simulator, as measured by the Rating Scale of Mental Effort (RSME) was substantially higher than the effort when driving in a real car.

So, why did driving break down on real roads but not in the simulators, when for safety reasons the maximum level of distraction to which the drivers were exposed was lower in real-road driving than in the laboratory? The answer can perhaps be found in the situations to which the drivers were exposed. Most simulators are, at the moment, not capable of capturing driving situations in which the primary task of driving becomes really cognitively demanding, i.e. situations where the driver has to make a considerable effort to understand and interpret what is happening in the information-dense road environment. Simulator experiments tend to use driving-related cognitive tasks that are quite simple, such as whether the driver understood a road sign or the message content of a Variable Message Sign. Such tasks place quite low demands on the driver and do not require much higher-order reasoning. This may in part explain why the expected exponential increase in the performance indicators in line with increasing distraction was not generally found in the simulator studies. Besides, the actual road environment is much richer, more “stimulating” and distracting than the usual (low-resolution) simulator projection.

Some real-road situations are highly demanding. If a driver is approaching a zebra crossing with a pedestrian present, that driver has to decide whether to maintain speed, decrease speed in order to give way to the pedestrian or even increase speed in the hope of deterring the pedestrian from crossing. And the situation has to be continuously re-evaluated. If the driver has decided to increase speed, maybe the pedestrian has decided to walk anyway, so that the driver now has to decide to brake in a split-second. This is exact the type of complex interaction that broke down when the drivers were exposed to cognitive distraction in the real-road drives in Helsinki (see Figure 1). Here it is interesting to note that the drivers did not surrender the secondary task. Workload arises not only from each task but also from task switching itself (Pashler, 1998). In the dual task situation, a driver will have to make an evaluation of the effort required for the secondary task as compared with the effort required for the primary task in order to decide whether to surrender the primary task. Perhaps it is not altogether surprising that it was the elderly drivers who had the greatest problems in task prioritisation. This can be seen from Figure 2, which shows lane discipline when driving with the visual task on real roads in Helsinki. The “average drivers” (aged 25-50) were able to manage the problem to some extent, and appeared to surrender performance on the secondary task at its most difficult level. On the other hand, for
the elderly drivers (aged 60 or more) there was a severe impact of the secondary task and the negative effect increased by S-IVIS level. They do not have the resources required for task switching.

[Figure 1 here]

[Figure 2 here]
Overall, the various studies reported in this issue have confirmed that an assessment regime primarily based around using driving simulators can produce meaningful and potentially reliable results. They have pointed to very important differences between the impacts of the two types of distraction — visual and cognitive. They have also pointed to some deficiencies in the current capability of driving simulators to represent the full complexities of the driving task. And finally they have confirmed the need to consider further how safety indicators can be changed into safety criteria that can serve as benchmark for assessing the safety of an IVIS in actual use.

References

Svenson, O., & Patten, C. (2003). *Information technology in cars: mobile phones and traffic safety — review of contemporary research*. Department of Psychology, Stockholm University and Swedish National Road Administration, Borlänge, Sweden.

Inappropriate driver behaviour at zebra crossing (%)

- **Baseline**:
 - Pedestrian forced to wait: 20
 - Pedestrian waits: 5
 - Driver forced to stop: 10
 - Driver stops late: 5

- **Visual Task**:
 - Pedestrian forced to wait: 5
 - Pedestrian waits: 10
 - Driver forced to stop: 11
 - Driver stops late: 5

- **Auditory Task**:
 - Pedestrian forced to wait: 26
 - Pedestrian waits: 11
 - Driver forced to stop: 5
 - Driver stops late: 11

Figure 1: Interaction with pedestrians at zebra in Helsinki (from Östlund et al., 2004)
Figure 2: Lane behaviour in real-road driving with visual task in Helsinki (from Östlund et al., 2004)