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Rapid Turnover of Hyphae of

Mycorrhizal Fungi Determined by

AMS Microanalysis of 14C
Philip L. Staddon,1*† Christopher Bronk Ramsey,2 Nick Ostle,3

Philip Ineson,1 Alastair H. Fitter1

Processes in the soil remain among the least well-characterized components of
the carbon cycle. Arbuscular mycorrhizal (AM) fungi are ubiquitous root sym-
bionts in many terrestrial ecosystems and account for a large fraction of
photosynthate in a wide range of ecosystems; they therefore play a key role
in the terrestrial carbon cycle. A large part of the fungal mycelium is outside
the root (the extraradical mycelium, ERM) and, because of the dispersed growth
pattern and the small diameter of the hyphae (�5 micrometers), exceptionally
difficult to study quantitatively. Critically, the longevity of these fine hyphae
has never beenmeasured, although it is assumed to be short. To quantify carbon
turnover in these hyphae, we exposed mycorrhizal plants to fossil (“carbon-
14–dead”) carbon dioxide and collected samples of ERM hyphae (up to 116
micrograms) over the following 29 days. Analyses of their carbon-14 content
by accelerator mass spectrometry (AMS) showed that most ERM hyphae of AM
fungi live, on average, 5 to 6 days. This high turnover rate reveals a large and
rapid mycorrhizal pathway of carbon in the soil carbon cycle.

Most terrestrial plants form symbiotic associa-
tions between their roots and mycorrhizal fungi,
of which AM fungi are the most common (1).
AM fungi obtain all their C from their host
plant and supply the host with various benefits,
such as improvements in nutrient acquisition
from the soil (2). AM fungi can account for up
to 20% of plant photosynthate (3) and therefore
represent a substantial pathway for C flow to
the soil and a key link in the terrestrial C cycle
(4). However, the proportion of C entering the
soil via AM fungi that is simply respired back
to the atmosphere is not known. Despite the
importance of mycorrhizae in community func-
tioning (5, 6), the biology of AM fungi, espe-
cially their external (extraradical) phase in soil,
remains obscure. The rate at which the ERM
turns over has never been measured, despite its
central importance to understanding the role of
mycorrhizal fungi in the soil C cycle. It has
been hypothesized that AM fungal hyphae turn
over in days rather than weeks (7), because
observations have shown that over half of a
population of fungal hyphae in soil, some of
which may have been mycorrhizal, survived for
less than one week (8).

The residence time of C in the ERM of
AM fungi must be known if this important
link in the C cycle is to be quantified (4). The
turnover rate of AM fungal hyphae has not
been quantified because of the difficulty of
obtaining sufficient quantities of pure mycor-
rhizal hyphae other than by painfully slow
and labor-intensive microscopic collection by
hand. By including both hyphae and the un-
usually large spores of AM fungi, we previ-
ously used measurements of �13C to deter-
mine C transfer from root to fungus (9).
Inclusion of spores gave samples that were
sufficiently large to permit �13C determina-
tion of the combined tissue but that prevented
measurement of hyphal turnover.

In this study, we grew seedlings of
Plantago lanceolata in pots in a greenhouse

with an inoculum containing several AM
fungi, all in the genus Glomus (10, 11).
Experimental plants were exposed for 5
hours to an atmosphere in which all CO2

was from a fossil source and hence con-
tained no 14C (12, 13). Over the following
4 weeks, 21 plants (including 6 controls
exposed to a normal atmosphere with am-
bient 14CO2 concentrations) were harvest-
ed, and samples of live ERM hyphae were
carefully collected from their roots (14).
We analyzed these samples for their 14C con-
tent by accelerator mass spectrometry (AMS)
(15) using a gas-ion source (16). This re-
quired the development of a method for sam-
ples containing �100 �g C. The samples
used in this study were substantially smaller
than those commonly analyzed for radiocar-
bon content in ecological research.

The 14C content of extraradical mycorrhi-
zal hyphae linked to the roots of plants fed
with 14C-dead CO2 was almost always at or
below the control values (Fig. 1), meaning
that exposure to 14C-dead CO2 successfully
reduced the 14C content of the fungal tissue
and that the mycorrhizal hyphae were grow-
ing at the expense of current photosynthate
during the experimental period. The C pools
in the mycorrhizal mycelium would have
been differentially depleted in 14C because of
their different turnover rates. The two main
pools in the ERM are those for growth and
maintenance; the AM storage pool is princi-
pally located in the AM fungal component
inside the roots (1). The maintenance pool is
primarily composed of recently fixed C (24
hours or less) (17). In this experiment, there-
fore, we were following the C incorporated
into growing hyphae.

The density of ERM in pots does not
increase continuously (18), and we showed in
a previous experiment conducted under sim-
ilar conditions to the research reported here
that the density of ERM was relatively con-
stant over a comparable period, that is, 50 to
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Fig. 1. The 14C con-
tent of extraradical
mycorrhizal fungal hy-
phae over a 1-month
period after exposure
of their host plants to
14C-dead CO2. The
14C depletion is ex-
pressed relative to the
background hyphal
value (arbitrary base-
line is 100). The data
are best split in two
and described by two
fitted lines: the initial
slope region (solid line
and filled circles) and
the plateau region (dashed line and open circles). Most of the experimental points remain below the
average background value (100 � 2.0 SE) for 14C content (dotted line). The regression equation for
the slope region is y � 2.87x � 80.0. The bars represent analytical uncertainty (15) and are a
function of sample size. The mean value for the plateau region is 97.5 (� 1.4 SE), or, in other words,
the depletion in 14C as compared to the background hyphal value is 2.5% for the plateau region.
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71 days after planting (19). Even if the ERM
was growing, the increase in ERM density
over 5 days would only have had a small
dilution effect on the total hyphal 14C con-
centration. Also, if ERM biomass was in-
creasing, the plateau 14C depletion value
would have continually converged to the
background 14C value. We are therefore con-
fident that the measured changes in 14C hy-
phal concentration were primarily because of
hyphal turnover rather than any dilution ef-
fect as a result of increased ERM biomass.

The trends in the 14C content values for
the samples exposed to 14C-dead CO2 were
best described by two fitted lines as shown by
the F-ratio method of fitted lines comparison
(20) (P � 0.05). These two lines can be
termed the slope and plateau regions. The
linear regression fitted to the slope region
was highly significant (P � 0.0014) and ex-
plained most of the variation in 14C content
of the mycorrhizal hyphae (r 2 � 0.94). By 6
days after exposure, the 14C content of the
mycorrhizal hyphae had reached the plateau
value (this can be seen directly on the graph
but is also the predicted value from the re-
gression equation). Therefore, almost all the
C imported into the hyphae during exposure
to 14C-dead CO2 was replaced in 6 days or
less. However, 13C studies have shown that
host-plant photosynthate enters mycorrhizal
hyphae within a few hours of fixation and
that within 24 hours most of this C has been
respired by the ERM (21). The maximum 14C
depletion content of the mycorrhizal hyphae
was therefore most likely to be around 1 day
after labeling (21), so the hyphal turnover
time was probably closer to 5 days.

If maximum dilution of 14C in the mycor-
rhizal hyphae occurred 1 day after exposure
to 14C-dead CO2, we can estimate that the
maximum dilution was around 16%. This
means that the 5 hours of exposure of the host
plants to 14C-dead CO2 resulted in a replace-
ment of circa (ca.) 16% of extraradical my-
corrhizal hyphal carbon. Because the expo-
sure occurred during the most photosynthet-
ically productive part of the day, this value
cannot be extrapolated to estimate the total
amount of hyphal carbon replaced per day.
Nonetheless, that value would also indicate
that the turnover of most mycorrhizal hyphae
was within a week (that is, 1/0.16 is ca. 6
days). The mycorrhizal hyphal network is
known to contain a large proportion of finely
branched hyphae or branched absorptive
structures (22), which may be the principal
sites of nutrient uptake from the soil. These
structures were likely to be responsible for
the observed rapid turnover of ERM.

The plateau 14C content average was less
than the background (control) value in seven of
the nine measurements, suggesting that some of
the C imported into the ERM during exposure
to 14C-dead CO2 remained for up to 30 days.

The AM fungal hyphal network contains a few
larger and probably longer-lived hyphae, called
runner or trunk hyphae, that are thought to act
as the “backbone” of the mycorrhizal hyphal
network (7), a phenomenon paralleled in root
system architecture, where turnover studies re-
vealed a few roots that live far longer than
others (23). The residual 14C depletion of the
mycelium probably reflected C in these longer-
lived structures.

In this experiment, the plant-mycorrhizal
fungi systems were grown under semisterile
conditions in a growth medium (10) free of
soil animals such as nematodes or collem-
bola, which could have grazed the AM my-
celium (24). This means that our measure of
AM fungal hyphal turnover was the intrinsic
turnover of the external AM mycelium under
the conditions of this experiment. Under field
conditions, the AM hyphal turnover could
therefore be higher because of grazing by soil
animals or environmental impacts such as
drought.

These findings on external mycorrhizal
hyphal turnover confirm that mycorrhizae act
as a substantial pathway of C flow to the soil.
Potentially, therefore, they could sequester
some of this C in the soil. However, our data
may suggest that most of the C transferred to
the AM fungal hyphal network is rapidly
recycled back to the atmosphere. There has
been considerable research effort in under-
standing how global environmental change
will affect the terrestrial carbon cycle (25–
27), yet predictive modeling exercises are
still often limited by the lack of understand-
ing of the soil carbon cycle and soil ecosys-
tem functioning at the most basic level (28).

This research shows that a large propor-
tion of extraradical mycorrhizal hyphae, with
the possible exception of runner hyphae, turn
over in 5 to 6 days. This finding was made
feasible by an application of AMS that al-
lowed the microanalysis of hyphal samples
containing as little as 10 �g of C, with only a
small maximal depletion in 14C content as
compared to current ambient. AMS has been
used previously, where sample size was not a
constraint, to measure 14C natural abundance
in fungal sporocarps to determine the mycor-
rhizal status of fungi (29) and in fine roots to
determine the age of fine-root C (30). We
suggest that the level of analytical precision
achievable by AMS will prove extremely
useful in answering many other ecological
questions, especially where limited sample
weight is a constraint. This, along with other
stable isotope approaches such as stable-
isotope probing (31), provides exciting op-
portunities in functional ecological research.
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Mitochondrial Dysfunction in the

Elderly: Possible Role in Insulin

Resistance
Kitt Falk Petersen,1 Douglas Befroy,1,7 Sylvie Dufour,1,7

James Dziura,1 Charlotte Ariyan,3 Douglas L. Rothman,4

Loretta DiPietro,5,6 Gary W. Cline,1 Gerald I. Shulman1,2,7*

Insulin resistance is a major factor in the pathogenesis of type 2 diabetes in the
elderly. To investigate how insulin resistance arises, we studied healthy, lean, elderly
and young participants matched for lean body mass and fat mass. Elderly study
participants were markedly insulin-resistant as compared with young controls, and
this resistance was attributable to reduced insulin-stimulated muscle glucose me-
tabolism. These changes were associated with increased fat accumulation inmuscle
and liver tissue assessedby 1Hnuclearmagnetic resonance (NMR) spectroscopy, and
with a �40% reduction in mitochondrial oxidative and phosphorylation activity, as
assessed by in vivo 13C/31P NMR spectroscopy. These data support the hypothesis
that an age-associated decline in mitochondrial function contributes to insulin
resistance in the elderly.

Type 2 diabetes is the most common chronic
metabolic disease in the elderly, affecting �30
million individuals 65 years of age or older in
developed countries (1). The estimated econom-
ic burden of diabetes in the United States is
�$100 billion per year, of which a substantial
proportion can be attributed to persons with type
2 diabetes in the elderly age group (2). Epidemi-
ological studies have shown that the transition
from the normal state to overt type 2 diabetes in
aging is typically characterized by a deteriora-
tion in glucose tolerance (3, 4) that results from
impaired insulin-stimulated glucose metabolism
in skeletal muscle (5, 6). Measurements of mus-
cle triglyceride content by biopsy (7) or in-

tramyocellular lipid content (IMCL) by 1H nu-
clear magnetic resonance (NMR) spectroscopy
(8–10) have shown a strong relationship between
increased intramuscular fat content and insulin
resistance in muscle. Similar correlations have
been established for hepatic insulin resistance
and hepatic steatosis (11–13). Increases in the
intracellular concentration of fatty acid metabo-
lites have been postulated to activate a serine
kinase cascade leading to defects in insulin sig-
naling in muscle (14–17) and the liver (18),
which results in reduced insulin-stimulated mus-
cle glucose transport activity (14), reduced gly-
cogen synthesis in muscle (19, 20), and impaired
suppression of glucose production by insulin in
the liver (11–13).

To examine whether insulin resistance in the
elderly is associated with similar increases in
intramyocellular and/or liver triglyceride con-
tent, we studied healthy elderly and young peo-
ple that we matched for lean body mass (LBM)
and fat mass. All study participants were non-
smoking, sedentary, lean [body mass index
(BMI) � 25 m2/kg], and taking no medications.

Sixteen elderly volunteers (ages 61 to 84 years, 8
male and 8 female) were screened with a 3-hour
oral glucose (75 g) tolerance test and underwent
dual-energy x-ray absorptiometry to assess LBM
and fat mass (21). One elderly man was exclud-
ed from the study because of an abnormal glu-
cose profile. Thirteen young volunteers (ages 18
to 39 years, 6 male and 7 female), who had no
family history of diabetes or hypertension, were
matched to the older participants for BMI and
habitual physical activity, which was assessed by
means of an activity index questionnaire (22).
All participants underwent a complete medical
history and physical examination, as well as
blood tests to confirm that they were in excellent
health (23).

Young and elderly participants had similar
fat mass, percent fat mass, and LBM (Table 1)
(24). The elderly participants had slightly higher
plasma glucose concentrations (Fig. 1A) and
significantly higher plasma insulin concentra-
tions (Fig. 1B) during the oral glucose tolerance
test, suggesting that they were relatively insulin-
resistant as compared with the young controls.
Basal plasma fatty acid concentrations (Fig. 1C)
also tended to be higher in the elderly partici-
pants but were suppressed normally after glu-
cose ingestion.

To determine what tissues were responsible
for the insulin resistance, we performed hyper-
insulinemic-euglycemic clamp studies, in com-
bination with [6,6-2H2] glucose and [2H5] glyc-
erol tracer infusions (24). Basal rates of glucose
production were similar in the young and elderly
participants (Table 2) and were suppressed com-
pletely in both groups during the hyperinsuline-
mic-euglycemic clamp. In contrast, the rates of
glucose infusion required to maintain euglyce-
mia during the clamp and insulin-stimulated
rates of peripheral glucose uptake were �40%
lower in the elderly participants (Table 2). Basal
energy expenditure and respiratory quotient both
tended to be lower in the elderly participants
(24).

To ascertain whether lipid accumulation in
muscle might be responsible for the insulin re-
sistance in the elderly participants, we used 1H
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