This is a repository copy of *Shape from periodic texture using the eigenvectors of local affine distortion*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1991/

Article:

https://doi.org/10.1109/34.977570

Reuse
 Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Shape from Periodic Texture Using the Eigenvectors of Local Affine Distortion

Eraldo Ribeiro and Edwin R. Hancock

Abstract—This paper shows how the local slant and tilt angles of regularly textured curved surfaces can be estimated directly, without the need for iterative numerical optimization. We work in the frequency domain and measure texture distortion using the affine distortion of the pattern of spectral peaks. The key theoretical contribution is to show that the directions of the eigenvectors of the affine distortion matrices can be used to estimate local slant and tilt angles of tangent planes to curved surfaces. In particular, the leading eigenvector points in the tilt direction. Although not as geometrically transparent, the direction of the second eigenvector can be used to estimate the slant direction. The required affine distortion matrices are computed using the correspondences between spectral peaks, established on the basis of their energy ordering. We apply the method to a variety of real-world and synthetic imagery.

Index Terms—Shape-from-texture, spectral analysis, affine distortion, eigen-analysis.

1 INTRODUCTION

The recovery of surface shape using texture information is a process that is grounded in psychophysics [1]. Moreover, it has been identified by Marr [2] as being a potentially useful component of the 2D sketch. Stated succinctly, the problem is as follows: Given a two-dimensional image of a curved textured surface, how can the three-dimensional shape of the viewed object be recovered? This is clearly an ill-posed problem. In order to be rendered tractable, restrictive simplifications must be made. These frequently hinge on the assumed periodicity, homogeneity [3], and isotropy of the underlying surface texture. When viewed from the standpoint of shape recovery, there are two distinct areas of activity in the literature. The first of these confines its attention to planar surfaces and focuses on the recovery of perspective geometry from texture gradient or vanishing point location [4], [5], [6], [7]. The second problem is that of interpreting the geometry of curved surfaces [8], [9], [10], [11], [12]. Without detailed knowledge of the viewing geometry or camera optics, the latter problem involves recovering local surface orientation from texture gradient.

This second problem is perhaps the most interesting from the standpoint of shape perception and is the focus of this paper. The problem can be approached in two ways. The first of these is to use presegmented structural texture primitives and to measure texture gradient using the variation in the size of the primitives. This approach will clearly be sensitive to the process used to segment the required texture primitives. However, the method can be used with aperiodic textures. The second commonly used method is to adopt a frequency domain representation of the underlying texture distribution. The frequency domain approach can be applied more directly to the raw image data and is potentially less sensitive to the segmentation process. However, the applicability of the method is restricted to periodic textures.

Although it is not dependant on the reliable detection of texture primitives or the measurement of texture gradient, the frequency domain approach to curved shape-from-texture can be criticized on a number of grounds. First, in the methods of both Krumm and Shafer [13] and Malik and Rosenholtz [10], [11] the recovery of local surface orientation is based on either numerical optimization or exhaustive search. This is done to overcome the problems associated with the fact that no fronto-parallel sample of the texture is to hand. In addition, the method of Rosenholtz and Malik [10], [11] has difficulty in distinguishing between curved and planar surfaces, is sensitive to initial parameter values, and needs curvature to be specified as a parameter.

To overcome these shortcomings, our aim in this paper is to present a closed form method for recovering shape from curved or planar textured surfaces using frequency information. We follow Krumm and Shafer [13], Super and Bovik [5], [14], Malik and Rosenholtz [10], [11] by measuring the local texture variations due to the perspective using the frequency domain affine distortion of the pattern of spectral peaks. Our main contribution is to show that the directions of the eigenvectors of the affine distortion matrix can be used to directly estimate the slant and tilt angles of local tangent planes to curved surfaces. This result applies under the assumption that the underlying surface is painted with a uniform texture and is viewed under perspective projection onto the image plane. The texture is assumed to be homogeneous but not necessarily isotropic. Our main contribution is, therefore, to develop a direct and simple method for estimating slant and tilt angles.

The main advantage of the method presented in this paper over those of Super and Bovik [14], Krumm and Shafer [15], [4], [13] and Malik and Rosenholtz [11] is that it delivers slant and tilt angles by computing the eigenvectors of the affine distortion matrix for spectral peaks. These related methods, differ from our proposed method in the way in which the affine distortion of the texture spectrum is used to measure the local surface orientation of curved surfaces. Specifically, previous work in this area concentrates on using numerical optimization or exhaustive search to recover the local slant and tilt angles. By contrast, our method recovers the parameters in closed form. To provide some specific examples, Krumm and Shafer [13] numerically adjust the slant and tilt angles so as to minimize a “frontalization” error between the back-projected texture spectra. Although less direct than our method of orientation estimation, this backprojection method involves a feedback loop. The lack of feedback between the measured texture spectra and the estimated orientation field may be viewed as a weakness of our method. Super and Bovik [14], [5], on the other hand, invoke the homogeneity assumption and recover the surface orientation parameters which minimize the variance of the backprojected frequency vectors of the spectral peaks. Rosenholtz and Malik [10], [11] have a more sophisticated method which involves using a singular value decomposition method to minimize a χ^2 measure of goodness of fit. The recovered parameters are the slant and tilt angles together with local curvature.

2 LITERATURE REVIEW

Before we proceed to detail our new shape-from-texture method, we pause to review the related literature. The topic of shape-from-texture has been studied in the computer vision literature for almost three decades. Early work hinged on the use of texture-gradients [16], [17]. Bajcsy and Lieberman were among the first to demonstrate the use of texture gradient as a depth cue [17]. Drawing on psychophysics, Stevens has provided an analysis of the information content of texture-gradient [18] and has shown how it can be used to recover surface orientation through the estimation of slant and tilt angles [19]. Witkin [20] has developed a statistical method for recovering local orientation and, hence, surface shape from natural two dimensional imagery. The method commences by assuming a uniform distribution of edge orientation, i.e., an isotropic texture,
and models how this distribution transforms under perspective geometry. The shape of the edge orientation distribution can be used to estimate slant and tilt angles. Several authors have developed methods which show that a fronto-parallel view of a planar sample of the surface is available. For instance, Ikeuchi [21] has shown how the process of estimating surface shape from regular texture patterns can be simplified using spherical projection. Aloimonos and Swain [22] have computed a texture analogue of the reflectance map from the area gradient of the fronto-parallel texture elements. The regularized variational method of Ikeuchi and Horn [23] for shape-from-shading is adapted to recover surface orientation. In this way, poor initial surface orientation estimates can be improved using iterative relaxation operations [21], [22]. However, the smoothing of the field of surface normals is based on a simple neighborhood averaging method.

Several authors have attempted to elucidate more general frameworks for shape-from-texture. For instance, Blake and Marinos [3] have critically assessed Witkin’s [20] edge isotropy assumption. They have developed an optimization-based method for recovering surface orientation from second-order texture moments. Kanatani and Chou [24] have further extended Witkin’s [20] work by modeling the statistical transformation of texture density. They consider the effects of perspective geometry when isotropy and homogeneity assumptions apply. Garding [8], [9] has developed an elegant framework based on differential geometry. This simplifies the analysis of perspective geometry and provides a mathematical setting in which curvature can be directly recovered from weakly isotropic textures.

More recently, the use of spectral information has been explored as an alternative to texture-gradient information. The use of frequency domain or spectral measurements represents a way of overcoming some of the restrictive requirements imposed by the need to work with accurately determined texture gradients. Moreover, it increases the range of natural textures that can be accommodated. Frequency properties can be captured using a number of different representations including the Fourier transform, Gabor wavelets, and the Wigner distribution [25], [5], [10], [26], [27]. The frequency domain method has been used extensively in the recovery of the perspective pose of texture planes. In an important series of papers, Krumm and Shafer [15], [4], [13] recover slant and tilt angles for periodic surface textures. They commence by introducing the idea of using measurements of the affine distortion to recover the parameters of perspective projection from spectral peaks [15]. Parameter estimation is based on exhaustive numerical search. The method is later extended to provide a means of segmenting multiple planar patches from textured images [4]. Super and Bovik [5], [14] have an equivalent method which focuses on linearizing the Jacobian of the perspective transformation in the frequency domain. The method shares with that of Krumm and Shafer the feature of using exhaustive numerical search.

Turning our attention to curved surfaces, Krumm and Shafer [13] have shown how to relate the frequency distortion between local planar patches under an affine transform. Malik and Rosenholtz [10], [11] use Garding’s framework [8] to estimate local orientation and curvature. Whereas Garding uses departures from isotropy as the texture measurement, Malik and Rosenholtz use Krumm and Shafer’s ideas to construct affine distortion measures. The texture measurements are based on frequency domain derivatives. The method uses numerical minimization to recover the five parameters needed to estimate orientation and curvature. The method requires a good initial estimate of the magnitude of the curvature. It can be viewed as minimizing a measure of spectral back-projection error.

3 Spectral Distortion

This paper is concerned with recovering a dense map of surface orientations for surfaces which are uniformly painted with periodic textures. Our approach is a spectral one which is couched in the Fourier domain. We make use of an analysis of spectral distortion under perspective geometry extensively developed by Super and Bovik [5], Krumm and Shafer [4], [13], and by Malik and Rosenholtz [10], [11] among others. This analysis simplifies the full perspective geometry of texture planes using a local affine approximation. Suppose that U_i represents the frequency vector associated with a spectral peak detected at the point with position-vector X_i on a texture plane. Further, let U_i and X_i represent the corresponding frequency vector and position vector when this texture plane undergoes perspective projection onto the image plane. If the perspective projection can be locally approximated by an affine distortion $T_i(X_i)$, then the relationship between the texture-plane and image-plane frequency vectors is $U_i = T_i(X_i) \cdot U_i$. The affine distortion matrix is given by

$$T_i(X_i) = \Omega \frac{x_i \sin \sigma + f \cos \tau \cos \sigma - f \sin \tau}{y_i \sin \sigma + f \sin \tau \cos \sigma + f \cos \tau},$$

where f is the focal length of the camera, σ is the slant angle of the texture-plane, τ is the tilt angle of the texture-plane, and

$$\Omega = f \cos \sigma + \sin \sigma(x_i \cos \tau + y_i \sin \tau).$$

We aim to exploit this property to recover shape-from-texture. Provided that the texture distribution painted on a curved surface is homogeneous, observed changes in the image plane texture pattern can be attributed to variations in surface orientation. Our aim is to compute the slant and tilt angles of local tangent planes to a textured surface using the observed distortions of the texture spectrum across the image plane. To do this, we measure affine distortion between corresponding spectral peaks.

Consider the point S on the curved texture surface. Suppose that the neighborhood of this point can be approximated by a local planar patch. This planar patch undergoes perspective projection onto the image plane. Further suppose we sample the texture projection of the local planar patch at two neighboring points A and B lying on the image plane. The coordinate vectors of the two points are, respectively, $X_A = (x, y) \hat{t}$ and $X_B = (x + \Delta x, y + \Delta y) \hat{t}$, where Δx and Δy are the image-plane displacements between the two points.

Suppose that the local planar patch on the texture surface has a spectral peak with frequency vector $U_S = (u_x, v_x) \hat{t}$. On the image plane, the corresponding frequency vectors for the spectral peaks at the points X_A and X_B are respectively $U_A = (u_x, v_A) \hat{t}$ and $U_B = (u_y, v_y) \hat{t}$. Using the Fourier domain affine projection property described above, the texture-surface peak frequencies are related to the image plane peak frequencies via the equations $U_A = (T_i(X_A)^{-1})^{-1} U_S$ and $U_B = (T_i(X_B)^{-1})^{-1} U_S$, where $T_i(X_A)$ is the local affine approximation to the perspective projection of the planar surface patch at the point A and $T_i(X_B)$ is the corresponding affine projection matrix at the point B. The consequence of this property is that the frequency vectors for the two corresponding spectral peaks on the image-plane are related to one another via the local distortion $U_B = (T_i(X_B)T_i(X_A)^{-1})^{-1} U_A$. As a result, the texture-surface spectral distortion matrix $\Phi = (T_i(X_A)T_i(X_B)^{-1})^{-1}$ is a 2x2 matrix. This matrix relates the affine distortion of the image plane frequency vectors to the 3D orientation parameters of the local planar patch on the surface. Moreover, it does not require a sample of the fronto-parallel texture since we have eliminated U_i. Substituting for the affine approximation to the perspective transformation from (1), the required matrix is given in terms of the slant and tilt angles as
\[
\Phi = \begin{bmatrix}
\Omega(A) & \Omega(A) + \Delta y \sin \sigma \cos \tau \\
\Omega^2(B) & \Omega^2(B) + \Delta y \sin \sigma \cos \tau
\end{bmatrix}
\begin{bmatrix}
-\Delta y \sin \sigma \cos \tau \\
\Omega(A) + \Delta x \sin \sigma \cos \tau
\end{bmatrix}
\]

where \(\Omega(A) = f \cos \sigma + \sin \sigma (x \cos \tau + y \sin \tau)\) and \(\Omega(B) = f \cos \sigma + \sin \sigma (x + \Delta x) \cos \tau + (y + \Delta y) \sin \tau\).

The above matrix represents the distortion of the spectrum sampled at the location \(B\) with respect to the sample at the location \(A\). In the next section, we show how to solve directly for the parameters of surface orientation, i.e., the slant and tilt angles, using the eigen-structure of the transformation matrix \(\Phi\).

4 Eigenstructure of the Affine Distortion Matrix

Let us consider the eigenvector equation \(\Phi w_i = \lambda_i w_i\) for the distortion matrix \(\Phi\), where \(\lambda_i, i = 1, 2\) are the eigenvalues of the distortion matrix \(\Phi\) and \(w_i\) are the corresponding eigenvectors. Since \(\Phi\) is a 2x2 matrix the two eigenvalues are found by solving the quadratic eigenvalue equation \(det[\Phi - \lambda I] = 0\) where \(I\) is the 2x2 identity matrix. The explicit eigenvalue equation is

\[
\lambda^2 - \text{Trace}(\Phi)\lambda + \text{det}(\Phi) = 0,
\]

where \(\text{Trace}(\Phi)\) and \(\text{det}(\Phi)\) are the trace and determinant of \(\Phi\). Substituting for the elements of the transformation matrix \(\Phi\), we have

\[
\lambda^2 - \left(\frac{\Omega(A) \Omega^2(B) + \Omega^2(A) \Omega^2(B)}{\Omega^2(B)}\right)\lambda + \left(\frac{\Omega(A) \Omega^2(A)}{\Omega^2(B)}\right) = 0.
\]

The two eigenvalue solutions of the above quadratic equation are \(\lambda_1 = \frac{\Omega(A)}{\Omega^2(B)}\) and \(\lambda_2 = \frac{\Omega^2(A)}{\Omega^2(B)}\). The corresponding eigenvectors are

\[
w(\lambda_1) = [1, \tan \tau]^T
\]

and

\[
w(\lambda_2) = \left[1, \frac{\Delta x}{\Delta y}\right]^T.
\]

As a result, we can directly determine the tilt angle from the vector components of the eigenvector associated with the eigenvalue \(\lambda_1\). The intuitive justification for this result is that under perspective projection the only direction which remains invariant at all locations on the image plane is the tilt direction. As a result, a frequency vector which is aligned in the tilt direction will maintain a constant angle, but it will change in magnitude according to the position on the image plane. In other words, the tilt direction is an eigenvector of the local affine transformation.

\[
\tau = \arctan\left(\frac{w_{f}(\lambda_1)}{w_{t}(\lambda_1)}\right).
\]

Once the tilt angle has been obtained, the slant angle can be recovered using the second eigenvalue via the relationship

\[
\sigma = \arctan\left(\frac{f(\lambda_2 - 1)}{\zeta_1 + \zeta_2}\right),
\]

where \(\zeta_1 = (y(1 - \lambda_2) - \lambda_2 \Delta y) \sin \tau\) and \(\zeta_2 = (x(1 - \lambda_2) - \lambda_2 \Delta x) \cos \tau\).

With the slant and tilt angles to hand the surface normal \(n\) may be computed.

5 Computing Local Planar Orientation

In this section, we explain how to recover local planar surface orientation using our local affine distortion method. Our method shares with Krumm and Shafer [4] and Super and Bovik [5] the feature of using the affine distortion of spectra to estimate surface orientation. However, these two methods recover surface orientation by exhaustive spectral back-projection and error enumeration for all slant and tilt angles. The orientation is selected so as to numerically minimize a back-projection error. This is clearly a highly time consuming process due to the amount of search and numerical minimization required. Moreover, unless good initialization values are to hand, the method is prone to convergence to local optima.

Instead, our method solves for the local surface orientation parameters in closed-form. To directly recover the planar orientation angles, we use the eigenvectors of the spectral distortion matrix. We assume that the texture is homogeneous over the entire surface. The consequence of this assumption is that the spectral content of the texture does not change systematically over the curved texture surface. As a result of this assumption, the local spectral distortions measured on the image plane are attributable solely to changes in perspectivity. Shape effects such as changes in local surface orientation, which are attributable to surface curvature, must be assessed at a more global level.

In order to obtain a smooth spectral response, we use the Blackman-Tukey power spectrum estimator. This is defined to be the frequency response of the windowed autocorrelation function. We employ a triangular smoothing window \(w(x)\) due to its well-documented spectral stability [28]. The spectral estimator is then

\[
P(U_{ij}) = \mathcal{F}(r_{ij}(X_i) \times w(X_i)),
\]

where \(r_{ij}\) is the estimated autocorrelation function of the image patch. We locate peaks in the output of the spectral estimator using a simple mode finding algorithm. This involves thresholding the spectral energy and locating the centroids of the regions of suprathreshold response. We use a spectral window of 32x32 pixels.

The first step in orientation recovery is to estimate the affine distortion matrix which represents the transformation between different local texture regions on the image plane. These image texture regions are assumed to belong to a single local planar patch on the curved texture surface. We do this by selecting pairs of neighboring points on the image plane. At each point, there may be several clear spectral peaks. Since the affine distortion matrix \(\Phi\) has four elements that need to be estimated, we need to know the correspondences between at least two different spectral peaks at the different locations. Suppose that \(U_{ij}^p = (u_{ij}^p, v_{ij}^p)^T\) and \(U_{ij}^q = (u_{ij}^q, v_{ij}^q)^T\) represent the frequency vectors for two distinct spectral peaks located at the point with coordinates \(X_i = (x_i, y_i)^T\) on the image plane. The frequency vectors are used to construct the columns of a 2x2 spectral measurement matrix \(V_i = [U_i^p | U_i^q]\). Further, suppose that \(U_{ij}^{p*} = (u_{ij}^{p*}, v_{ij}^{p*})^T\) and \(U_{ij}^{q*} = (u_{ij}^{q*}, v_{ij}^{q*})^T\) represent the frequency vectors for the corresponding spectral peaks at the point \(X_i = (x_i, y_i)^T\). The corresponding spectral measurement matrix is \(V_i = [U_i^{p*} | U_i^{q*}]\). Under the affine model presented in Section 3, the spectral measurement matrices are related via the equation \(V_i = \Phi V_i\). As a result the local estimate of the spectral distortion matrix is \(\hat{\Phi} = V_i V_i^{-1}\).

In practice, we only make use of the most energetic peaks appearing in the power spectrum. That is to say, we do not consider the detailed distribution of frequencies. Our method requires that we supply correspondences between spectral peaks so that the distortion matrices can be estimated. There are a number of ways in which this can be effected. Here, we are primarily interested in demonstrating our new property of the affine distortion matrix to...
recover local surface orientation. For this reason, we draw on a
heuristic which uses the energy amplitude of the peaks to establish
the required correspondences. This is done by ordering the peaks
according to their energy amplitude. The ordering of the amplitudes
of peaks at different image locations establishes the required
spectral correspondences. A more satisfactory method would be
to use a large number of spectral peaks and to use a maximum-
likelihood method to align the pattern of peaks and recover the
associated affine distortion matrix. In fact, we have recently
reported an expectation-maximization algorithm which can be used
for aligning point-sets under an affine transformation when the
correspondence information is not available and when there is point
drop-out or contamination [29]. There is clearly scope for using this
method in the spectral domain.

After estimating the affine transformation between two local
spectral peaks, we can directly apply the eigenvector analysis
described in Section 5 to estimate the tilt and the slant angles by
using (5) and (6). However, there are some obstacles to the direct
estimation of the local spectral distortion. The first of these is
related to the choice of spectral scale. If the window size used in
the spectral estimator is mismatched to the frequency bandwidth
of the texture, then the power spectrum becomes defocused and
poor peak localization results. The second problem arises if there
is no significant affine distortion between the corresponding
spectral peaks used in the analysis. In other words, in choosing
the locations of the spectral samples we must strike a compromise.
If the locations are too close to one-another then we risk poor
orientation estimation since the local affine distortions due to
global perspectivity are too small to detect. If, on the other hand,
the points are too far apart or span a high curvature feature, then
the local distortions in the power spectrum are likely to be due to
significant changes in local surface orientation. We can overcome
this latter effect through smoothing the field of local orientation
estimates.

There are several artifacts of the texture images which may
further limit the method described in this paper. The first of these
is the effect of perspectivity on image brightness. To reduce this
problem, we perform image equalization prior to spectral analysis.
However, it is important to stress that the Fourier power spectrum
is invariant to contrast reversal. As a result, our method is not
sensitive to the perceived brightness or darkness dominance of the
textures used in our experiments. Finally, certain textures may
exhibit aliasing effects such as Moire fringes. These are particularly
common in images of buildings or other objects which contain
glass surfaces. For the data studied here, there are no such artifacts.

However, the presence of such effects may confound our shape-
form-texture method.

In Fig. 1, we provide an illustration of the affine distortion of
the local spectra across a plane viewed under perspective
geometry and across a curved surface. At each location, we show
the computed spectra. The brightness of the peaks is proportional
to their energy. Notice that the energy ordering is preserved from
location to location. It is also important to note that the distortions
due to curvature are greater than those due to perspectivity.

The orientation estimates returned by the new shape-from-
texture method are likely to be noisy and inconsistent when viewed
from the perspective of local smoothness. In order to improve the
consistency of our needle map and, hence, the surface shape
description, we employ an iterative smoothing process to update
the estimated normal vectors. Aloimonos and Swain [22] have used
Horn’s [30] local averaging method for this purpose. However, in
order to avoid the oversmoothing of local surface detail associated
with high curvature features, we use the robust vector field
smoothing method of Worthington and Hancock [31]. Rather than
using a quadratic penalty of the sort which underpins the method of
Aloimonos and Swain [22], this method uses robust error kernels, to
gauge the effect of the smoothness error. The reason for this is that
the quadratic penalty grows indefinitely with increasing smooth-
ness error. This can have the undesirable effect of oversmoothing
genuine surface detail. Examples of such surface structures include
ridges and ravines. By using robust error kernels, the Worthington
and Hancock method moderates the effects of smoothing over
regions of genuine surface detail and allow a more faithful
topographic representation to be recovered [31].

6 EXPERIMENTS

We have experimented with both synthetic surfaces with known
ground-truth and real-world images. The former are used to assess
the accuracy of the method, while we use the latter to demonstrate
the practical utility of the method.

6.1 Real World Textures

In this section, we experiment with real world textured surfaces.
We have generated the images used in this study by moulding
regularly textured sheets into curved surfaces. The images used in
this study are shown in the first row of Fig. 2. There are two sets of
images. The first two have been created by placing a tablecloth
with a rectangular texture pattern on top of the corner of a box and
a balloon. The second group of images have been created by
bending a regularly textured sheet of wrapping paper into various tubular shapes. The first of these is a cylinder, the second is a “wave,” while the final example is an irregular set of folds. The textures in all five images show strong perspective effects.

The remaining two rows of Fig. 2 show the initial needle-map and the final smoothed needle-map. There are clear regions of needle-map consistency. When robust smoothing is applied to the initial needle maps, then there is a significant improvement in the directional consistency of the needle directions. In the case of the ridge in the first image, the defining planes are uniform and the ridge-line is cleanly segmented. The radial needle-map pattern emerges clearly in the case of the sphere. This radial pattern is also clear for the three “tubular” objects.

The main computational bottleneck in our reported algorithm is the estimation of the local power spectra. The computation of the initial surface orientation angles is fast, since it just involves calculating the eigen-values and eigen-vectors of a 2x2 matrix. The robust smoothing typically takes 10 iterations. Although our research code is not optimized for rapid execution, we provide some timing data for the processing of a 256x256 image on a Pentium III 900MHz processor. Here, the initial surface orientation estimation takes only 0.98 seconds, and the smoothing step takes five seconds. Leaving the power spectrum computation aside, the initial orientation estimation and robust smoothing steps involved in our method is faster than that reported by Krumm and Shafer in [15], [4], [13] since we do not need to perform iterative back-projection.

6.2 Sensitivity Study

In this section, we assess the ability of our shape-from-texture method to recover reliable slant and tilt information under increasing degradation of the texture regularity. Here, we have generated synthetic textured surfaces and have disturbed the texture regularity in a controlled manner.

We have investigated the effect of spatial domain texture irregularity by randomizing the positions of the texture primitives.

We do this by adding a random displacement sampled from a two-dimensional circularly symmetric Gaussian distribution of zero mean and known variance. We have projected these randomized textures onto a plane whose slant and tilt angles are both equal to 45 degrees. In Fig. 3, we visualize the estimated perspective pose of the plane by projecting a pattern of straight lines onto the image plane using the estimated slant and tilt angles. This pattern is composed of two families of parallel straight lines which are

Fig. 2. Real curved surfaces. Top-row: original image; second-row: recovered needle map; third-row: smoothed needle map.

Fig. 3. Estimated perspective pose.
perpendicular to one-another. One set of straight lines is parallel to
the estimated vanishing line of the plane. From these projections, it
is clear that the breaking point of the algorithm occurs once the
ratio of the standard deviation of the displacement error to the
interpoint distance becomes larger than 10 percent. In this
example, it is interesting to notice that we still perceive the
sensation of perspectivity from the images in the sequence. This
may be attributable to the fact that the area gradient is invariant to
the positional irregularity of the texture primitives [1], [18]. The
random Gaussian noise in the locations of the texture primitives
does not mimic perspective distortion. As a result, the density
gradient of the primitives is not affected. However, our method is
based on measurements that reflect the dominant directions of the
texture. These dominant directions are severely affected by the
positional noise.

The corresponding power spectra for each texture in the figure
are shown in Fig. 4. The main effects to observe are that the
individual peaks merge together, creating clouds of peaks and,
that, the overall frequency structure of the texture spectra
degraded. This collapse of the frequency content is a result of
increasing the gap spacing between the texture primitives. The
overlap of the texture primitives also contributes to the decrease of
the total frequency energy.

perpendicular to one-another. One set of straight lines is parallel to
the estimated vanishing line of the plane. From these projections, it
is clear that the breaking point of the algorithm occurs once the
ratio of the standard deviation of the displacement error to the
interpoint distance becomes larger than 10 percent. In this
example, it is interesting to notice that we still perceive the
sensation of perspectivity from the images in the sequence. This
may be attributable to the fact that the area gradient is invariant to
the positional irregularity of the texture primitives [1], [18]. The
random Gaussian noise in the locations of the texture primitives
does not mimic perspective distortion. As a result, the density
gradient of the primitives is not affected. However, our method is
based on measurements that reflect the dominant directions of the
texture. These dominant directions are severely affected by the
positional noise.

The corresponding power spectra for each texture in the figure
are shown in Fig. 4. The main effects to observe are that the
individual peaks merge together, creating clouds of peaks and,
that, the overall frequency structure of the texture spectra
degraded. This collapse of the frequency content is a result of
increasing the gap spacing between the texture primitives. The
overlap of the texture primitives also contributes to the decrease of
the total frequency energy.

perpendicular to one-another. One set of straight lines is parallel to
the estimated vanishing line of the plane. From these projections, it
is clear that the breaking point of the algorithm occurs once the
ratio of the standard deviation of the displacement error to the
interpoint distance becomes larger than 10 percent. In this
example, it is interesting to notice that we still perceive the
sensation of perspectivity from the images in the sequence. This
may be attributable to the fact that the area gradient is invariant to
the positional irregularity of the texture primitives [1], [18]. The
random Gaussian noise in the locations of the texture primitives
does not mimic perspective distortion. As a result, the density
gradient of the primitives is not affected. However, our method is
based on measurements that reflect the dominant directions of the
texture. These dominant directions are severely affected by the
positional noise.

The corresponding power spectra for each texture in the figure
are shown in Fig. 4. The main effects to observe are that the
individual peaks merge together, creating clouds of peaks and,
that, the overall frequency structure of the texture spectra
degraded. This collapse of the frequency content is a result of
increasing the gap spacing between the texture primitives. The
overlap of the texture primitives also contributes to the decrease of
the total frequency energy.

perpendicular to one-another. One set of straight lines is parallel to
the estimated vanishing line of the plane. From these projections, it
is clear that the breaking point of the algorithm occurs once the
ratio of the standard deviation of the displacement error to the
interpoint distance becomes larger than 10 percent. In this
example, it is interesting to notice that we still perceive the
sensation of perspectivity from the images in the sequence. This
may be attributable to the fact that the area gradient is invariant to
the positional irregularity of the texture primitives [1], [18]. The
random Gaussian noise in the locations of the texture primitives
does not mimic perspective distortion. As a result, the density
gradient of the primitives is not affected. However, our method is
based on measurements that reflect the dominant directions of the
texture. These dominant directions are severely affected by the
positional noise.

The corresponding power spectra for each texture in the figure
are shown in Fig. 4. The main effects to observe are that the
individual peaks merge together, creating clouds of peaks and,
that, the overall frequency structure of the texture spectra
degraded. This collapse of the frequency content is a result of
increasing the gap spacing between the texture primitives. The
overlap of the texture primitives also contributes to the decrease of
the total frequency energy.

In Fig. 5, we show the effect of the spatial domain irregularity in
the positions of the texture primitives on the estimated slant and tilt
angles. The plot shows the slant and tilt error as a function of the
standard deviation of the random spatial displacement error. Here,
the method recovers good estimates of the slant and tilt parameters
provided that the ratio of the standard deviation of the displacement
error to the interpoint distance does not exceed 10 percent.

The parameter of our spectral distortion method is the distance
between the points used to estimate the affine distortion matrix on
the image plane. As pointed out earlier, if this distance is too small
then the affine distortion becomes undetectable. If, on the other
hand, the distance is too large then we sample changes in surface
orientation rather than perspective foreshortening. To investigate
this effect in more detail, we have generated synthetic curved
surfaces with known ground-truth slant and tilt angles. We have
computed the regression line between the ground-truth and
estimated orientation angles as the interpoint distance is increased.

In Fig. 6 for the smoothed and unsmoothed needle-maps, we
plot the linear regression coefficients extracted from the scatter
plots as a function of the interpoint distances. If the measurements
are unbiased, then the linear regression coefficient should be unity.
The main feature to note is that there is a critical value of the
distance which results in a maximum value of the regression
coefficient. For the smoothed needle-maps, the linear regression
coefficient is closest to unity (0.97) when the interpoint distance is
r = 16 pixels; this represents an improvement over the initial
unsmoothed value of $\mu = 0.51$. For the unsmoothed needle-maps,
the best regression coefficient (0.84) is obtained when $r = 48$ pixels;
here the corresponding smoothed value is $\mu = 0.93$.

7 CONCLUSIONS

We have presented a new method for estimating the local
orientation of tangent planes to curved textured surfaces. The
method commences by finding affine spectral distortions between neighboring points on the image plane. The directions of the eigenvalues of the local distortion matrices can be used to make closed form estimates of the slant and tilt directions. The initial orientation estimates returned by the new method are iteratively refined using a robust smoothing technique to produce a needle map of improved consistency.

The method is demonstrated on both synthetic imagery with known ground-truth and on real-world images of man-made textured surfaces. The method proves useful in the analysis of both planar and curved surfaces. Moreover, the extracted needle maps can be used to make reliable estimates of surface curvature information.

There are a number of ways in which the ideas presented in this paper could be extended and improved. First, our texture measures are relatively crude and could be refined to allow us to analyze textures that are regular but not necessarily periodic. Second, there is scope for improving the quality of the needle map through measuring the back-projection error associated with the smoothed surface normal directions. One possible approach to this problem would be to use a variant of the expectation-maximization algorithm to develop a statistical framework for local orientation estimation and backprojection error assessment. Finally, our current method makes use of a potentially fragile energy ordering heuristic to locate spectral correspondences. A more satisfactory solution to this problem would be to use more than two peaks and to find the set of correspondences which best align the pattern of peaks. We have recently developed a dual-step EM algorithm which can solve this correspondence problem for cluttered point-sets [29]. Our future plans involve using this algorithm for spectral correspondence.

REFERENCES

> For more information on this or any other computing topic, please visit our Digital Library at http://computer.org/publications/dlib.