
This is a repository copy of Structural graph matching using the EM algorithm and singular
value decomposition.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/1990/

Article:

Hancock, E.R. orcid.org/0000-0003-4496-2028 and Luo, B. (2001) Structural graph 
matching using the EM algorithm and singular value decomposition. IEEE Transactions on 
Pattern Analysis and Machine Intelligence. pp. 1120-1136. ISSN 0162-8828 

https://doi.org/10.1109/34.954602

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Structural Graph Matching
Using the EM Algorithm and
Singular Value Decomposition

Bin Luo and Edwin R. Hancock

AbstractÐThis paper describes an efficient algorithm for inexact graph matching. The method is purely structural, that is to say, it

uses only the edge or connectivity structure of the graph and does not draw on node or edge attributes. We make two contributions.

Commencing from a probability distribution for matching errors, we show how the problem of graph matching can be posed as

maximum-likelihood estimation using the apparatus of the EM algorithm. Our second contribution is to cast the recovery of

correspondence matches between the graph nodes in a matrix framework. This allows us to efficiently recover correspondence

matches using singular value decomposition. We experiment with the method on both real-world and synthetic data. Here, we

demonstrate that the method offers comparable performance to more computationally demanding methods.

Index TermsÐInexact graph matching, EM algorithm, matrix factorization, mixture models, Delaunay triangulations.

æ

1 INTRODUCTION

GRAPH matching is a task of pivotal importance in high-

level vision since it provides a means by which abstract

pictorial descriptions can be matched to one another.

Unfortunately, since the process of eliciting graph struc-

tures from raw image data is a task of some fragility due to

noise and the limited effectiveness of the available

segmentation algorithms, graph matching is invariably

approached by inexact means [38], [35]. Because of this,

many high-level matching techniques have weakened the

role of structural information and have relied more heavily

on the use of attribute relations. This is disappointing since

structural graph representations provide abstractions that

convey important visual invariances. It is for this reason

that we return to the problem of structural graph matching

in this paper. We make two contributions: First, we aim to

render the process robust to structural error using the

apparatus of the EM algorithm. Second, we cast the

resulting statistical utility measure into a matrix setting

and show how matching can be realized using singular

value decomposition.

1.1 Literature Review

We set our work in context with a brief review of the related

literature. Some of the pioneering work on graph matching

was undertaken in the early 1970's by Barrow and

Popplestone [2] and by Fischler and Enschlager [21]. These

two studies provided proof of concept for the use of

relational structures in high-level pictorial object recogni-

tion. Over the intervening three decades, there has been a

sustained research activity. Broadly speaking, the work

reported in the literature can be divided into three areas.

The first of these is concerned with defining a measure of

relational similarity. Much of the early work here was

undertaken in the structural pattern recognition literature.

For instance, Shapiro and Haralick [38] showed how inexact

structural representations could be compared by counting

consistent subgraphs. This similarity measure was refined

by Eshera and Fu [17] and by Sanfeliu and Fu [35] who

showed how the concept of string edit distance could be

extended to graphical structures. The formal basis of graph

edit distance has recently been extended by Bunke and his

coworkers [9], [6] who have shown, among other things,

that the edit distance is related to the size of the maximum

common subgraph. More recently, Tirthapura et al. have

shown how the classical Levenshtein distance can be used

to match shock graphs representing 2D skeletal shapes [43].

Much of the work described above adopts a heuristic- or

goal-directed approach to measuring graph similarity. The

second issue addressed in our literature survey is that of

how to develop more principled statistical measures of

similarity. This endeavor involves the modeling of the

processes of structural error present in the graph-matching

problem. Wong and You [50] made one of the first

contributions here by defining an entropy measure for

structural graph matching. Boyer and Kak [4] also adopted

an information theoretic approach, but worked instead with

attribute relations. Using a probabilistic relaxation frame-

work Christmas et al. [11] have developed a statistical

model for pairwise attribute relations. Working in the

purely structural domain, Wilson and Hancock [49] have
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derived probability distributions for the relational errors

that occur when there is significant graph corruption. More

recently, Cross and Hancock [13] have developed a variant

of the EM algorithm in which the structural error model of

Wilson and Hancock [49] is used to improve the alignment

of triangulated point-sets under perspective geometry.

The third issue is that of optimization. Here, there have

been several attempts to use both continuous and discrete

optimization methods to locate optimal graph matches.

Turning our attention first to discrete optimization meth-

ods, there have been several attempts to apply techniques

such as simulated annealing [24], genetic search [14], and

tabu search [48] to the graph matching problem. However,

continuous optimization methods provide attractive alter-

natives since their fixed points and convergence properties

are usually better understood than their discrete counter-

parts. However, the main difficulty associated with map-

ping a discretely defined search problem onto a continuous

optimization method is that of embedding. There are

several ways in which this embedding can be effected for

the problem of graph matching. The most straightforward

of these is to pose the graph-matching problem as that of

recovering a permutation matrix which preserves edge or

adjacency structure. For instance, Kosowsky and Yuille

have cast the problem into a statistical physics setting and

have recovered a continuous representation of the permuta-

tion matrix using mean-field update equations [52]. Gold

and Rangarajan [23] have exploited the stochastic properties

of Sinkhorn matrices to recover the matches using a soft-

assign update algorithm. Umeyama [45] takes a more

conventional least-squares approach and shows how an

eigendecomposition method can be used to recover the

permutation matrix. An alternative representation has

recently been developed by Pelillo [32] which involves an

embedding based on the association graph. Matches are

located by using the replicator equations of evolutionary

game-theory to locate the maximal clique of the association

graph, i.e., the maximum common subgraph, of the two

graphs being matched. Subsequently, this method has also

been applied to shock-graph matching [31].

Closely related to this work on recovering permutation

structure by continuous embedding is the literature on

spectral graph theory. This is a term applied to a family of

techniques that aim to characterize the global structural

properties of graphs using the eigenvalues and eigenvectors

of the adjacency matrix [12]. In the computer vision

literature, there have been a number of attempts to use

spectral properties for graph matching, object recognition,

and image segmentation. Umeyama has an eigendecompo-

sition method that matches graphs of the same size [45].

Borrowing ideas from structural chemistry, Scott and

Longuet-Higgins were among the first to use spectral

methods for correspondence analysis [36]. They showed

how to recover correspondences via singular value decom-

position on the point association matrix between different

images. In keeping more closely with the spirit of spectral

graph theory, yet seemingly unaware of the related

literature, Shapiro and Brady [39] developed an extension

of the Scott and Longuet-Higgins method, in which point

sets are matched by comparing the eigenvectors of the point

proximity matrix. Here, the proximity matrix is constructed

by computing the Gaussian weighted distance between

points. The eigenvectors of the proximity matrices can be

viewed as the basis vectors of an orthogonal transformation

on the original point identities. In other words, the

components of the eigenvectors represent mixing angles

for the transformed points. Matching between different

point-sets is effected by comparing the pattern of eigenvec-

tors in different images. Shapiro and Brady's method can be

viewed as operating in the attribute domain rather than the

structural domain. Horaud and Sossa [27] have adopted a

purely structural approach to the recognition of line-

drawings. Their representation is based on the immanental

polynomials for the Laplacian matrix of the line-connectiv-

ity graph. By comparing the coefficients of the polynomials,

they are able to index into a large database of line-drawings.

In another application involving indexing into large

databases, Sengupta and Boyer [37] have used property

matrix spectra to characterize line-patterns. Various attri-

bute representations are suggested and compared. Shokou-

fandeh et al. [40] have shown how graphs can be encoded

using local topological spectra for shape recognition from

large databases.

Although formally elegant, the main limitation of these

matrix methods is their inability to cope with graphs of

different sizes. This means that they cannot be used when

significant levels of structural corruption are present.

1.2 Motivation

From this review of the literature, we draw the following

observation: First, the use of principled probabilistic

methods for gauging similarity has met with considerable

success for inexact graph matching. Second, although more

computationally elegant, matrix methods for graph match-

ing have failed to cope with the realistic cases of inexact

graph matching or matching graphs of different size.

Moreover, there has been little attempt to combine these

two pieces of work.

Based on these observations, our aim in this paper is to

cast the statistical matching of graphs into a matrix

representation and to exploit singular value methods to

efficiently recover correspondences. We commence by

developing a likelihood function for the graph-matching

problem. This treats the graph to be matched (the data

graph) as observed data and the set of correspondences

with the available model (the model graph) as hidden

variables. Accordingly, we construct a mixture model over

the set of correspondences between the nodes of the data

graph and those of the model graph. We adopt a

Bernoulli model for the probability distribution of the

correspondence errors encountered in matching the data

graph to the model graph. The existence, or otherwise, of
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correspondence errors is gauged using the edge-consistency

of the pattern of matches.

Using the likelihood function for the graph-matching

problem, we develop an algorithm for recovering the pattern

of correspondence matches. Since the likelihood function

has a mixture-structure, we use the expectation-maximiza-

tion (EM) algorithm of Dempster et al. [16] to iteratively

estimate a set of assignment variables which indicate the

state of match between the two graphs. The EM algorithm

provides a principled way for recovering maximum-like-

lihood solutions to problems posed in terms of missing or

hidden data. From a computational standpoint, the

EM algorithm relies on interleaved iterative steps. In the

maximization step, a parameter is estimated so as to max-

imize the value of the expected log-likelihood function. The

expectation step updates the a posteriori probabilities of the

hidden variables, which in their turn are needed to weight

contributions to the expected log-likelihood function.
By adopting a matrix representation, we show that when

the distribution of correspondence errors is modeled using
a Bernoulli distribution, then the expected log-likelihood
function of the EM algorithm is related to the weighted
product of the adjacency matrices. The weighting facilitated
by the EM algorithm provides a means of excluding
structural errors. Using this principled similarity measure,
the maximization step of the EM algorithm can be realized
via singular value decomposition. Specifically, the diag-
onalization of the weighted adjacency measure delivers
correspondence matches. The resulting matching method
can be applied to graphs of different size. Moreover, as we
will demonstrate in our experiments, it can accommodate
severe levels of structural corruption.

Finally, it is worth comparing our iterative matrix-based

graph-matchingmethodwith the use of subgraph isomorph-

isms for matching. This is a classical approach. One of the

best-known algorithms for locating exact subgraph iso-

morphisms is that of Ullman [44], which uses tree search

with backtracking. For inexact graph matching there are

several extensions of the ideawhich include the edit-distance

methods of Eshera and Fu [17] and Sanfeliu and Fu [35] and

the method developed by Bunke and Allerman [7]. An

important development is the association-graph method of

Ambler et al. [1]. Here, subgraph isomorphisms which

correspond to the maximum common subgraph are found

by searching for the maximum clique of the association

graph. The method has been used successfully for stereo

correspondence by Horaud and Skordas [26]. Moreover,

Wilson and Hancock [49] have shown how the association

graph can be combined with a Bayesian discrete relaxation

process to match graphs which are subject to considerable

structural corruption. Pelillo et al. [31] have developed a

probabilistic relaxation scheme for efficiently computing the

size of the maximum common subgraph. Bunke has shown

the relationship between the size of the maximum common

subgraph and the graph edit distance [6]. Further work by

Bunke andMessmer [8], has developed a technique in which

the search for amaximumcommonsubgraphcanbe rendered

efficient using a subgraph decomposition and by tabulating

the associated isomorphisms. The main similarities and

difference between our EM algorithm and these subgraph

isomorphism methods are as follows: The main difference is

that we adopt a probabilistic framework and use optimiza-

tion rather than search. Hence, while our method facilitates

evidence combination, it is prone to convergence to local

optima. The similarity of the method resides in the fact that

the matrix product of the correspondence probabilities with

the adjacency matrix of the two graphs plays a role which is

reminiscent of an association structure.

2 A LIKELIHOOD FUNCTION FOR GRAPH MATCHING

Our overall goal in this paper is to develop a maximum-

likelihood framework for structural graph matching. In this

section, we develop the likelihood function underpinning

our study. To commence, we must define some notation.

We use the notation G � �V ;E� to denote the graphs under

match, where V is the set of nodes and E is the set of edges.

Our aim in matching is to associate nodes VD �

fx1; x2; . . . . . . xjVDjg in a graph GD � �VD; ED� representing

data to be matched against those from the set VM �

fy1; y2; . . . . . . ; yjVM jg in a graph GM � �VM ; EM� representing

an available model. Formally, the matching is represented

by a function from the nodes in the data graph GD to those

in the model graph GM . Suppose that the state of match

between the two graphs is represented by the function f :

VD ! VM from the nodes of the data graph to those of the

model graph. We will use Latin letters to denote nodes from

the data graph and Greek letters to denote nodes from the

model graph. Hence, the statement f �n��a� � � means that

the node a 2 VD is assigned the label or symbol � 2 VM .

One of the goals in this paper is to show how the two

graphs can be matched using matrix factorization methods.

Therefore, we introduce some matrix notation to represent

the graphs. To this end, we define a jVDj � jVM j matching

matrix S�n� whose elements are assignment variables which

convey the following meaning

sa� �
1 if f�a� � �

0 otherwise:

�

�1�

We represent the structure of the two graphs using a

jVDj � jVDj adjacency matrix D for the data graph and a

jVM j � jVM j adjacency matrix M for the model graph. The

elements of the adjacency matrix for the data graph are

defined as follows:

Dab �
1 if�a; b� 2 ED

0 otherwise;

�

�2�

while those for the model graph are defined to be

M�� �
1 if��; �� 2 EM

0 otherwise:

�

�3�

Since we are working with undirected graphs, the two

adjacencymatrices are symmetric, i.e.,D � DT andM �MT .
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Having introduced the necessary formalism, we now

proceed to develop our maximum-likelihood framework for

graph matching. We seek the matrix of assignment

variables that maximizes the conditional likelihood of the

observed data graph given the available model graph.

Hence, we seek the matrix of assignment variables which

satisfies the condition

S � argmax
Ŝ

P �GDjGM ; Ŝ�: �4�

Underpinning our model of the conditional-likelihood

function is the idea that the correspondence matches

assigned to the nodes of the data graph are hidden variables

which have arisen through a noisy observation process. In

otherwords, wemust entertain the possibility that any single

node of the data graphmay be in correspondencewith any of

the nodes in the model graph. To capture this feature of the

graph-matching problem,we construct amixturemodel over

the set of possible correspondences. We follow the standard

approach to constructing the likelihood function for a

mixture distribution. This involves factorizing the likelihood

function over the observed data (i.e., the nodes of the data

graph) and summing over the hidden or unobserved

variables (i.e., the corresponding nodes in the model graph).

As a result, we write

P �GDjGM ; S� �
Y

a2VD

X

�2VM

p�xajy�; S�; �5�

where p�xajy�; S� is the probability that data-graph node a

is in correspondence with the model-graph node � under

the matrix of assignment variables S. This formula assumes

that the nodes of the graph GD are conditionally indepen-

dent given the nodes of the graph GM .

In order to proceed, we require a model for the

observation density p�xajy�; S�. We commence from the

definition of conditional probability and write,

P �xajy�; S� �
P �xa; y�; S�

P �y�; S�
: �6�

Under the assumption that the observation density is

factorial over the parameters of the mixture model, i.e.,

the set of assignment variables, then we can write

P �xajy�; S� �

�

Q

b2VD

Q

�2VM
P �sb�jxa; y��

�

P �xa; y��

�

Q

b2VD

Q

�2VM
P �sb�jy��

�

P �y��

: �7�

After some rearrangement using the definitions of condi-

tional probability, we find that

P �xajy�; S� �
�

Q

b2VD

Q

�2VM

P �xajy�;sb��P �y�jsb��P �sb��
P �xa;y��

�

P �xa; y��

�

Q

b2VD

Q

�2VM

P �y�jsb��P �sb��
P �y��

�

P �y��

:
�8�

Canceling the terms P �y�jsb�� and P �sb�� which appear

under the products in the numerator and denominator and

collecting together terms, the above expression simplifies to

P �xajy�; S� �

�

1

P �xajy��

�jVDj�jVM jÿ1
Y

b2VD

Y

�2VM

P �xajy�; sb��:

�9�

If we further assume that the data-graph node xa is

conditionally dependant on the model-graph node y� only

in the presence of the correspondence matches S, then

P �xajy�� � P �xa�. Hence, we can write

P �xajy�; S� � Ba

Y

b2VD

Y

�2VM

P �xajy�; sb��; �10�

where the constant

Ba �

�

1

P �xa�

�jVDj�jVM jÿ1

depends only on the identity of the data-graph node xa.

Next, we develop a model for the probability distribution

for the observed set of correspondences between the nodes

of the data and the model graphs given the current set of

assignment parameters, i.e., P �xajy�; sb��. Our model draws

on the recent work of Wilson and Hancock [49] and

assumes that the observed data-graph nodes are derived

from the model-graph nodes through a Bernoulli distribu-

tion. The parameter of this distribution is the probability of

correspondence error Pe. The idea behind this model is that

the data-graph node xa can emit a symbol y� drawn from

the set of model-graph nodes. The probability that this

symbol is the correct correspondence is 1ÿ Pe, while the

probability that it is in error is Pe. To gauge the correctness

of the emitted symbol, we check whether the nodes a and b

of the data graph are matched to a valid edge ��; �� 2 Em of

the model graph. To test for edge-consistency, we make use

of the quantity Da;bM��sb�. This is unity if the label-

assignment f�b� � � can be made to node xb, in such a

way that the data-graph edge �a; b� 2 ED is matched to an

edge ��; �� 2 Em of the model graph. When this condition is

not met, then the quantity is zero. In other words,

Da;bM��sb� �

1 if �a; b� 2 ED and ��; �� 2 EM and f�b� � �

0 otherwise:

�

�11�

Using this switching property, the Bernoulli distribution

becomes

P �xajy�; sb�� � �1ÿ Pe�
DabM��sb�P 1ÿDabM��sb�

e : �12�

Using the factorial assumption and the distribution rule, the

observation density becomes

P �xajy�; S� � Ba

Y

b2VD

Y

�2VM

�1ÿ Pe�
DabM��sb�P 1ÿDabM��sb�

e : �13�
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This expression is exponential in character. It can be
rewritten as a natural exponential function

P �xajy�; S� � Ka exp

�

�
X

b2VD

X

�2VM

DabM��sb�

�

; �14�

where

� � ln
1ÿ Pe

Pe

�15�

and

Ka � P jVDj�jVM j
e Ba: �16�

Finally, the likelihood function becomes

P �GDjGM ; S� �
Y

a2VD

X

�2VM

Ka exp

�

�
X

b2VD

X

�2VM

DabM��sb�

�

�17�

and the corresponding log-likelihood function for the
assignment matrix is

L�S� �
X

a2VD

log

�

X

�2VM

Ka exp

�

�
X

b2VD

X

�2VM

DabM��sb�

��

: �18�

Unfortunately, because of themixture structure, the direct

estimation of the matrix of assignment variables S from the

log-likelihood function is not tractable in closed form. For this

reason, in the next section, we explain how the expectation-

maximization algorithm may be used instead.

3 EXPECTATION-MAXIMIZATION

Having developed our computational model which poses

the graph-matching problem in a maximum-likelihood

framework, in this section, we provide a concrete algorithm

for recovering the parameters of the underlying mixture-

model. We choose to use the EM algorithm originally

introduced by Dempster et al. [16]. The utility measure

underpinning the algorithm is the expected log-likelihood

function. The basic idea underlying the algorithm is to

iterate between the interleaved expectation and maximiza-

tion steps until convergence is reached. Expectation

involves updating the a posteriori probabilities of the

missing data using the most recently available parameter

estimates. In the maximization phase, the model parameters

are recomputed to maximize the expected value of the

incomplete data likelihood.
Several authors have considered how theproblemof point

patternmatching can be addressed using the EM framework.

Utans recovers translation parameters [46], while Gold et al.
are more ambitious in matching under affine transformation

[23]. Recently, the EM algorithm has been exploited in the
recovery of object pose by both Wells [47] and by Hornegger
andNieman [28]. In a demanding practical application,Moss

and Hancock have shown how the algorithm can be used to
register cartographic models against noisy and incomplete

radar data [30]. In contrast to these approaches, the main
contribution of this paper is to demonstrate the effectiveness

of the algorithm in matching symbolic relational graphs
without recourse to either an explicit transformationalmodel
or attribute information.

3.1 Expected Log-Likelihood Function

The utility measure underpinning the EM algorithm is the
conditional expected log likelihood. The basic idea is to
identify updated parameters that maximize their expected
likelihood conditional upon the previously available iter-
ates. This utility measure is frequently referred to as the
incomplete data likelihood. In our matching problem, the
parameters are the discrete matching assignments to the
nodes of the data graph. Incompleteness originates from the
fact that the matching configurations are not directly
observable from the data. In other words, although we
can observe the structure of the model and data graphs, the
matching-function f is hidden from us. The incomplete data
likelihood is obtained by weighting the individual con-
tributions by the appropriate a posteriori matching prob-
abilities. In a more general context, Dempster et al. [16]
observed that maximizing a weighted log-likelihood func-
tion of this sort was equivalent to maximizing the
conditional expectation of the likelihood for a new para-
meter set given an old parameter set.

For our graph-matching problem, and from the
Bayes theorem and the well-known development of the
EMalgorithm [15], [10], [22],maximization of the expectation
of the conditional likelihood is equivalent to maximizing the
weighted log-likelihood function

� S�n�1�jS�n�
� �

�
X

a2VD

X

�2VM

P y�jxa; S
�n�

� �

lnP xajy�; S
�n�1�

� �

;

�19�

where S�n� indicates the matrix of assignment variables

taken at iteration n of the EM algorithm. Hence, the a

posteriori correspondence matching probabilities computed

at iteration n, i.e., P �y�jxa; S
�n�� are used to weight the

iteration n� 1 contributions to the log-likelihood function.

Using the expected log-likelihood function, the max-

imum-likelihood matrix of assignment variables is the one

which satisfies the condition

S�n�1� � argmax
Ŝ

� ŜjS�n�
� �

: �20�

One way to realize the update process is by parallel

iterative local gradient ascent. In the next section, we

show how the expected log-likelihood function can be

recast in a matrix framework. This allows us to realize the

update procedure more efficiently using singular value

decomposition.

3.2 Matrix Representation

To commence, we note that, when the distribution function
for the assignment variables is substituted from (14), the
expected log-likelihood function becomes

� S�n�1�jS�n�
� �

�

X

a2VD

X

b2VD

X

�2VM

X

�2VM

Q�n�a�

�

lnKa � �DabM��s
�n�1�
b�

�

;
�21�
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where we have introduced the jVDj � jVM jmatrixQ�n� whose
elementsQ�n�a� � P

ÿ

y�jxa; S
�n�

�

are set equal to the a posteriori
probability of correspondencematch between the data-graph
node a and the model-graph node � at iteration n of the
EM algorithm.

The expression for the expected log-likelihood function
�
ÿ

S�n�1�jS�n�
�

simplifies if we note that the first term under
the curly braces is simply proportional to the normalized
probability mass over the state-space of the matching
process. In other words, it contributes a constant amount

X

a2VD

X

�2VM

Q�n�a� lnKa �
X

a2VD

lnKa: �22�

Based on this observation, the critical quantity in

determining the update direction for maximum-likelihood

matches is

�̂ S�n�1�jS�n�
� �

�
X

a2VD

X

b2VD

X

�2VM

X

�2VM

Q�n�a�DabM��s
�n�1�
b� : �23�

To write this component of the expected log-likelihood
function in matrix notation, we group the indices as follows:

�̂ S�n�1�jS�n�
� �

�
X

a2VD

X

b2VD

X

�2VM

X

�2VM

Q�n�a�M�� s
�n�1�
�b

� �T

DT
ba:

�24�

Using the repeated index contraction for matrix products,
this is equal to

�̂ S�n�1�jS�n�
� �

� Tr Q�n�M S�n�1�
� �T

DT

� �

; �25�

where Q�n� is the matrix of correspondence probabilities.
Finally, using the fact that the trace of a product of matrices
is invariant under cyclic permutation of the matrix order

�̂ S�n�1�jS�n�
� �

� Tr DTQ�n�M S�n�1�
� �T

� �

: �26�

As a result, we confine our attention to the quantity
Tr

�

DTQ�n�MST
�

. In Umeyama's [45] work the eigendecom-
position method attempts to find the permutation matrix P
which maximizes DTPM. The utility measure used by the
EM algorithm can be regarded as a weighted version of
Umeyama's least-squares criterion.

3.3 Maximization

The maximization step of the EM algorithm can be stated as
that of recovering the set of correspondence indicators
S�n�1� which satisfies the condition

S�n�1� � arg maxŜTr
h

DTQ�n�MŜT
i

: �27�

In other words, the utility measure gauges the degree of
correlation between the edge-sets of the two graphs under
the weighted permutation structure induced by the corre-
spondence probabilities.

To locate the updated set of correspondence indicators,

we use the extremum principal reported by Scott and

Longuet-Higgins [36]. Their result is as follows: Suppose

that G is a positive definite jVDj � jVM j matrix. They have

shown how the jVDj � jVM j orthogonal matrix R that

maximizes the quantity Tr�GRT � may be found by perform-

ing singular value decomposition. To do this, they perform

the matrix factorization G � V�UT , where V is a jVDj � jVDj

orthogonal matrix, U is a jVM j � jVM j orthogonal matrix,

and � is a jVDj � jVM j matrix whose off-diagonal elements

�i;j � 0 if i 6� j and whose ªdiagonalº elements �i;i are

nonzero. Suppose that E is the matrix obtained from � by

making the diagonal elements �i;i unity. The matrix R

which maximizes Tr
�

GRT
�

is R � V EUT . This extremum

principle may be applied to our graph matching problem if

we make the substitution G � DTQ�n�M and perform the

singular value decomposition DTQ�n�M � V�UT to obtain

R. This matrix satisfies the condition

R � argmax
R̂

Tr DTQ�n�MR̂T
h i

: �28�

Provided that the matrix DTQ�n�M is positive-definite, then

the elements of R are real.

Although this extremum principle is useful, it is not

entirely suited to our needs. The reasons for this are that the

elements of R cannot be interpreted as probabilities since

they are neither guaranteed to be positive nor are they

normalized. Furthermore, they cannot be interpreted as

assignment indicators since they are not binary in nature.

To overcome these difficulties, we follow Scott and Long-

uet-Higgins by testing the elements of R to obtain a matrix

of binary correspondence indicators S�n�1�. If the element

Ra;� is the maximum value for both the row and column

that contains it, then the assignment indicator s�n�1�a;� is set to

unity. Otherwise, it is set to zero. As a result, the updated

set of correspondence indicators is

s�n�1�a� �
1 if Ra� � argmaxb� Rb�

0 otherwise:

�

�29�

There are alternatives to this decision step. For instance, we

could use the Sinkhorn normalization idea of Gold and

Rangarajan [23] to preprocess the matrix, or, we could

apply a bipartite graph matching algorithm to the matrix R.

The choice above is dictated by reasons of simplicity.

3.4 Expectation

In the expectation step of the EM algorithm, the a posteriori
probabilities of the hidden data are computed from the
component densities appearing in the mixture distribution.
This is done by applying the Bayes theorem. At iteration
n� 1, we have

P y�jxa; S
�n�1�

� �

�
p xajy�; S

�n�
ÿ �

��n��
P

�2VM
p
�

xajy�; S�n�
�

�
�n�
�

; �30�

where

��n�� �
1

jVDj

X

a2VD

P y�jxa; S
�n�

� �

: �31�

We can re-express the a posteriori probabilities using the
indicator variables in the following manner:
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Q�n�1�a� �

Ka exp ÿ�
P

b2VD

P

�2VM
DabM�� 1ÿ s

�n�
b�

� �h i

��n��

P

�02VM
Ka exp ÿ�

P

b2VD

P

�2VM
DabM�� 1ÿ s

�n�
b�

� �h i

�
�n�
�0

:

�32�

Since the constant Ka depends only on the index of the

model graph node xa, it cancels between the numerator and

the denominator.
At this point, it is worth pointing out that there are

alternative views of the E-step of the EM algorithm. For

instance, in the graphical models literature, it is common to

introduce a set of indicator variables to model the affinities

between observed and missing data. These variables may

be updated in an optimization step which uses mean-field

annealing.

4 SOFT ASSIGN

Before we proceed to experiment with the new graph
matching process, it is interesting to briefly review the
standard quadratic formulation of the matching problem
investigated by Simic [41], Sugarnathan et al. [42] and Gold
and Rangarajan [23]. Here, the aim has been to deploy
continuous optimization methods such as the relatively
heuristic graduated assignment [23], [3] or the more
principled mean-field theory [25], [51], [34], [52], [33] to
update a set of assignment variables representing the
matching process. Although there are many variants of
the idea, the common feature of these algorithms is to
commence from the quadratic cost function

EH � ÿ
1

2

X

a2VD

X

�2VM

X

b2VD

X

�2VM

DabM��sa�sb�: �33�
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Fig. 2. Convergence rate.

Fig. 1. Sensitivity study for graphs of different size.



Performance has been demonstrated to be enhanced if

additional, sometimes nonquadratic, terms are added.

Examples include node self-amplification term that en-

courages binary solutions [23] and the addition of a

logarithmic barrier entropy that convexifies the energy [51].

To see the relationship between the graph-matching energy

and the expected log-likelihood function, we note that

EH � ÿ
1

2
Tr DTSMST

� �

: �34�

In other words, the weighting matrix Q is replaced by the

assignment matrix S.

One of the simplest ways of updating the assignment

variables is to use the soft-max ansatz of Bridle [5]. This

ensures that the assignment variables remain constrained to

lie within the range �0; 1� by adopting the update rule

sa�  

exp

�

ÿ
1

T

@EH
@sa�

�

X

�02VM

exp

�

ÿ
1

T

@EH
@sa�0

� : �35�

The temperature T is usually controlled using a slow
exponential annealing schedule of the form suggested in
[23]. For the quadratic graph-matching energy,

@EH
@sb�

� ÿ
1

2

X

a2VD

X

�2VM

DabM��sa�: �36�

More recently, Finch et al. [18] have developed a more
sophisticated soft-assign graph-matching algorithm which
revolves around optimizing the nonquadratic energy

EF �
X

a2VD

Ua; �37�

where

Ua �

X

�2VM

Ha� exp�ÿ�Ha� �

X

�2VM

exp�ÿ�Ha� �
�38�

and

Ha� �
X

b2VD

X

�2VM

DabM���1ÿ sb��: �39�
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Fig. 4. Fraction of edge errors as a function of the relative standard

deviation of the point-position error.

Fig. 3. Comparison of the four eigendecomposition methods for graphs

with the same number of nodes.

Fig. 5. Test images overlayed with Delaunay graphs.



For this energy function, the partial derivative is given by

@EF
@sb�

� ÿ
X

a2VD

X

�2VM

DabM��

�

1ÿ �

�

Ha� ÿ Ua

��

Qa�: �40�

We will use these two soft-assign graph matching
methods for the purposes of experimental comparison.
However, it is important to stress that the soft-assign
update process adopted here is very simplistic and leaves
considerable scope for further refinement. For instance, in
[23] Sinkhorn matrices have been exploited to impose a
permutation structure on the final solution.

5 EXPERIMENTS

In this section, we provide some experimental evaluation of
the new graph-matching technique. There are two aspects
to this study. We commence with a sensitivity study using
synthetic data. The aim here is to evaluate how the new
method performs under controlled structural corruption
and to compare it with some alternatives reported else-
where in the literature. The second part of the study
evaluates the method on real-world data.

5.1 Sensitivity Study

Our sensitivity study is divided into two parts: First, we
compare our method with some alternative methods for
inexact-graph matching. These methods are capable of
accommodating graphs of different size, but are not based
on matrix factorization. Here, we investigate the effect of
adding additional nodes to the graphs. The second class of
methods used for comparison are those which rely on
matrix-factorization techniques. These methods do not
work when the graphs are of different size. Here, we keep
the graphs of fixed equal size and investigate the effect of
corrupting the pattern of edges.

5.1.1 Inexact Graph Matching

We commence by studying the effect of controlled structural
error on the graphs being matched. The graphs used in our

study are the Delaunay triangulations of randomly gener-
ated point-sets. The effects of structural error are simulated
by deleting a predefined fraction of randomly selected nodes
and retriangulating the remaining points.
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Fig. 6. Correspondences.

Fig. 7. Delaunay graphs overlayed on the toy house images.



We compare the performance of our new matching
method with three alternatives. These are the dictionary-
based relaxation scheme of Wilson and Hancock [49], the
quadratic assignment method of Gold and Rangarajan [23],
and the nonquadratic graduated assignment method of
Finch et al. [19]. Fig. 1 compares the four algorithms. Here,
we show the fraction of correct correspondences as a
function of the fraction of nodes deleted from the graphs.
The main feature to note is that the new graph matching
method delivers performance that is intermediate between
the discrete relaxation method and the nonlinear graduated
assignment method. This is an interesting observation when
we compare the computational overheads associated with
the three methods.

To provide some indication of the iterative properties of
our new algorithm, Fig. 2 shows the fraction of correct
correspondences as a function of iteration number. The
method takes approximately 15 iterations to converge.
Moreover, there is significant improvement in each of the
iterations. At this point, it is worth pointing out the relative
complexities of the different methods investigated here. The
SVD can be computed in order jV j3 per iteration, where jV j
is the number of nodes in the graph. The Wilson
and Hancock method, on the other hand, requires
jV j2C3 computations per iteration for exact graph matching
and 4CCjV j2 computations per iteration for inexact graph
matching, where C is the average degree of nodes of the
graph. The quadratic assignment method has complexity of
order jV j3 per iteration. The Wilson and Hancock method
also converges in about 10-15 iterations, while the quadratic
assignment method takes 100s of iterations. In other words,
our new SVD-based method is both accurate and efficient.

5.1.2 Factorization Methods

In this section, we provide a comparison between two
methods for weighted-graph-matching which share with
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Fig. 8. Superimposed image pairs illustrating the differences in
viewpoint.

Fig. 9. Correspondences between the first and the second images.



our own method the feature of relying on matrix factoriza-

tion. The methods selected for this comparison are:

. Umeyama's weighted-graph-matching method
which seeks the permutationmatrixP thatminimizes
quantity J�P� � jjPM ÿDjj [45]. The method
performs the singular value decompositions M �
UM�MUT

M and D � UD�DU
T
D, where the Us are

orthogonalmatrices and the�s are diagonalmatrices.

Once these factorizations have been performed, the
required permutation matrix is P � UDU

T
M .

. Shapiro and Brady's [39] weighted-graph-matching
method which uses the modal structure of the
two-weighted adjacency matrices D and M. The
modal structure of the two adjacency graphs is
obtained by solving the eigenvalue equation
D�D

l � �l�
D
l , where �l is the lth eigenvalue of the

adjacency matrix D and �D
l is the corresponding
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Fig. 10. Correspondences between the first and the third images.

Fig. 11. Correspondences between the first and the fourth images.



eigenvector. The eigenvectors are ordered accord-
ing to the size of the associated eigenvalues and
are used as the columns of the modal matrix
�D �

ÿ

�D
1 ; �

D
2 ; �

D
3 ; :::::

�

. This procedure is repeated
to construct a second modal matrix �M for the
model-graph adjacency matrix M. The column
index of these two modal matrices refers to the
order of the eigenvalues while the row-index is the
index of the nodes in the graphs. Shapiro and

Brady find correspondences by locating pairs of
rows which have minimum distance, i.e.,

sa;� �

1 if � � argmin�0
PN

l�1 jj�D�a; l� ÿ �M��
0; l�jj2

0 otherwise:

(

�41�
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Fig. 12. Correspondences between the first and the fifth images.

Fig. 13. Correspondences between the first and the sixth images.



These two methods rely on weighted adjacency matrices

rather than the binary ones defined earlier. To conduct our

experiments, we have generated random 2D point-sets. We

use the positions of these points to generate theweights of the

adjacency matrix. Suppose that ~xM
� and ~xM

� represent the

coordinate vectors associatedwith the nodes indexed a and b.

The weight associated with the edge connecting the nodes is

M�� � exp

�

ÿkjj~xM
� ÿ~xM

� jj
2

�

: �42�

These two methods are not effective when the graphs

under study contain different numbers of nodes. To

compare with our method, therefore, we have kept the

number of points fixed and have added Gaussian errors to

the point positions. The parameter of the noise process is

the standard deviation of the positional jitter. In our

experiments, we express this parameter as a fraction of

the average minimum distance between points (the relative

standard deviation). It is important to stress that the

methods compared here use different representations of

the arrangement of the points. The Shapiro and Brady and

Umeyama methods use the weighted adjacency matrix. Our

method, on the other hand, uses a binary-adjacency matrix

to represent the Delaunay triangulation of the points.

In Fig. 3, we show the fraction of correct correspondences

as a function of the relative standard deviation for our new

method (bold solid curve), Umeyama's [45] method (faint

solid curve) and the method of Shapiro and Brady [39]

(dash-dotted curve). The main feature to note is that our

method outperforms the two alternatives. There is little to

distinguish the performance of the Shapiro and Brady [39]

and Umeyama [45] methods. Both fail abruptly once the

relative standard deviation exceeds 0.2, i.e., the noise

standard deviation is greater than 20 percent of the average

closest point distance. Our method, on the other hand,

degrades almost linearly with the noise standard deviation.

However, it must be stressed that the results are not

completely comparable. In the case of Shapiro and Brady,

and Umeyama [45], we are measuring the sensitivity of the

method to noise on the entries of the weighted-adjacency

matrices. In the case of our method, we are measuring the

sensitivity of the method to errors in the edge-sets of the

graphs used for matching.

To show that the point-jitter does indeed result in

significantly different adjacency matrices, in Fig. 4 we show

the fraction of edge differences as function of the relative

standarddeviationof thepositional jitter. The fractionof edge

errors in the unweighted adjacency graphs is defined to be

1132 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 10, OCTOBER 2001

TABLE 1
Summary of Experimental Results for

the House Sequence Images

Fig. 14. Correspondences from the Umeyama algorithm.



F �

PN
a�1

PN
b�1 jDab ÿ

PN
c�1 SacMcbj

PN
a�1

PN
b�1 jMabj

; �43�

where N is the number of nodes being matched. From Fig. 4

it is clear, that the fraction of edge errors is 50 percent when

the relative standard deviation of the positional jitter is 0.3.

In other words, our method is finding 70 percent of the

correct correspondences, even when 50 percent of the

entries in the data-graph adjacency matrix are in error.

Finally, we illustrate the results obtained when we apply

our method to the weighted-adjacency matrix rather than

the binary-adjacency matrix. The dot-dashed curve in Fig. 3

shows the fraction of correct correspondences as a function

of the relative standard deviation of the point-position jitter.

The method performs considerably better than the Shapiro

and Brady, and Umeyama methods. However, there is little

to distinguish its performance from that obtained with the

binary-adjacency matrix.
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Fig. 15. Correspondences from the Shapiro algorithm.

Fig. 16. Correspondences from the unweighted variant of our algorithm.



5.2 Real-World Data

We commence our real-world evaluation of the graph-
matching method on images of indoor scenes. Here, we are
concerned with matching the Delaunay triangulations of
corner-features. We use the corner detector recently
reported by Luo et al. [29] to extract point features. Fig. 5
shows two examples of the indoor images used in our
study. Superimposed on the images are the detected corners
and their associated Delaunay triangulations. The two
images are taken from different viewpoints. There is
rotation, scaling, and perspective distortion present. More-
over, several of the objects in the scene are at different
depths and move relative to one another. As a result, there
are significant structural differences in the two Delaunay
graphs. Fig. 6 shows the correspondences between the
corners as lines between the two images. After checking by
hand, the fraction of correct correspondences is 77 percent.

We repeat this set of experiments using images taken
from the CMU/VASC model-house sequence. The images
used in our study are shown in Fig. 7 and correspond to
different camera viewing directions. The detected corner
features and their Delaunay triangulations are overlayed on
the images. There are clearly significant structural differ-
ences in the graphs. By superimposing the first image on
the subsequent images in the sequence, Fig. 8 illustrates the
differences in viewing angle. Figs. 9, 10, 11, 12, and 13 show
the results obtained when we match the first image to each
of the subsequent images in the sequence. The results are
summarized in Table 1. Here, we list the number of
detected corners in the images being matched, the number
of corners that are in correct correspondence, the number of
corners that are in error, and the number of corners for
which there are no correspondences (i.e., there is no row
and column maximum). The method breaks down after the
fourth image in the sequence.

To provide some comparison, we have selected a pair of

images which contain the same number of corner points

(image 2 and image 4). Although the number of corners is

the same, there are differences in the both identities of the

detected points and their structural arrangement. For these

images, we compare the matches returned by the un-

weighted and weighted versions of our algorithm (referred

to as Luo), the method of Umeyama and the method of

Shapiro and Brady. The results are shown in Figs. 14, 15, 16,

and 17 and the numbers of correct matches are summarized

in Table 2. From these results, it is clear that the new

method returns considerably better matches.
The final real-world example is furnished by matching

features in aerial infrared images. The main structure in

these images is a road network. The features used in our

matching experiments are the junctions in the road

network. This data was used in the recent studies by

both Wilson and Hancock [49] and Finch et al. [20]. Fig. 18

shows the correspondences. Here, manual checking

reveals that 58 percent of the correspondences are correct.

By contrast, the fractions of correct correspondences from

the two recent studies are respectively 34 percent and

47 percent.
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Fig. 17. Correspondences from the weighted variant of our algorithm.

TABLE 2
Summary of the Comparison of the Three Matching Algorithms



6 CONCLUSIONS

Our main contributions in this paper are twofold: First, we
have cast the problem of graph matching into a maximum-
likelihood framework by constructing a mixture model
over the set of hidden correspondences and adopting a
Bernoulli model for the distribution of edge-matching
errors. Second, we have used the apparatus of the
EM algorithm to show how the problem of estimating the
correspondence indicators may be cast into a compact
matrix setting. This allows us to use singular value
decomposition to estimate the correspondence indicators
in the M-step. The result is an efficient algorithm that can be
used to accurately match inexact graphs under considerable
levels of structural corruption.

When viewed from the perspective of recent work on

matrix-based graph matching, the important contribution of

this paper is to show how point-sets of different sizes can be

matched using singular value decomposition.
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