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Shape-From-Shading Using the Heat Equation
Antonio Robles-Kelly, Member, IEEE, and Edwin R. Hancock

Abstract—This paper offers two new directions to shape-from-
shading, namely the use of the heat equation to smooth the field of
surface normals and the recovery of surface height using a low-di-
mensional embedding. Turning our attention to the first of these
contributions, we pose the problem of surface normal recovery as
that of solving the steady state heat equation subject to the hard
constraint that Lambert’s law is satisfied. We perform our anal-
ysis on a plane perpendicular to the light source direction, where
the component of the surface normal is equal to the normalized
image brightness. The or azimuthal component of the sur-
face normal is found by computing the gradient of a scalar field
that evolves with time subject to the heat equation. We solve the
heat equation for the scalar potential and, hence, recover the az-
imuthal component of the surface normal from the average image
brightness, making use of a simple finite difference method. The
second contribution is to pose the problem of recovering the surface
height function as that of embedding the field of surface normals
on a manifold so as to preserve the pattern of surface height differ-
ences and the lattice footprint of the surface normals. We experi-
ment with the resulting method on a variety of real-world image
data, where it produces qualitatively good reconstructed surfaces.

I. INTRODUCTION

S
HAPE-from-shading is a problem that has been studied for

over 25 years in vision literature [1]–[7]. Stated succinctly,

the problem is to recover local surface orientation information

and, hence, reconstruct the surface height function, from the in-

formation provided by the surface brightness. Since the problem

is an under-constrained one, in order to be rendered tractable,

recourse must be made to strong simplifying assumptions and

constraints. Hence, the process is usually specialized to matte

reflectance from a surface of constant albedo, illuminated by a

single point light source of known direction. To overcome the

problem that the two parameters of surface slope can not be

recovered from a single brightness measurement, the process

is augmented by constraints on surface normal direction at

occluding contours, singular points or constraints on surface

smoothness.

In this paper, we make two contributions to the shape-from-

shading problem. First, we show how the recovery of the field

of surface normals can be posed as the solution of the linear heat

equation. Second, we present a new method for surface height
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recovery from the field of surface normals. In this section of the

paper, we commence by reviewing the literature in these two

areas to motivate our contribution and highlight the novelty of

the proposed methods.

A. Related Literature

There are a number of perspectives from which the

shape-from-shading literature can be viewed. For instance,

Zhang et al. [8] divide existing shape-from-shading methods

into those that are local and those that are global. Local methods

involve quilting local surface patches to recover the overall sur-

face shape. Although fast, the methods require prior information

concerning height, which may be provided by, for instance, the

elevation of singular points. As a result, local methods are often

sensitive to noise. Global methods, on the other hand, recover

the height through the propagation of smoothness constraints or

by minimisation of an energy function. Although more robust

to noise, global methods can have a tendency to over-smooth

the recovered surface. An exhaustive review of the topic, which

includes a detailed comparative study can be found in the recent

paper by Zhan et al. [8].

The classic approach developed by Ikeuchi and Horn [9] and

by Horn and Brooks [10], among others, is an energy min-

imisation one based on regularisation theory. Here, the dual

constraints of compliance with the image irradiance equation

and local surface smoothness are captured by an error function.

This has distinct terms corresponding to data closeness, i.e.,

compliance with the image irradiance equation, and for surface

smoothness, i.e., the constraint that the local variation in the sur-

face normal directions should be small. The shortcomings with

this method are threefold. First, it is sensitive to the initial sur-

face normal directions. Second, the data-closeness and surface

smoothness must be carefully balanced. Third, and finally, the

solution found is invariably dominated by the smoothness model

and, as a result, fine surface detail is lost. There have been at-

tempts to overcome these problems. For instance, Zheng and

Chellappa [11] have imposed a gradient consistency constraint

that penalizes differences between the image intensity gradient

and the surface gradient for the recovered surface. Worthington

and Hancock [12] impose the Lambertian radiance constraint

in a hard manner by demanding that the recovered surface nor-

mals lie on cones whose axis is in the light source direction and

whose apex angle is the inverse cosine of the normalized image

radiance. The smoothing process may also be effected using de-

formable implicit surfaces [13].

The shape-from-shading problem can also be viewed as that

of solving a nonlinear partial differential equation. The early

work mentioned above posed the recovery of the solution of the

irradiance equation in a variational setting and developed itera-

tive numerical schemes [10]. Later work by Dorou and Maitre

[14] unearthed problems with this method, and demonstrated

1057-7149/$25.00 © 2006 IEEE
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both that the method was not linearly convergent and that mul-

tiple ambiguous solutions were possible. Dupuis and Oliensis

[6] provided a means of overcoming these problems and recov-

ering probably correct solutions with respect to the image irradi-

ance equation. Under conditions in which the light-source and

viewer directions are identical, Rouy and Tourin [15] showed

how the Hamilton–Jacobi equations could be used to recover

solutions that are probably convergent. Recently, Prados and

Faugeras [16] have extended this work to the case where the

light source and viewer directions are no longer coincident. This

leads to continuous solutions to the image irradiance equation,

that, in general, lead to a shape-from-shading scheme that can

work in more realistic situations. In related work, Kimmel and

Bruckstein have used the apparatus of level sets methods to

recover solutions to the Eikonal equation [17]. The resulting

framework can also be applied to image regularisation [18]. Fi-

nally, we note that the problem of recovering implicit surfaces

to represent objects can also be posed as solving a system of

partial differential equations (PDEs) [13].

Another important issue concerning the shape-from-shading

process is that which pertains the reconstruction of the surface

from the estimated surface normal directions. The so-called sur-

face integration process involves selecting a path through the

surface normal locations. This may be done using either a cur-

vature minimizing path or by advancing a wavefront from the

occluding boundary or singular points. If the surface normals

do not satisfy the integrability constraint (i.e., the Hessian ma-

trix is symmetric) then the recovered height can depend on the

path chosen through the surface normals.

The analysis of the literature on the topic of surface height

recovery is not a straightforward task. The reason for this is

that surface recovery is frequently viewed as an integral part of

shape-from shading or shape-from-texture processes. Horn and

Brooks [19] realize surface height recovery as a postprocessing

step. The process proceeds from the occluding boundary and

involves incrementing the surface height by an amount deter-

mined by the distance traversed and the slope angle of the local

tangent plane. In some of the earliest work, Wu and Li [20] av-

erage the surface normal directions to obtain a height estimate.

A more elegant solution is proposed by Frankot and Chellappa

[21] who project the surface normals into the Fourier domain to

impose integrability constraints and surface height is recovered

using an inverse Fourier transform. Wei and Klette [22] have

enhanced this approach by showing how more complex regu-

larisation constraints can be formulated in the Fourier domain.

Dupuis and Oliensis [6] have developed a method which draws

on differential geometry and involves propagation in the direc-

tion of the steepest gradient from singular points. A fast variant

of this algorithm is described by Bichsel and Pentland [3] who

compute the relative height of the surface with respect to the

highest intensity point.

B. Contribution and Paper Outline

To set our original contributions in the context of this litera-

ture, we make the following observations. First, most of the ex-

isting work hinges around the solution of a nonlinear partial dif-

ferential equation and this can prove cumbersome. Our first con-

tribution in this paper, is to show how the shape-from-shading

problem can be posed as the solution of the linear heat-equation.

We pose the problem as that of solving the heat equation subject

to the constraint that the recovered surface normals satisfy Lam-

bert’s law. We work on a plane perpendicular to the light source

direction. To this effect, we perform a rotation of the coordinate

system. In the transformed coordinate system, the component

of the surface normal is constrained to be equal to the normal-

ized image brightness. To compute the and , i.e., azimuthal,

components of the surface normal, we introduce a scalar poten-

tial. We assume that the time-dependance of the scalar poten-

tial during the surface normal smoothing process is governed by

the heat equation and show that this scalar potential is given by

the average of the image intensity. This allows us to use a stan-

dard finite element method to compute the components of the

surface normals. Hence, smoothed surface normals that satisfy

the image irradiance equation are recovered as solutions of the

linear heat equation. This offers a number of advantages over

existing differential equation methods for shape-from-shading.

The second observation that we draw from the literature is

that the problem of surface height recovery is usually posed

as one of path-based integration. This process can prove sen-

sitive to noise, and does not model the relationship between the

observed set of surface normals and the surface that generated

them. Our second contribution in this paper is to make this link

explicit. To do this, we pose the problem of recovering the sur-

face height function as that of embedding the field of surface

normals on a manifold. Our approach is as follows. From the

field of surface normals, we compute the surface height incre-

ments corresponding to each location on the pixel lattice. The

height increments, in turn, can be used to estimate the surface

height difference between each pair of pixel-locations. We pose

the problem of surface height recovery as that of embedding the

surface normals into a manifold in a 3-D space so as to preserve

both the pattern of surface height differences and the lattice foot-

print of the field of surface normals.

The outline of the paper is as follows. In Section II, we

briefly review the physics of Lambertian reflectance. Section III

presents the first novel contribution of the paper and demon-

strates how the recovery of the surface normal directions,

which satisfies Lambert’s law, can be posed as the solution

of the linear heat equation. Section IV describes the second

novel contribution, i.e., the recovery of the surface height

function using a unidimensional embedding method. Section V

presents experiments on data with known ground truth. Here,

we separately compare the surface normal recovery method and

the surface height recovery method with alternatives described

elsewhere in the literature. Finally, Section VI offers some

conclusions and suggests directions for future research.

II. LAMBERTIAN REFLECTANCE

We confine our attention to surfaces which exhibit Lam-

bertian reflectance. For Lambertian reflectance from a matte

surface, the image irradiance equation constrains the surface

normal directions to fall on a cone whose axis is aligned with

the light source direction and whose apex angle is the inverse

cosine of the normalized image brightness [12]. To be more

formal, let be a unit vector in the light source direction,

be the normalized brightness at the pixel-site on the
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image plane , and be

the corresponding surface normal at a point on the surface

under study . From Lambert’s law, we have

(1)

Thus, the surface normal is constrained to fall on a cone, whose

axis is the direction on the light source and whose opening

angle is .

Our aim is to recover the on-cone surface normal which satis-

fies the image irradiance equation as a hard constraint by com-

puting a vector that sat-

isfies the conditions

(2)

where is a rotation matrix.

To simplify our analysis, we choose to work in a transformed

coordinate system, in which the image plane is rotated to be

perpendicular to the light sources direction. This rotation can

be realized as follows. As a consequence of Lambert’s law, the

apex angle does not depend on the viewer

direction . Hence, we can consider the vector

(3)

to lay on a plane perpendicular to the light source direc-

tion whose and axes correspond to the image row and

column directions rotated about the light source direction

. The matrix rotates the vector by the

angle difference between the light source direction , and the

viewer direction . The rotation axis is the light source vector

. The angle of rotation is .

Hence, the rotation matrix is as follows:

(4)

where and . The geometry of

this procedure is shown in Fig. 1.

III. SURFACE NORMAL COMPUTATION VIA VECTORIAL FLUX

Lambert’s law provides only a constraint on the zenith angle

between the light source direction and the surface normal direc-

tion and, as a result, the azimuth angle of the surface normal re-

mains undetermined. There are number of ways in which the az-

imuth angle can be recovered. For instance, the surface normal

may be aligned on the irradiance cone so that it points in the

direction of the image gradient. The direction may also be de-

termined using local smoothing. In this section, we describe a

method that can be used to recover the azimuth angle using a

smoothing method based on a heat flow analogy.

We work on a plane perpendicular to the light source di-

rection. Let be the coordinates of the point with

pixel index on the plane . Since the surface normals is con-

strained to fall on the irradiance cone and we are working on

Fig. 1. Geometry of the SFS process.

the plane perpendicular to the light source direction, the com-

ponent of the surface normal is equal to the normalized image

brightness .

In this paper, our idea is to recover the azimuthal compo-

nent using a heat-equation smoothing process. To do this we

introduce a scalar field on the rotated image plane . The az-

imuthal component of the surface normal is the gradient of this

scalar field. The scalar field is assumed to be subject to the heat

equation, and the associated heat flow or diffusion process is

responsible for smoothing the azimuthal component of the sur-

face normal. Although the azimuthal component of the surface

normal is determined by the gradient of the scalar field, in prac-

tice we are only interested in the polar angle of the gradient

vector since this determines the azimuthal angle of the surface

normal. The heat equation provides a means of smoothing the

azimuthal directions of the surface normals on the plane .

To be more formal, let be a time-dependent field on

the plane , where is the coordinate vector of the point

and is the time epoch. According to Fourier’s law, the heat

flow vector is related to the gradient of the scalar potential

field through the expression

(5)

The magnitude of the time derivative of the heat flow is related

to the time derivative of the scalar potential via the heat diffusion

equation

(6)

where and are proportionality constants. With these ingre-

dients, the azimuthal angle of the surface normal on the plane

can then be found by computing the angle between the com-

ponents of the gradient for the scalar field , which is

given by

Here, we consider the heat release in the direction perpen-

dicular to the plane , i.e., , to be constant and equal to the
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Fig. 2. Top row, from left to right: Ground truth height data, rendering of the test shape using Lambert’s law with added noise, field of surface normals at the first
and final iterations of the algorithm. Bottom row, from left to right: Heat function Q(x; y; t) for t = 1, t = 3, t = 6, and t = 9.

Fig. 3. Shape-from-shading results on real-world data. Top row: Input images whose specularities have been removed. Bottom row: Ground truth depth data.

brightness at the point . Hence, and by expanding

the Laplacian, we can rewrite the heat diffusion equation as fol-

lows:

(7)

To take our analysis further, we rely on the phys-

ical meaning of the right-hand side of (7). The quan-

tity is the rate of energy increase

for an element of surface enclosed by a region .

Hence, we can normalize the heat-flow to unity by setting

. As a result, and after rearranging

terms, we get

(8)

and, therefore, we have

(9)

where we have set .

At this point, since we are working on a uniformly sampled

pixel lattice, we can consider uniform regions of area across

the plane and rewrite the equation above as follows:

(10)

With the equation above at hand, we can make use of a simple

finite element approach to recover the steady state of the func-
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Fig. 4. First row: Input images with noise added. Second and third rows: Field
of surface normals delivered by the algorithm of Worthington and Hancock after
ten and 100 iterations. Fourth and fifth rows: Field of surface normals at the
initial and final iterations of our method.

tion . We commence by setting .

At time step , the update equation for the point indexed is

(11)

where is the set of points adjacent to . The quantity is

the averaged and normalized scalar potential, computed using

Fig. 5. First row: Input images with noise added. Second and third rows: Field
of surface normals delivered by the algorithm of Worthington and Hancock after
ten and 100 iterations. Fourth and fifth rows: Field of surface normals at the
initial and final iterations of our method.

the formula

(12)

This process is repeated until the scalar field stabi-

lizes. On convergence, the azimuth angle of the surface normal
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Fig. 6. First row: Input images with noise added. Second and third rows: Field
of surface normals delivered by the algorithm of Worthington and Hancock after
ten and 100 iterations. Fourth and fifth rows: Field of surface normals at the
initial and final iterations of our method.

at the location indexed is given by

(13)

In the above equation, and

are the first difference approximations to the and compo-

Fig. 7. First row: Input images with noise added. Second and third rows: Field
of surface normals delivered by the algorithm of Worthington and Hancock after
ten and 100 iterations. Fourth and fifth rows: Field of surface normals at the
initial and final iterations of our method.

nents of the gradient of , and are given by

(14)

Since the value of constrains the azimuth of the rotated

surface normal to be in the first quadrant, we make use of the
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Fig. 8. Error as a function of variance for the four objects in our dataset.

sign of the flow in the and directions on the plane to

determine the sign of surface normal components. Thus, in the

rotated frame of reference the surface normal is given

by

where . With the surface normal in the

rotated frame of reference at hand, the surface normal on the

image plane may be computed making use of the rotation matrix

as given in (4).

IV. SURFACE HEIGHT RECOVERY

In this section, we address the problem of recovering the sur-

face height function from the pattern of local height differences.

To do this, we use the field of surface normals to estimate the

height difference between each pair of pixel sites in the image.

Once the height estimates have been computed, the surface may

be then recovered by embedding them into the unidimensional

Euclidean space perpendicular to the lattice footprint.

A. Height Difference Approximation

Let be the estimate of the surface height difference be-

tween the pair of points and on the surface under study

whose and coordinates correspond to the row and column

indexes of the pixels and on the image plane. An esti-

mate of may be recovered by making use of the incre-

ments along the pixel-sites falling on the path that best

describes the projection of the geodesic connecting the points on

the surface onto the image or pixel lattice. To compute the quan-

tity , we traverse the path and compute the height

increments associated with the pixel-site transitions along the

path. The quantity is then given by the sum of these height

increments. The approximation to the height increment associ-

ated with the transition from the pixel indexed to

the pixel indexed can be computed by assuming

that the two pixel sites are connected by a line whose slope is

determined by the normal vectors and . The height

increment is given by

(15)

where is the Euclidean distance between the

pixel centers on the image plane.
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Fig. 9. Surface height recovery results. First row: Input images. Second and
third rows: Recovered height and mean-squared error for our method. Fourth
and fifth rows: Recovered height and mean-squared error for the method of
Frankot and Chellappa. Sixth and seventh rows: Recovered height and mean-
squared error for the method of Horn and Brooks.

B. Surface Integration via Unidimensional Embedding

The problem of recovering the surface from a set of pairwise

height difference estimates may be viewed as one of unidimen-

sional embedding subject to constraints provided by the foot-

print of the image lattice. We commence by rewriting the height

difference estimate between a pair of points on the sur-

face as

(16)

Fig. 10. Surface height recovery results. First row: input images. Second and
third rows: Recovered height and mean-squared error for our method. Fourth
and fifth rows: Recovered height and mean-squared error for the method of
Frankot and Chellappa. Sixth and seventh rows: Recovered height and mean-
squared error for the method of Horn and Brooks.

where is the surface height at a point corresponding to

the pixel-site indexed and is the error of representation

in the height difference.

Here, we assume that the errors of representation are indepen-

dent random variables. Thus, if the image has rows and

columns, then there are random

variables. Furthermore, the central limit theorem [23] states that,

if , the distribution of normalized errors will
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be Gaussian with mean and variance , i.e.,

(17)

For the samples, the error in the mean is

(18)

As a result, as , the uncertainty of the estimator tends

to zero.

Suppose that is the column-vector whose th element is

given by

(19)

The final term in the definition above is simply the mean height

error at the location indexed on the surface

(20)

If we assume that the distribution of errors is stationary, then we

can write

(21)

As a result, and noting that the quantity in

(19) does not depend on the index , it follows that:

(22)

Finally, if we set and solve for . The result is

(23)

It is important to stress that, whereas setting may

alter the position of the surface with respect to the coordinate

system, the relative height configuration of each pair of points

remains unchanged.

C. Approximation by Subsampling

The complexity of performing the embedding depends on the

image dimension . This may become burdensome for large

images. To overcome this problem, for large images, we can

Fig. 11. Surface height recovery results. First row: input images. Second and
third rows: Recovered height and mean-squared error for our method. Fourth
and fifth rows: Recovered height and mean-squared error for the method of
Frankot and Chellappa. Sixth and seventh rows: Recovered height and mean-
squared error for the method of Horn and Brooks.

make use of the central limit theorem [23] to develop an accurate

subsampling method. To do this, we commence by defining the

th coefficient of the vector as follows:

(24)
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Fig. 12. Surface height recovery results. First row: Input images. Second and
third rows: Recovered height and mean-squared error for our method. Fourth
and fifth rows: Recovered height and mean-squared error for the method of
Frankot and Chellappa. Sixth and seventh rows: Recovered height and mean-
squared error for the method of Horn and Brooks.

where is the subset of sample pixel-sites used for computing

the height difference estimates for each of the coefficients .

Since the length of the vectors and is the same, the reso-

lution of the surface remains unchanged. If the probability dis-

tribution for is Gaussian with variance , then the surface

height can be reconstructed using the formula

(25)

Fig. 13. Surface height recovery results. First row: input images. Second and
third rows: Recovered height and mean-squared error for our method. Fourth
and fifth rows: Recovered height and mean-squared error for the method of
Frankot and Chellappa. Sixth and seventh rows: Recovered height and mean-
squared error for the method of Horn and Brooks.

The precision of the estimate is

(26)

In this way, the complexity may be greatly reduced and an

interval of confidence can be established as a function of the

number of samples .
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Fig. 14. Surface height recovery results. First column: Input images. Second column: Height recovered using our method. Third column: Recovered height for
the method of Frankot and Chellappa. Fourth column: Recovered height for the method of Horn and Brooks.

V. EXPERIMENTS

In this section, we provide experiments with our new shape-

from-shading method. The experimental study is divided into

two parts. We commence by focussing on the performance of

the heat-equation method for surface normal recovery. In the

second part, we concentrate on the process of surface height

recovery. The experimental study involves both, synthetic and

real-world data.

A. Surface Normal Recovery

We commence our experimental study by illustrating the

utility of the heat-equation method for recovering smoothed

fields is surface normals. Here, we have experimented with

images which exhibit significant levels of noise. To this end,

we have added controlled levels of Gaussian noise to synthetic

and real-world imagery of objects that exhibit Lambertian

reflectance. In all our experiments, we follow Worthington

and Hancock [12] and use the grayscale gradient as an initial

estimate of the surface normal field directions.

In Fig. 2, we illustrate the behavior of the method on synthetic

data. Here the left-most panel in the top row shows the syn-

thetic surface used in our study. This consists of two parabolic

domes superimposed on a parabolic ridge. The second panel

in the top row shows the result of rendering the surface using

Lambert’s law. The third and fourth panels in the top row show

the initial and final fields of surface normals delivered by the

method. Initially, the field of surface normals is relatively disor-

ganized, and appears noisy. The main effect to note here is that

the heat-kernel smoothing method rotates the surface normal so

that a consistent field emerges that reflects well the geometry

of the underlying surface. In the bottom row of the figure, we

show the heat function as a function of time . Each

plot displays the value of as a height value on the

plane for fixed values of , i.e., 1, 3, 6, 9. Here, con-

vergence is reached after nine iterations. Therefore, in Fig. 2,

we have chosen the values of so as to be uniformly distributed

from to . The main elevation features of the surface

emerge as peaks in the plots of , and, as time evolves,

they become sharpened.

We now turn our attention to real-world data. In Fig. 3, the

top row of the figure shows images of four porcelain objects

captured with an Olympus E10 digital camera. The objects are

illuminated with a collimated tungsten light source with known

direction. The original images contained specularities since the

object surfaces are shiny. However, these have been removed

using the method described in [24]. From left-to-right, the ob-

jects studied are a teapot, a hand, an urn and a model bear. In the
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Fig. 15. Surface height error as a function of the variance for the objects in our dataset.

bottom line of the figure we show the ground truth data used in

our study. This consists of depth images of the objects studied,

captured using a Polhemus structured light range-sensor. The

range data have been aligned with digital images using a simple

registration algorithm.

In Figs. 4–7, we show the surface normal results obtained

from the digital images. The top row of each figure shows noise

corrupted versions of the input images. Here, we have added

Gaussian noise with zero mean and standard deviations 0.3 and

0.5 grey-levels to the raw image. In the second row of each

figure we show the fields of surface normals obtained after ten

and 100 iterations of the Worthington and Hancock algorithm.

The fourth and fifth rows of the figures shows the surface nor-

mals at the initial and final (i.e., 1, 10) iterations of our

heat-equation smoothing algorithm. The main features to note

from the plots are that our new method gives fields of surface
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normals that are both smoother and contain more fine surface

detail than that of Worthington and Hancock. For instance, the

surface structure of the hand, the ribs of the urn and the limbs

of the bear all emerge more clearly when our method is used.

A more quantitative analysis of the results is shown in Fig. 8.

Here, we show plots of the mean-squared error in the recon-

structed surface normal directions as a function of the variance

of the added Gaussian noise. For each object, we have com-

puted the mean square error between the surface normal direc-

tions delivered by shape-from-shading method and those com-

puted from the aligned ground truth range images. Fig. 8(a)

is for the teapot, Fig. 8(b) is for the hand, Fig. 8(c) is for the

urn, and Fig. 8(d) for the model bear. In each plot, the solid

curve is the result of applying our method and the dotted curve

that of applying the Worthington and Hancock method. The

error bars show the standard error in the mean-squared errors.

The features to note from the plots are as follows. First, the

mean-squared error grows approximately linearly with the noise

variance. Second, our new method gives errors which are consis-

tently lower than those delivered by the Worthington and Han-

cock method.

B. Surface Height Recovery

Having examined the behavior of the heat-flow method for

vector field smoothing, in this section we turn our attention to

the effectiveness of our method for surface height recovery. We

commence with experiments on synthetic data which are aimed

at evaluating the systematics and noise sensitivity of the method,

and then provide some experiments on real world data. We also

present results on the “Mozart” and the “Lena” images. We have

done this so as to provide the reader with results that can be

used for the purposes of comparison with other work presented

elsewhere in the literature. In all of our experiments, we have

set so as to achieve a precision .

In Figs. 9–13, we investigate the effect of added image noise

on the reconstructed height. In the top row of the figures, from

left to right, we show the input images with zero added noise,

and with added noise with zero mean and a standard devia-

tion of 0.3 and 0.5 grey levels. In the second and third rows

of each figure, we show the reconstructed height and the differ-

ence between the ground truth and reconstructed height using

our method. In the fourth and fifth rows we show the corre-

sponding results obtained using the Frankot and Chellappa [21]

method, and the sixth and seventh rows those obtained using

the Horn and Brooks [10] method. The main features to note

from these plots are as follows. First, our method gives good

reconstruction of the surface detail even under the highest level

of noise. Second, the errors obtained with our method are con-

fined to the boudaries of the objects, and the locations of sharp

surface cusps. Third, the Horn and Brooks method recovers sur-

faces that show significant error over the entire object.

We show the results for the image of “Lena” in Fig. 14. Un-

fortunately, mean-squared error measures could not be provided

since there is no ground truth available for this image. Nonethe-

less, we have investigated the effect of added image noise on the

reconstructed height by adding noise with zero mean and known

standard deviation. In the figure, the top row shows the results

for the noise-free image. The second and third rows show the

Fig. 16. Surface height recovery results. First row: Input images. Second and
third rows: Recovered height and mean-squared error for our method. Fourth
and fifth rows: Recovered height and mean-squared error for the method of
Frankot and Chellappa. Sixth and seventh rows: Recovered height and mean-
squared error for the method of Horn and Brooks.

results for the noise-added imagery with standard deviation of

0.3 and 0.5, respectively. For each row, we show, from left to

right, the input image, the recovered height for our algorithm

and the depth maps for the algorithms of Frankot and Chellapa

[21] and Horn and Brooks [10].

In Fig. 15, we repeat the noise sensitivity analysis for the re-

constructed height data. The plots show the mean squared height

error as a function of the noise variance for the objects studied

in Figs. 9–13. In each plot, the dotted curve is the result obtained

withourembeddingmethod, thedashedcurve thatobtainedusing



20 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 1, JANUARY 2007

Fig. 17. Surface height error as a function of the angle between the light source and the viewer directions for the teapot.

TABLE I
PROCESSING TIMES FOR THE SURFACE HEIGHT RECOVERY PROCESS

the Frankot and Chellappa’s method, and the solid curve is that

obtained using the Horn and Brooks method. The height errors

obtained using our method are consistently lower than those ob-

tained with the two alternatives. It is interesting to note that the

slope of the curves are very close, but that the error at zero noise

is smallest for our method. This means that even when there is no

added noise, the alternative methods result in significant surface

reconstruction error. In other words they exhibit bias.

Next, we turn our attention to the effects of variation in light

source direction. For this study we use the teapot. To this end, we

have generated a set of six images illuminated with a single light

source positioned in the direction .

For our experiments, we have set and varied the

angle .Inorder toavoidself-shadowingeffects,wehavelimited

our attention to the values of the angle between 0 and 50 .

In the top row of Fig. 16, we show three of the images in our

dataset. Here, we have ordered the example images, from left

to right, in increasing , i.e., 0 , 20 , 50 . The second

and third rows in the figure show, again, the recovered height

and, the difference between the recovered and the ground-truth

heights. The results for the methods of Horn and Brooks and

Frankot and Chellappa are shown in the bottom rows. The errors

are largest at highly inclined locations on the surface. Whereas

the effect of varying the light source direction is to magnify the

errors for both methods, our algorithm is more robust and de-

livers better results. Fig. 17 provides a quantitative investiga-

tion of this effect. Here we plot the mean-squared height error

for the three methods as a function of the angle between viewer

and light source directions. In the left-hand panel, we show the

mean-squared error when our heat flux method is used to recover

the surface normal directions. The right-hand panel shows the

error plots when the Worthington and Hancock method is used.

Again, the error for the alternatives is consistently larger than

the one given by our method.

Finally, we present timing statistics for our method and the

other two alternatives. All our experiments were performed

on a Pentium 4, 3-GHz PC. It is worth noting that the imple-

mentations of our method and those of Horn and Brooks and

Frankot and Chellappa are not fully optimized, and, hence,

the timings shown below are provided as an illustration of the

algorithms performance. The method of Horn and Brooks [10]

hinges around solving a Poisson equation subject to the natural

boundary condition. In this case, a solver based on the finite

element method was used. In the method developed by Frankot

and Chellappa [21], integrability is enforced making use of an

optimisation process in the Fourier domain. Here, we have used

a fast Fourier transform (FFT).

In Table I, we show the processing times for the results pre-

sented in Fig. 15. In the table, we show the mean and variance for

the height recovery timings when processing the imagery with

different levels of added noise. From the table, it is clear that

the algorithm of Horn and Brooks is the one whose computa-

tional complexity is largest. This is due to the differential equa-

tion solver invoked by the method at runtime. Our algorithm is

slightly more computationally intensive than the algorithm of

Frankot and Chellappa, but much more efficient than the one of

Horn and Brooks.

VI. CONCLUSION

In this paper, we have presented a novel approach for re-

covering the 3-D representation of the object from a single

image making use of shading information. The contributions

are twofold. First, we have shown how the heat equation can

be used to recover the field of surface normals. To do this, we

have introduced a scalar field that evolves with time under the

heat equation. The component of the surface normal is the

normalized image brightness, and the azimuthal component

of the surface normal is computed using the gradient of the

scalar potential. We demonstrate how the scalar potential can

be recovered by solving a simple difference equation using

a computationally efficient finite difference method. This

approach leads to a parameter-free model which constrains

the surface normal to satisfy Lambert’s law. Second, we have
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posed the problem of recovering the surface height as a that

of embedding the field of surface normals into a manifold that

resides in a Euclidean space. We have also shown how the

complexity of the embedding process may be greatly reduced

by a subsampling approach. We have performed experiments

on synthetic and real-world imagery.

There are a number of ways in which the work reported in

this paper may be further extended. First, we aim to explore

how constraints from differential geometry can be incorporated

into the heat-flow smoothing process. This is a problem that

has been extensively studied in the context of Beltrami flows

[25] and may allow us to incorporate information concerning

surface topography. Second, we aim to explore more deeply the

relationship between the scalar potential and the structure of

the underlying surface. For instance, it would be interesting to

explore the relationship between the divergence of the scalar

potential and the surface curvature.
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