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wavelet models
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Abstract: Identification of linear and nonlinear tinvarying systems is investigated and a new
wavelet model identification algorithm is inthaced. By expanding each time-varying coefficient
using a multiresolution wavelet expansion, the time-varying problem is reduced to a time invariant
problem and the identification reduces to regoesselection and parameter estimation. Several
examples are included to illustrate the application of the new algorithm.
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as random processes, the coefficients can then be
. estimated using Kalman filtering. The problem with this
1. Introduction approach is the need to determine an appropriate model

: .for the coefficient trajectorgeand how to estimate the
There are many cases where the signals encountered in

applications, such as in epch processing and seismic parameters.

analysis, fail to satisfy the stationary assumption. This Parametric identification of linear and nonlinear
has led to a growing interest in nonstationary signal time-varying systems is possible if the time-varying
processing including time-frequency representations coefficients can be expanded as a finite set of basis
(Jones and Parks 1992, Sattar and Salomonsson 199%unctions. The problem then becomes time-invariant
Potamianos and Maragos 2001), time-varying spectral with respect to the parameters in the expansions and is
analysis (Cheet al 1991, Cakrak and Loughlin 2001), hence reduced to regressiselection. The two main
and time-varying parametric methods (Kozin and problems, which are encountered when this approach is
Nakajima 1980, Grenier 1983, Niedawiecki 1988, applied to general time-varying systems, include how to
Tsatsais and Giannkis 1993, Young 1994). In contrast choose the basis functions, and how to select the
with most nonparametric methods including narrow- significant ones from the family of the basis functions. If
band filtering, complex demodulation, short-time these problems can be solved, the final model can be
Fourier transforms and several transformations leading expressed using these “significant” basis functions.

to time-frequency representations which are relatively
well established, alternative parsimonious descriptions
can be employed in cases where the signal can be
described by a time-varying parametric model.

Several classes of functions have been proposed, as a
solution to the first problem, including Legendre
polynomials and Fourier bases i.e. sine/cosine functions
(Niedzwiecki 1988). The normal solution to the second

Several approaches have been adopted to deal withproblem is to truncate the function expansions at an
time-varying modelling problems. One of the most appropriate order, and tceelect significant terms
popular approaches to identify a time-varying system is according to some practical rule.
to employ an adaptive algorithm under the assumption
that the time-variations are slow so that the system
trajectory can be tracked. In order to guarantee that an
adaptive algorithm can track time variation of the

An alternative approach is to use wavelets as the basis
functions. Wavelets have excellent approximation
properties which outperform many other approximation
system, several assumptions are needed and moreSChe.mes and are well-suited fo_r approximating .ge'.‘.efa'

nonlinear signals, even those with sharp discontinuities.

explicit modelling of the variation of the coefficients is Wavelets h found licati : ¢
required. One approach is to use a stochastic model. avelets have found many applications in system

structure where the coefficietrajectories are regarded identification including the works of Tsatsanis and
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Giannakis (1993); Coca & Billings(1997), Billings and unmeasured disturbances. A rigorous derivation of the
Coca (1999),Sureshbabu and Farrell (1999). NARMAX model and many applications have been
proposed in the literature (see Leontaritis and Billings
1985, Billings and Chen 1989a, Chen and Billings
1989a, Tabrizi 1990, Cooper 1991, Noshital 1993,
Jang and Kim 1994, Aguirre and Billings 1995, Tabrizi
1998, Radhakrishnast al 1999, Glass and Franchek
1999).

Tsatsanis and Giannakis (1993) introduced a wavelet
basis for time-varying system identification for linear
systems by expanding the time-varying coefficients as
the combination of multiresolution dyadiperfect
reconstruction filter banks (PRFBs). TheF-test andAIC
method were then used to select the significant terms. In
the present paper nonlinear time-varying systems are . .
studied and an alternative approach is introduced. Thisz'2 |npUt_'OUtPUt representation of time-
consists of expressing theang-varying coefficients as varying systems
multiresolution wavelet series expansions and using the
orthogonal least squares (OLS) algorithm and therror
reduction ratio (ERR )(Korenberg & Billingset al 1988,

Consider the time-varying NARX model as an
example to illustrate the expansion of the coefficients as

Billings and Chenet al 1989a,1989b) to replace the ?hﬁr}'te stgt O; ba3|ts fkl;nctlonls. Exp_ar|1d|fn3 (1)egy glefmmg
perfect reconstruction filter banks and tRetest and € function () 0 be a polynomia 9_ egree gives
AIC method which were adopted by Tsatsanis & the representation (Korenberg and Billirgysl 1988)

Giannakis (1993) in the linear model case. M
t) = (t)p: (t) +e(t 2
The paper is organised as follows. Section 2 v ;a()p'() e(t) @)

introduces the input-output representation for nonlinear \yhere

systems. In section 3, wavelet theory is briefly reviewed _ m

to provide the basis of multiresolution expansions for Po(t) =1, a,(t) = 8, = const

arbitrary functions. Although weelets have been widely g, (t) is time-varying parameter

used in many fields, not much work has been done on

applying them in time-varying system identification. P (®) = y(t—n)--y(t-njult—m)---ut-m,).
Based on a multiresolution wavelet expansion, we i=212--,M

propose a new approach for time-dependent parameter
estimation, and this is introduced in section 4. Examples
are provided in section 5, and conclusions are given in o<m,m,,---,m <n,, k,j>0
section 6.

1<n,n,,---,n; <n,

n+Ny+--+N +M+m, +---+m <
and

2 Problem representation j = 0 indicates thatp, (t) contains noy(-) terms

k=0 indicates thatp,(t) contains nou(-)
2.1 Modelling nonlinear systems terms

A generic model for nonlinear systems, the |feach coefficienta, (t) can be approximated by a
NARMAX, which was introduced by Leontaritis and

Billings (1985), has been developed in several papers linear combination of some basis functiods(t) , say,
(see, for example, Chen and Billings 1989a, Billings and s — 12,---,L

Chen, 1989a). NARMAX can describe a wide range of

nonlinear dynamic systems and includes several other L

linear and nonlinear model types, including the Volterra, a(t) = 249,(')@, ) 3)
Hammerstein, Wiener, AR, ARMA, ARMAX, and /=1

bilinear models as special cases. then the identification can be implemented by estimating

The NARMAX (Nonlinear Autoregressive Moving the time-invariant coefficientd’} 7\ . Substituting
Average with eXogenous inputs) model takes the form . . ) B .
of nonlinear difference equation (3) into (2), gives a set of linear equations, which can be
solved by several methods in the least-squares class of
YO = T =D yt=n, )ue =D, ut=n,)ef -1, &t =n.))+ &) algorithms providing the significant terms can be

(1) selected.

In the approach proposed below, multiresolution
_ wavelets and scaling funotis, which will be discussed
the input and output vectorfl, and n, are the in the next section, are used as the basis functions to

maximum input and output lags, respectively. The noise exp(;elss the time dependenefiients in time-varying
. . i models.

variable €(t) , with maximum lagn,, accommodates

the effects of measurement noise, modelling errors and

where f is a nonlinear mapping(t) and y(t) are

2



3. Wavelet transforms and wavelet
series

Among almost all the functions used for
approximating arbitrary signals or functions, none has

where ¢ is the Fourier transform of the functign.

The inverse transform (6) guarantees that the function
f (X) can be reconstructed from the CWT and it can be
interpreted in at least two different ways. On the one

had such an impact and spurred so much interest ashand, this shows how to reconstruct the functibn

wavel ets. Multiresolution ~ wavelet  expansions

from the wavelet transform and, on the other, the inverse

outperform many other approximation schemes and {ansform gives a recipshowing how to write any

offer a flexible capability for approximating arbitrary

functions. Wavelet basis functions have the property of

localization in both time and frequency. Due to this
inherent property, wavelet approximations provide the
foundation for representing arbitrary functions
economically, using just a small number of basis

functions. Wavelet algorithms process data at different

scales or resolutions.

Wavelet analysis is based on a wavelet prototype

function, called theanalysing wavelet, mother wavelet,
or simplywavelet. Temporal analysis is performed using

a contracted, high-frequency version of the same

function. Because the signal function to be studied

arbitrary f as a superposition of wavelet functions
(Da,b(x)'

3.2

In practical applications the CWT is often discretised
in both the scaling and dilation parameters for
computational efficiency. Badeon this discretization,
wavelet series can be introduced to provide an
alternative basis function representation to the
conventional series expansion, for instance Fourier

series, for a function il.” (R) .

Wavelet series

can be represented in terms of a wavelet expansion, data

operations can also be performed
corresponding wavelet coefficients.

using the

3.1 The continuous wavel et transform

For a given function f € L*(R) , the continuos

wavelet transform (CWT) with respect to thaother
wavelet @ is defined as (Chui 1992, Daubechies 1992).

W, F)@b) =" f(X)¢s, (dx

where @, (X) is obtained by scaling and dilating the

(4)

mother waveletp(X) as follows:

Pap(X) = Ial_llzco(x%ab), abeRa=0, (5

Equation (4) states that the continuous wavelet
transform (W, f)(a,b) is the correlation of f (x)

with a scaling ofaand a shift (translation) db. The
over-star “*" above the functiow, , (X) indicates the
complex conjugate.

The CWT (4) is invertable subject to a mild restriction
imposed on the wavele , in the sense that

f(x) - Cij;’—aj (W, F)(@.b)lg,,(x)db ©

with

a2
C ZIdea)<oo
T

(@)

The most popular approach to discetise the CWT is to
restrict the dilation and translation parameters to a

dyadic lattice asa, =27 and b\ = k27 with
j,k € Z. Other non-dyadic ways of discretisition are
also available.

For a givenorthogonal wavelet ¢ , introduce the
following derivative functional family

(/’j,k(x)zzj/zQ’(sz_k)' j.keZ, (8)

then for any functionf € L*(R) , the CWT can be
expressed as

Cix :(V\é,f)(zj ,kZi):<f,¢j’k >, j,keZ (9)

Hence the discrete wavelet transform (9) and the
wavelet family (8) can be viewed as discretised versions
of the CWT (4) and the inversion formula (6), and every

f € L>(R) can be uniquely described as

F9=3 3¢ ()

j=—00 k=—00

(10)

where the convergence of the series in (10) ikiR)
namely

J, K,
L e Z k;fj,kcoj,k (x)|=0 @)

In general, however, it isot necessary to require
{®,«} tobe an orthogonal basis bf (R)

<@ Pm>=0;,06 j.k.t.mezZ (12)

k,m



The following two conditions a&rsufficient to guarantee
a wavelete will form a wavelet series (Chui 1992)

(i) The function family {¢; ,}; ., isa Riez basis of

L*(R), in the sense that the linear span of

@ is dense in L*(R), and there exist positive

constants A and B, with 0 < A< B < o0, such

that

- 13
AY Sl X Yo <sz2\c [
j=—o0 k=—o0 j=—o k=0 ==

for all doubly bi-infinite square-summable

sequences {C; , } -

(ii) There is some function @ € L*(R), such that the
family {3, } , ., defined similar to (8) isa

Riesz basis of L*(R) and is dual 0{@;,} ez in
the sense that
<P Pim >=0), O 1K LMEZ (14)

k,m
If {¢;,}is an orthogonal basis dt*(R), then it is

clear that (14)holds withp, , =@, , or p =0
Theoretically, if the dual pai(@,) exits and the

above conditions (i) and (ii) hold, then every
f € L*(R) can be uniquely written as
f(x)= z< f,(ﬁj,k >0 (%) (15)

j ke

and this is called avavelet series. In comparison with

the CWT, the wavelet series is more computationally
efficient. But this is obtained at the expense of increased f(X)=--

restrictions on the choice of the basic wavepet

3.3  Orthogonal wavelet basis and

multiresolution analysis

It is known that for solving identification problems

based on the regression repentation it is useful to

(i) The famil{o; ,} constitutes an orthogonal basis
for the spacé’(R);
(if) There exits a functiog , called ascaling function

related to the mother wavelet, such that the elements

of the family{#(t — K)},., are mutually orthogonal;

(iii) For any givenj € Z, the family

. j/ j
{¢j,k . ¢j,k(x) =2 2¢j,k (ZJ X—= k),k € Z}
constitute an orthogonal basis fbf (R) ;
(iv) The family{@; \,®;y}sj xez @lsoformsan
orthogonal basis fot* (R) .

To satisfy the above aims, an orthogonal wavelet can
be constructed usingultiresolution analysis (MRA).

First introduce wavelet subspadé , j € Z, which
are defined as the closure of the linear span of the
wavelets{¢;  } ., , namely

W, = span{g, , .k € Z} (16)
which satisfy
W, NW, ={ &}, foranyi = ] (17)

where the over-bar denotes closure. It follows that
L*(R) can be decomposed as a direct sum of the

spacesW, :
L*(R)=---®@W, ®W, W, D --- (18)
in the sense that every functidh € L?(R) has a
unigue decomposition
+0,00+ G (MG +=>9;(x) (19)

jez

The circles around the pleggns in (18) indicate
“orthogonal sums”. The decomposition of (18) is usually

called arorthogonal decomposition of L*(R) .

For eachj € Z, consider the closed subspaces of

have a basis of orthogonal functions whose support can |_2(R)
be made as small as required and which provides a
--@ij2 @WH, jeZ

uniform approximation to anjLz(R) function. One of Vj = (20)

the original objectives of wavelet theory was to which have the following properties:

construct orthogonal (biorthogonal) basisliA(R) . _
@i -~-cVycV,cV, -,
The principles for constructing orthogonal wavelets
are as follows: S —
(i) (UVJ) =L?*(R) (the over-bar here indicates
jez
closure),



@ii) [ |V, ={21, 1 if xe[0))
Dz : N, (X) = X oy (X) = { otherwise (25)

(iv) VJ+1 VJ ®Wl Jes.an Setting N,, as the scaling function, that is,

jeZ. #(X) = N, (X), then both the wavelet and the scaling

o _ 5 function can be expressed in terms of the scaling
Then it is clear that every functioh € L°(R) canbe ¢ nction N_(x) as follows

approximated as closely assttable by the projections

V) f(QeV, = fxeV,

j+1

P, f in V. Another important intrinsic property of H(X) = Zm:CkNm(ZX_ K) (26)
these spaces is that more and more variatiorfs’j df k=0
are removed a§ — —o . In fact, these variations are 3m-2
peeled off, level by level in decreasing order of the rate p(X) = de N, (2x-k) (27)
of variations (frequency bands) and stored in the k=0
complementary/V/; , as in property(iV) . with the coefficients given by
. 2 1 (m
Now for every functionf € L°(R), the wavelet c = 28)
. . k m-1
series expansion can therefore be expressed as 2 k

f(X) Zajo k¢]0k(x) ZZﬂJ k¢]k(x) (21) .
i>jo d, = Zm_l z - j+D, (29)
where 'the w.avelet coefﬁment@z]’k and B, are K= 0L 3m—2.
theoretically given by the inner products:
. Clearly, the support of thAnth order B-spline wavelet
a=<Tf,4; >= '[ f (X)), (X)dx (22) and the associated scaling function are

ﬂj,k =< f,(Pj,k >= J. f (X)§0j,k (x)dx (23) suppg = supiN,,, = [0,m] (30)
. . - suppy = [0.2m-1]
However, in practice the abexcoefficients are usually
estimated during identification. Using the concept of Both the B-spline wavelet and the associated scaling
tensor products, the series expansion (21) can easily be  function are symmetric in their own support. The most
generalised to the muti-dimensional cases, this willbe  commonly used B-spline wavelets are the linear
discussed in a later section. (m=2) and cubic M= 4) cases, both of which can

. . . be expressed explicitly.
3.4  Multiresolution B-spline wavel ets P prctty
The B-spline wavelets have been selected in the

For many applications, it is not essential for the resent study because they are particularly suitable in
wavelets to be orthonormaRelaxing the condition of  gystem identification (Billings and Coca 1999).

orthonormality results in semiothogonal, biorthogonal or
other non-orthonrmal multiroselution approximations. ) _ )
This provides, under some conditions, a more flexible 3.4.2 Mulitresolution B-spline wavel ets

framework for function approximation. . . . .
P A multidimensional multiresolution  wavelet

. decomposition(expansion) can be defined by taking the
3.4.1 B-splinewavelets tensor product of the one-dimensional scaling and

B-splines as piece-wise polynomial functions with wavelet functions (Mallat 1989). Lek e |_2(Rd) ,
good local properties, were originally introduced by
Chui and Wang (1992) as wavelet and scaling functions )
in multiroselution expansions. wavelet series as

The B-spline function omth order is defined by the f (X1""1Xd) = Zajo X0 ok (X1""1Xd)
following recursive formula (Chui 1992): ’ '

N (9 = = Ny (9 47— Ny (1) T2, (24) +ZZZﬂ“"P‘” X %) (31)

izjo k 1=1

then f(X) can be represented by the multiresolution

with



wherek = (K,,K,,--,k,) € Z% and 4.  Time-varying system
W12 T 4 (o] identification using wavelets
q)jo,k(x11""xd):2° H¢(20Xi_ki) (32)

7 4.1 Expanding the time-varying coefficients
PO (%, %) =292 @' % —k) (33) into multiresolution wavelet series
= The multiresolution wavelet and scaling functions

will now be used as the basis functions to describe the
time-varying system models represented in section 2.

mother wavelet) but at least ong?") =g . Consider the model (2), and chooée(t) in (3) as
Theoretically, the wavelet coefficients are given by the multiresolution wavelet and scaling functions. In such a
inner products: case, each coefficierd, (t) can be expressed as

with 77“) =¢ or ¢ (scalar scaling function and the

o =< 1,0, >= J.f(x)CT)]k(x)dx (34) G LK
i a)=>alg O+ Ble,t) @7

0 _ p) _ Y k=ko i=lok=ko
B =< £,90) >= jf(x)\y Tk (X)dx (35)
' ’ e Substituting (37) into (2), yields

In the two-dimensional case, the multiresolution M K 0
approximation can be generated, for example, in terms y(t) =  + z Zajo,k¢j0,k (t) P, ®
of the dilation and translation of a two-dimensional i=1 k=ky

scaling and wavelet functions K
J K

M .
Dk x,y)= Pix (X)¢j,k2 (y) + Z Z Zﬂj(l)kwjk(t) p (1) +e(t) (38)

0 i=1 j=jok=ko
Wik, 6 Y) =95 (X9 (Y) o o _ .

@ (36) This is a time-invariant equation with respect to the
Fila, X V) =0, (99, (¥) parameters of the wavelet coefficien{tsxﬂ))yk} and

\Pj(i)l,kz (X, ¥) =, (@, (¥) {ﬂj('l)(} . Define

Although many functions can be chosen as scaling _
and wavelet functions, most of these are not suitable in @) PO =[p. ). p. ). . Py (1)]
system identification applications, especially in the case (4o _T _ s
of multidimensional and multiresolution expansions @) TO =146, ©): o102 0), ’¢J°'Kio (0]
because of the curse-of-dimensionality.  An _
implementation, which has been tested with very good (d3) Al)=PHST()
results, involves B-spline scaling and wavelet functions 4, (Y =T . .
as the regressors (expansion basis) (Billings and Coca( ) A O=10 O 2,4 O, @ik, (®]
1999). Furthermore, not all the B-spline wavelet and L
scaling functionsare used when modelling a dynamic (d5) Bj (t) = P(1) ®Ai ), J=JoJo+1-,J
system. Since the B-spline wavedeid scaling functions . T .
have local support and since the position of each basis(d6) B(t) =[B; (t),B; ., (), --,B;(t)]
function is determined by an integer multi-index

® @

. . T _ )
k={k,,K,,"--,ks}, only a finite number of basis (d7) « —[(Z,-O,ko,(Zjo,koJrl,"',Oljo,KjO :
functions will have relevance for a particular model

structure. It is obvious that only the functions whose aPBeaD et
support contains data points should be considered as

candidate model terms. Thus in this case there is no need aqM) a(M) a(M)

to solve the problem of positioning the centers of the Jorko " oko 17 1o, Ky
basis functions, which is normally associated with the

radial wavelet basis functions. Therefore, in practice (d8) ﬂjT :[ﬂj(lao,ﬂj(l,)(o+l,---,ﬂj(12< :
most of the coefficients ithe expansion (21) or (31) ' ' o

have negligible values and can be ignored, and this will ﬁ_(Z) ﬁ_(2) ﬁ_(Z)
lead to a very economicalpeesentation of the function ko 777 Jiko 17 1K
f(x). M)

(M) . (M)
Bixls Bk &k



) B =[] .81 5]

where the symbol ® " denotes theKronecker product.
Now, (38) can be recast as

y(t) = a, + A()a + B(t) 5 + €(t)

If N measurements of the input and output are
available, (39) can be written in a compact matrix form
as

(39)

Y=HO+¢ (40)
where
=ly® y@ -+ y(N)]
e=[e@.e(?), --,e(N)]
1 AQ BQ@
|1 AQ@ B©®
1 A(N) B(N)

"=[6, @' B'1=16,.6,, .6
0, =8,

Here, the symboh(«, f3)is used to indicate that the

number of unknown parameters in (40) dependents on
the selection of the basis functions in the wavelet
expansions.

n(a,ﬁ')] '

The parameter vectd? in (40) can now be estimated
using a least-squares-based algorithm or a prediction
error routine (Billings and Voon 1986). Notice, however,
that the number of possible terms in the model is very
large and this is why detecting the model structure is a
vitally important problem in nonlinear system
identification. The problemis even more acute for
nonlinear time varying models. The orthogonal least-
squares algorithm (OLS), whose purpose is to
orthogonalize all the terms in (40) by introducing an
auxiliary orthogonal model, is one of the most efficient
techniques that address this problem. The error

YO =38 OyE-0)+ Yb, (Oult - )+ 6, et k) + e(t)
i-1 =1 k=1

(41)

where &, (t),b; (t) and c,(t) are time dependent

coefficients which can besstimated from measured
values of y(t),u(t) and e(t) by expanding

g (t),b;(t) and ¢, (t) as multiresolution wavelet
series.

The values of the noisg(t) are not normally available
for measurement and these are usually replaced with the
residuals computed agt) = y(t) — 9(t|t —1), where

)7('[|t—1) is the one-step ahead predicted output. This
leads to the modified model used in practice
p q s
y(t) =2 a @Oy(t-i)+ 3 b @Qut—i)+ > d O)r(t—i)+et)
i=1 i=1 i=1
(42)
Expanding the coefficien@, (t) , b (t) and

d, (t) as a multiresolution wavelet series, the model (42)
becomes

() = Y2 (1) + Y, (1) + y5(t) + €(t)

where

(43)

y,(t) = ZZafj'%ok(t)y(t—l)+ZZZﬂ‘a"¢J,k(t)y(t—i)

i=1 j=jo k

(44)

Y, (t) = zzab')¢,0k(t)u(t—l)+222ﬂ, ‘9, (Ou(t-i)

i=1 i=1 j=jo k

(45)
ACESHHCINCIEDED W WIS
(46)

In practice,J;, J, andJ, are often chosen to be the

reduction ratio (ERR) values can then be used as asame values,ieJ, =J,=J;=J.

measure of the significancef each candidate model
term. Because the values tife error reduction ratios
depend on the order in which candidate terms are
orthogonalized into the regression equation, simply
orthogonalizing candidate terms in an arbitrary order
may result in incorrect information regarding the
significance of terms. In order to overcome this problem
the forward regression orthogonal algorithm was
introduced (Billings and Chen 1989a, 1989b).

Consider the time-varying ARMAX model, which is
as a special case of the time-varying NARMAX model,
to illustrate the approach

4.2

Theoretically, the multiresolution wavelet expansion
contains an infinite number of terms, but in practice only
a finite number of basis functions are needed to

Selecting the multiresolution levels

, approximate a given nonlinear signal/function. However,

finding or selecting the appropriate basis functions, also
known as the structure selection problem, represents a
very important step in constructing a parsimonious

mapping f from the regression space to the output
space. The multiresolution wavelet basis set



G ={4.,0,, o, 1. KL EZ, [ <[} will in
practice be truncated by including only the scaling
functions with the given initial resolution leve}, and
the wavelet functions with the resolution levels frgg

to a certain scald In addition only those basis

= Jmax

functions whose support contains the sampled data

where 0 is a small positive number. For each

xe[a,b]®, where[a,b]is in the problem interval,
introduce the following index set

1@ —{(},k): %, €S, j,keZ}

)
I m

Similarly the symboIsS]-(f”k) and pertaining to the

points will be considered. The highest resolution or scale scaling functionsp. . can also be introduced, such that
]’ 1

will be such that at least one observation is within the
support of the corresponding wavelet.

Assume thal-samples of observations are available
from the following input-output system

y, = f(x)+e, i=12---,N
e[oy

f € L?(R) can be constructed front and Y, using

(47)

where X Z[Xu,Xg,i, "'!Xd,i]T

the d dimensional mutiresolution wavelet expansion
(31) subject to some restrictions.X; is uniformly

distributed on[01]?, then the loglog type of statistical
laws offer a rough interval for selecting the highest
resolution scalej max (Sjoberget al 1995)

N 2N

< d'jmax <

InN “InN

Since most practical identification problems fail to
satisfy the uniform distribution assumption, the estimate
(48) provides only a rougimdication for the upper scale

A practical approach is to selegt such that a

(48)

Jmax'

| & :{(j,k):xmeSJ(f”,(),j,keZ}

Then the union of r(f"), I r(n"’) ,mn=212---,N, gives

the indices of the wavelets whose supports contain at
least one data point. This results in a reduced set of basis
functions

w={g,-,k (1K) e@lé“”}U(glx‘)}

KEZ,jo << jmml (49)

whereg; , denotesp;, or ¢, . The basis functions

setWin (47) forms the initial regressor set which is used
to build the model structure.

Once the regressor set has been determined, the
structure selection and parameter estimation procedure
can be implemented by means of several algorithms. In
the present study therthogonal forward regression
(OFR) algorithm (Korenberg and Billingst al 1988,
Chen and Billings 1989b) will be used beca@§dR can
arrange the candidate model terms in the order of

minimum number of observations hit the support of each significance and provides an effective and upwardly

basis functiong; | . Features, such as the natural

frequency, for example, of the sampled signal can also
be considered when determining the highest resolution
scale. Assume that the maximum natural frequency of

the sampled signals i then the upper scale

max ?

can be empirically chosen gs,, =[log,(Mf )],

J max

where M is a positive number between 10 and 20 and

extendible method of selecting the relevant model terms.

4.3

In some cases it is more convenient to select the
starting resolution level and the range of the shift
parameters if the sample data has been normalized to the
unit interval [0,1], this is gmecially true when the Haar
wavelet (the first-order B-spline wavelet) and scaling

Data pre-processing

[-] denotes taking the integer value of the corresponding functions are chosen as the expansion basis. The Haar

number.

Denote the support of the basis functiopu§k as
(Zhang 1997)

{x:|p,, (] % 0,].ke Z,xe R},
@, x iIscompactigupported,

{x: ‘(p]-'k(x)‘ > 5mxa*¢)j'k x),j,keZ,xeR",
@, x iIsnotcompactlgupported,

wavelet is very simple, but it does possess almost all the
properties of multiresolutioanalysis. In some cases, for
example if the system cdigients are known to be
piece-wise constant, that is where the system exhibits
discontinuous jumps, then the Haar basis may be the
best choice for depicting this behaviour.

Assume that all the observations fall into the finite

interval[&, b], in order to deal with the end effects at

both ends of the data record, the common practice of
periodically extending the available data , as well as the

coefficients@, (t) beyond[a, b] can be followed. The
original data infa,b] can now be normalized to the



unit interval [0,1] by means of the following simple Some examples are described below to show the

linear transformh application of the new multiresolution wavelet models in
the identification of time-varying systems.
h _

¢ elabl>¢ <[0] 5.1  Sunspot data

with The Wolf sunspot data is a very well-known data set
_~ (-a and records the annual sunspot index from 1700
¢ = (50) onwards (Priestley 1988). The main feature of this time

b-a series is a cycle of activityarying in duration between

9 and 14 years, with an average period of approximately

This will result in equivalent daty(¢’) = y(¢) ,and 11.3 years. Another feature tfe series is that in each

equivalent coefficient@®, (47) =a(<). cycle_ the rise to the maximum tends to h_a\_/e a steeper
gradient than that of the fall to the next minimum. This
The algorithms proposed in this section can be suggests that a nonlinear model might be appropriate
summarised as and many different models have been fitted to this data
. set (Priestley 1988). However, few time-varying models
(i) Choose a class of wavelgtand ¢ , have been fitted to this data.
(ii) Pre-process the sampled data (where necessary), In the present study the application of the new
wavelet identification procedure derived above will be
(iii) Determine the start resolution scag and the applied to fit a simple time-varying AR model to the

sunspot data. The objective here however is not to find
the definitive model for the sunspot data but rather to
use this data to illustrate the new algorithm on a well
known real data set. The initial candidate term set was

maximum scald, as well as the order of the model,
such a9, g, sin the time varying ARMAX model
(41), based on prior knowledge and computational

constraints, . ;
! defined by a 3-rd AR model and the wavelet expansion
(iv)For j = J,,Jo +1---,J, select the candidate scales jo=Jnu, =2 and J=j,,=4 . The
wavelet and scaling functions from the family coefficient trajectories caesponding to the model are
shown in figure 1 together with the one-step-ahead

composed of all the possible functiges } ., predictions.

and {@, },., - The candidate functions are _ _ ) )
' 5.2  Modédling a flight vehicle simulator

those, whose support contain sample data points. Figure 2 shows 1000 sampled input and output data

(V) Perform model structure selection and parameter  that were collected from #light vehicle experimental
estimation using th&FR algorithm, simulator. The inputi(t), a squared voltage excitation
signal with unit amplitude, was the input to the servo
system. The outpuy(t) was the spin angle of the flight

(Biglggslggg)Voon (1983), Billings and Zhu vehicle simulato_r. The objective _here is to build a_simpl_e
' ' model to describe the system input-output relationship
Notice that, the proposed identification procedure is using a time-varying ARX model. The following time-
not limited to the wavelet basis case. Other bases canvarying ARX structure was chosen according to
also be employed if there ®rong evidence that they theoretical analysiand prior knowledge

can yield a sparse expansion of the time-dependent B
coefficients. In addition, the proposed identification y(1) =3, +2,(Oy(t -1+ a, () y(t - 2) + a (Ou(t - 4) + &)

(vi) Validate the model using f@xample the tests in

procedure has the capability to estimate the lagged (51)
model terms. For example in the simple case of an AR
model of true orderp, , where p, is unknown. Expanding the coefficientd, (t) into a multiwavelet

- ~ . series, the time-varying model (51) becomes a time-
Assgr.ung. the order to bep(> o) durlng. the invariant parameter estimation problem. Solving this
identification procedure, then the@FR algorithm problem by employing th©FR algorithm, the wavelet
(Billings and Chen 1989) will reject all the regressors coefficients and hence the time-dependent parameters

corresponding to the expansion of (t) for a (t) can be identified. The identified parameter

P, <i< ﬁ trajectories are shown in figel 3. The one step-ahead
predicted output and the corresponding error are
illustrated in figure 4, which shows that although the

5. Examp|es model (51) is very simple, it can describe the system
well.
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order time-varying AR modetoefficients and the one- @ ©

step-ahead predictions for the sunspot data(“*” indicates

true values; —"indicatesone-step-ahead predictions).
@ a(t); (b)a,(t); (c)ay(t); (d) Sunspot data

and one-step ahead predictions.
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Figure 4. One-step-ahead predicted output and prediction error
for the flight vehicle experimentaubsystem in section 5.2.

: 1 (@) ,(b) The measurements and the one-step-ahead predicted
L ] output; (c) The one-step-ahead prédit error. (“*” indicates
Al true values; “—" indicates one-step-ahead prediction).

5.3 Coefficient estimation for nonlinear
time-invariant continuous time systems

The Inpue u)
o

Although the approach described in section 4 was
proposed for time-varying systems, it can also be used
for the identification of time-invariant linear and
o e e "°2am§;e:7nf,ef°° oo e e e nonlinear systems. As an example, consider the
Goodwin Equation(Coca 1996), a nonlinear time-
invariant continuous system model

The QupLt ()

Figure 2. System input and output for a flight vehicle y2 (t)-1
experimental subsystem. (a) The input—a squared y(t) + a=—,—— y(t) + by(t) + cy®(t) = —Au(t)
voltage excitation signal with unit amplitude; (b) The y (H)+1
measured output. (52)

where a,b, c and A are time-invariant parameters.

25 Under the conditions y(0)=y(0)=0 |,

g 2 — u(t) =sin(t) , witha= 0Lb=-05 c= 05 and

15l o — — — — A =37, a 4th-order Runge-Kutta algorithm was used
2 ‘ ‘ ‘ ‘ to simulate this model toobtain 1000 equi-spaced

e OVWWV\WVMM samples from the input and output with a sampling
-20 200 400 600 800 1000 10

g O h A TN N e

o 200 400 600 800 1000




interval of T = 001 time units. The sampled data will a(t) = 0.8 for 0<t <500, and b(t) was a piece-

be referred to subsequently a#l, =u(kT) , wise function described as follows
Y. = Y(KT). b(t) = 2. 0<t<100 201<t<300 401<t<500 (55
3 101kLt<200Q 301t <400

For this continuous time model identification, the
model structure is assumed to be known. If the Assuming that no prior knowledge about the parameters
derivatives y and Y can be observed or reconstructed, a(t) and b(t) were known, the aim was to identify
the time-invariant parametera,b and C can be these from the above simulated data using the algorithm
estimated using the algorithm introduced in section introduced in section 4. fpanding the coefficients

4.The model (51) can be re-written as a(t) and b(t) into multiresolution wavelet series, the
Z(t) 1 time-varying model (54) becomes a time-invariant
y L. 304\ _ identification problem and the wavelet coefficients can

a(t) y2(t) +1y(t) +bOY(O + <)y () = 1) be estimated using th®FR algorithm. The estimated

(53) values of the parameteg(t) and b(t) are depicted in

. _ figure 6(b), which clearly shows that the wavelet
where  f(t)=-y(t)-Au(t) .  Expanding  expansion can track the pewise varying coefficient

a(t),b(t) and c(t) into multivavelet series, the time-  very well.

varying model (53) becomes a time-invariant model and
the wavelet coefficients can be estimated. The

trajectories ofa(t), b(t) and c(t) are shown in figure 5.

0.105
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Figure 6.System output (a) and the coefficient
estimates(b) for the system in section 5.4.

Figure 5. The true and estited values of the time-

varying coefficients for the model in Eq. (53) 6. Conclusions
Parametric identification of nonlinear time-varying
4 Ti varvin ramet imation systems is simplified if eﬁu time-varying coeff!ment
5 me-varying pa er estimatio can be expanded as a finite set of basis functions. The
The following system problem then becomes time-invariant with respect to the

arameters in the expansions and the main problem then

y(®) =a®)y(t - +bQut-1)+v(t) (54) Eecomes regressioﬁ selection. A muItiF:esqutuion
wavelet expansion of the time-varying model
coefficients has been proposed and implemented using
figure6(a)), whereu(t) and Vv(t) were independent an orthogonal least-squarpsocedure as a solution to
normally distributed random sequences with zero meansthis i(lj“nportahnt problem. This provi]fjei al' flexible

. 2 _ 2 _ . procedure that overcomes many of the limitations
and varianceso, =0, =10 . The coefficients associated with employing the and AIC tests when
many potential candidate terms are involved. The new

was used to generate 500 data sampley/(&) (see

11



algorithm automatically setts the most significant
model terms in the time-varying expansion to provide a
parsimonious representation for both linear and
nonlinear time-varying systems.
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