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Abstract: Identification of linear and nonlinear time-varying systems is investigated and a new 
wavelet model identification algorithm is introduced. By expanding each time-varying coefficient 
using a multiresolution wavelet expansion, the time-varying problem is reduced to a time invariant 
problem and the identification reduces to regressor selection and parameter estimation. Several 
examples are included to illustrate the application of the new algorithm. 
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1.   Introduction 
There are many cases where the signals encountered in 
applications, such as in speech processing and seismic 
analysis, fail to satisfy the stationary assumption. This 
has led to a growing interest in nonstationary signal 
processing including time-frequency representations 
(Jones and Parks 1992, Sattar and Salomonsson 1999, 
Potamianos and Maragos 2001), time-varying spectral 
analysis (Cho et al 1991, Cakrak and Loughlin 2001), 
and time-varying parametric methods (Kozin and 
Nakajima 1980, Grenier 1983, Niedawiecki 1988, 
Tsatsais and Giannkis 1993, Young 1994). In contrast 
with most nonparametric methods including narrow-
band filtering, complex demodulation, short-time 
Fourier transforms and several transformations leading 
to time-frequency representations which are relatively 
well established, alternative parsimonious descriptions 
can be employed in cases where the signal can be 
described by a time-varying parametric model.  

    Several approaches have been adopted to deal with 
time-varying modelling problems. One of the most 
popular approaches to identify a time-varying system is 
to employ an adaptive algorithm under the assumption 
that the time-variations are slow so that the system 
trajectory can be tracked. In order to guarantee that an 
adaptive algorithm can track time variation of the 
system, several assumptions are needed and more 
explicit modelling of the variation of the coefficients is 
required. One approach is to use a stochastic model 
structure where the coefficient trajectories are regarded 

as random processes, the coefficients can then be 
estimated using Kalman filtering. The problem with this 
approach is the need to determine an appropriate model 
for the coefficient trajectories and how to estimate the 
parameters. 

     Parametric identification of linear and nonlinear 
time-varying systems is possible if the time-varying 
coefficients can be expanded as a finite set of basis 
functions. The problem then becomes time-invariant 
with respect to the parameters in the expansions and is 
hence reduced to regression selection. The two main 
problems, which are encountered when this approach is 
applied to general time-varying systems, include how to 
choose the basis functions, and how to select the 
significant ones from the family of the basis functions. If 
these problems can be solved, the final model can be 
expressed using these “significant” basis functions. 

    Several classes of functions have been proposed, as a 
solution to the first problem, including Legendre 
polynomials and Fourier bases i.e. sine/cosine functions 
(Niedzwiecki 1988). The normal solution to the second 
problem is to truncate the function expansions at an 
appropriate order, and to select significant terms 
according to some practical rule. 

    An alternative approach is to use wavelets as the basis 
functions. Wavelets have excellent approximation 
properties which outperform many other approximation 
schemes and are well-suited for approximating general 
nonlinear signals, even those with sharp discontinuities. 
Wavelets have found many applications in system 
identification including the works of Tsatsanis and 
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Giannakis (1993); Coca & Billings(1997), Billings and 
Coca (1999),Sureshbabu and Farrell (1999). 

    Tsatsanis and Giannakis (1993) introduced a wavelet 
basis for time-varying system identification for linear 
systems by expanding the time-varying coefficients as 
the combination of multiresolution dyadic perfect 
reconstruction filter banks (PRFBs). The F-test and AIC 
method were then used to select the significant terms. In 
the present paper nonlinear time-varying systems are 
studied and an alternative approach is introduced. This 
consists of expressing the time-varying coefficients as 
multiresolution wavelet series expansions and using the 
orthogonal least squares (OLS) algorithm and the error 
reduction ratio (ERR )(Korenberg & Billings et al 1988, 
Billings and Chen et al 1989a,1989b) to replace the 
perfect reconstruction filter banks and the F-test and 
AIC method which were adopted by Tsatsanis & 
Giannakis (1993) in the linear model case. 

    The paper is organised as follows. Section 2 
introduces the input-output representation for nonlinear 
systems. In section 3, wavelet theory is briefly reviewed 
to provide the basis of multiresolution expansions for 
arbitrary functions. Although wavelets have been widely 
used in many fields, not much work has been done on 
applying them in time-varying system identification. 
Based on a multiresolution wavelet expansion, we 
propose a new approach for time-dependent parameter 
estimation, and this is introduced in section 4. Examples 
are provided in section 5, and conclusions are given in 
section 6. 

2.     Problem representation  

2.1     Modelling nonlinear systems 

    A generic model for nonlinear systems, the 
NARMAX, which was introduced by Leontaritis and 
Billings (1985), has been developed in several papers 
(see, for example, Chen and Billings 1989a, Billings and 
Chen, 1989a). NARMAX can describe a wide range of 
nonlinear dynamic systems and includes several other 
linear and nonlinear model types, including the Volterra, 
Hammerstein, Wiener, AR, ARMA, ARMAX, and 
bilinear models as special cases. 

    The NARMAX (Nonlinear Autoregressive Moving 
Average with eXogenous inputs) model takes the form 
of nonlinear difference equation 

)())(,),1(),(,),1(),(,),1(()( tentetentutuntytyfty euy +−−−−−−= LLL  

      (1) 

where  is a nonlinear mapping,  and  are 

the input and output vector,  and  are the 

maximum input and output lags, respectively. The noise 

variable , with maximum lag , accommodates 

the effects of measurement noise, modelling errors and 

unmeasured disturbances. A rigorous derivation of the 
NARMAX model and many applications have been 
proposed in the literature (see Leontaritis and Billings 
1985, Billings and Chen 1989a, Chen and Billings 
1989a, Tabrizi 1990, Cooper 1991, Noshiro et al 1993, 
Jang and Kim 1994, Aguirre and Billings 1995, Tabrizi 
1998, Radhakrishnan et al 1999, Glass and Franchek 
1999). 
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2.2      Input-output representation of time-        
            varying systems 

    Consider the time-varying NARX model as an 
example to illustrate the expansion of the coefficients as 
a finite set of basis functions. Expanding (1) by defining 
the function )(⋅f  to be a polynomial of degree Γ gives 

the representation (Korenberg and Billings et al 1988) 
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                               (2) 

where  

       1)(0 =tp , constata == 00 )(  

        is time-varying parameter                       )(tai
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and  

        0=j  indicates that contains no )(tpi )(⋅y  terms 

        0=k  indicates that contains no )(tpi )(⋅u  

terms 

If each coefficient  can be approximated by a 

linear combination of some basis functions, 

)(tai

)(tlξ , say, 
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∑
=

=
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i
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then the identification can be implemented by estimating 

the time-invariant coefficients  . Substituting 

(3) into (2), gives a set of linear equations, which can be 
solved by several methods in the least-squares class of 
algorithms providing the significant terms can be 
selected. 

Mi
L

i ,1
,1

)( }{ =
=llθ

    In the approach proposed below, multiresolution 
wavelets and scaling functions, which will be discussed 
in the next section, are used as the basis functions to 
express the time dependent coefficients in time-varying 
models.  
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3.   Wavelet transforms and wavelet  
       series  
    Among almost all the functions used for 
approximating arbitrary signals or functions, none has 
had such an impact and spurred so much interest as 
wavelets. Multiresolution wavelet expansions 
outperform many other approximation schemes and 
offer a flexible capability for approximating arbitrary 
functions. Wavelet basis functions have the property of 
localization in both time and frequency. Due to this 
inherent property, wavelet approximations provide the 
foundation for representing arbitrary functions 
economically, using just a small number of basis 
functions. Wavelet algorithms process data at different 
scales or resolutions.  

    Wavelet analysis is based on a wavelet prototype 
function, called the analysing wavelet, mother wavelet, 
or simply wavelet. Temporal analysis is performed using 
a contracted, high-frequency version of the same 
function. Because the signal or function to be studied 
can be represented in terms of a wavelet expansion, data 
operations can also be performed using the 
corresponding wavelet coefficients.  

3.1     The continuous wavelet transform  

For a given function , the continuos 

wavelet transform (CWT) with respect to the mother 
wavelet 

)(2 RLf ∈

ϕ  is defined as (Chui 1992, Daubechies 1992). 

dxxxfbafW ba∫
+∞

∞−
= )()(),)(( *

,ϕϕ                      (4) 

where )(, xbaϕ  is obtained by scaling and dilating the 

mother wavelet )(xϕ  as follows: 

)()(
2/1

, a

bx
axba

−
= − ϕϕ ,  ,    (5) 0,, ≠∈ aRba

Equation (4) states that the continuous wavelet 

transform  is the correlation of  

with a scaling of a and a shift (translation) of b . The 

over-star “*” above the function 

),)(( bafWϕ )(xf

)(, xbaϕ  indicates the 

complex conjugate.  

    The CWT (4) is invertable subject to a mild restriction 
imposed on the wavelet ϕ , in the sense that 
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∞
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C
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with  
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∞

∞−
ω
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ωϕ

ϕ dC
2

)(ˆ
                            (7) 

where ϕ̂  is the Fourier transform of the function ϕ .  

    The inverse transform (6) guarantees that the function 
 can be reconstructed from the CWT and it can be 

interpreted in at least two different ways. On the one 
hand, this shows how to reconstruct the function  

from the wavelet transform and, on the other, the inverse 
transform gives a recipe showing how to write any 
arbitrary as a superposition of wavelet functions 

)(xf

f

f

)(, xbaϕ . 

3.2      Wavelet series 

    In practical applications the CWT is often discretised 
in both the scaling and dilation parameters for 
computational efficiency. Based on this discretization, 
wavelet series can be introduced to provide an 
alternative basis function representation to the 
conventional series expansion, for instance Fourier 

series, for a function in .  )(2 RL

    The most popular approach to discetise the CWT is to 
restrict the dilation and translation parameters to a 

dyadic lattice as  and  with j
ja −= 2 j

kj kb −= 2,

Zkj ∈, .   Other non-dyadic ways of discretisition are 

also available.  

    For a given orthogonal wavelet ϕ , introduce the 

following derivative functional family 

)2(2)( 2/
, kxx jj
kj −= ϕϕ , ,          (8) Zkj ∈,

then for any function , the CWT can be 

expressed as 

)(2 RLf ∈

  , >=<= −−
kj

jj
kj fkfWc ,, ,)2,2)(( ϕϕ Zkj ∈,      (9) 

Hence the discrete wavelet transform (9) and the 
wavelet family (8) can be viewed as discretised versions 
of the CWT (4) and the inversion formula (6), and every 

 can be uniquely described as )(2 RLf ∈

∑ ∑
∞

−∞=

∞

−∞=

=
j k
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where the convergence of the series in (10) is in , 

namely 
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2
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1
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J
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K
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KKJJ
xcxf ϕ    (11) 

In general, however, it is not necessary to require 

}{ ,kjϕ  to be an orthogonal basis of  )(2 RL

mkjmkj ,,,, , δδϕϕ ⋅>=< ll  ,  Zmkj ∈,,, l   (12) 
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The following two conditions are sufficient to guarantee 
a wavelet ϕ  will form a wavelet series (Chui 1992) 

)(i   The function family Zkjkj ∈,, }{ϕ  is a Riesz basis of 

, in the sense that the linear span of  )(2 RL

       kj ,ϕ  is dense in , and there exist positive 

constants A and B, with , such  

)(2 RL

∞<≤< BA0

       that  

∑ ∑∑ ∑∑ ∑
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−∞=

∞

−∞=
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j
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k
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j k

kj cBccA
2

,

2

2

,,

2

, ϕ  (13) 

        for all doubly bi-infinite square-summable 

sequences . }{ ,kjc

)(ii  There is some function )(~ 2 RL∈ϕ , such that the 

family Zkjkj ∈,, }~{ϕ  defined similar to (8) is a   

       Riesz basis of  and is dual to )(2 RL Zkjkj ∈,, }{ϕ in 

the sense that 

 mkjmkj ,,,, ,~ δδϕϕ ⋅>=< ll  ,      (14) Zmkj ∈,,, l

If }{ ,kjϕ is an orthogonal basis of , then it is 

clear that (14) holds with 

)(2 RL

kjkj ,,
~ ϕϕ =  , or ϕϕ ≡~ . 

Theoretically, if the dual pair ),~( ϕϕ  exits and the 

above conditions and hold, then every 

can be uniquely written as  

)(i )(ii

)(2 RLf ∈

∑
∞

−∞=

><=
kj

kjkj xfxf
,

,, )(~,)( ϕϕ                 (15) 

and this is called a wavelet series. In comparison with 
the CWT, the wavelet series is more computationally 
efficient. But this is obtained at the expense of increased 
restrictions on the choice of the basic wavelet ϕ . 

3.3       Orthogonal wavelet basis and  
            multiresolution analysis 

    It is known that for solving identification problems 
based on the regression representation it is useful to 
have a basis of orthogonal functions whose support can 
be made as small as required and which provides a 

uniform approximation to any  function. One of 

the original objectives of wavelet theory was to 

construct orthogonal (biorthogonal) basis in .  

)(2 RL

)(2 RL

    The principles for constructing orthogonal wavelets 
are as follows: 

)(i    The family }{ ,kjϕ  constitutes an orthogonal basis 

for the space ; )(2 RL

)(ii   There exits a function φ , called a scaling function 

related to the mother wavelet ϕ , such that  the elements 

of the family Zkkt ∈− )}({φ  are mutually orthogonal; 

)(iii  For any given Zj∈ , the family 

 

constitute an orthogonal basis for ;  

}),2(2)(:{ ,
2/

,, Zkkxx j
kj

j
kjkj ∈−= φφφ

)(2 RL

)(iv  The family Zkjjkjkj ∈≥ ,,, 00
},{ ϕφ  also forms an 

orthogonal basis for . )(2 RL

     To satisfy the above aims, an orthogonal wavelet can 
be constructed using  multiresolution analysis (MRA). 

First introduce wavelet subspaces  , , which 

are defined as the closure of the linear span of the 

wavelets  

jW Zj∈

Zkkj ∈}{ ,ϕ , namely 

},{ ,

_______

ZkspanW kjj ∈= ϕ                               (16) 

which satisfy  

{=∩ ji WW ∅}, for any ji ≠                      (17) 

where the over-bar denotes closure. It follows that 

 can be decomposed as a direct sum of the 

spaces  :  

)(2 RL

jW

LL ⊕⊕⊕⊕= − 101
2 )( WWWRL           (18) 

in the sense that every function  has a 

unique decomposition 

)(2 RLf ∈

∑
∈

− =++++=
Zj

j xgxgxgxgxf )()()()()( 101 LL    (19) 

The circles around the plus signs in (18) indicate 
“orthogonal sums”. The decomposition of (18) is usually 

called an orthogonal decomposition of . )(2 RL

    For each Zj∈ , consider the closed subspaces of 

 )(2 RL

12 −− ⊕⊕= jjj WWV L ,                 (20)  Zj∈

which have the following properties: 

)(i   , LL ⊂⊂⊂⊂ − 101 VVV

)(ii     (the over-bar here indicates 

closure), 

)()( 2
________

RLV
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j =
∈
U

 4



)(iii  {∅},   =
∈
I

Zj
jV

)(iv   , , and jjj WVV ⊕=+1 Zj∈

)(v   1)2()( +∈⇔∈ jj VxfVxf , . Zj∈

 Then it is clear that every function  can be 

approximated as closely as desirable by the projections 

 in . Another important intrinsic property of 

these spaces is that more and more variations of  

are removed as 

)(2 RLf ∈

fPj jV

fPj

−∞→j . In fact, these variations are 

peeled off, level by level in decreasing order of the rate 
of variations (frequency bands) and stored in the 

complementary , as in property . jW )(iv

    Now for every function , the wavelet 

series expansion can therefore be expressed as  

)(2 RLf ∈

∑∑∑
≥

+=
0

00
)()()( ,,,,

jj k
kjkjkj

k
kj xxxf ϕβφα   (21) 

where the wavelet coefficients kj ,α  and kj ,β  are 

theoretically given by the inner products: 

∫>==< dxxxff kjkjkj )()(, *
,,, ϕφα           (22) 

∫>==< dxxxff kjkjkj )()(, *
,,, ϕϕβ           (23) 

However, in practice the above coefficients are usually 
estimated during identification. Using the concept of 
tensor products, the series expansion (21) can easily be 
generalised to the muti-dimensional cases, this will be 
discussed in a later section.   

3.4      Multiresolution B-spline wavelets  

    For many applications, it is not essential for the 
wavelets to be orthonormal. Relaxing the condition of 
orthonormality results in semiothogonal, biorthogonal or 
other non-orthonrmal multiroselution approximations. 
This provides, under some conditions, a more flexible 
framework for function approximation.  

3.4.1     B-spline wavelets 

     B-splines as piece-wise polynomial functions with 
good local properties, were originally introduced by 
Chui and Wang (1992) as wavelet and scaling functions 
in multiroselution expansions.   

    The B-spline function of th order is defined by the 
following recursive formula (Chui 1992): 

m
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)()( )1,0[1 χ          (25) 

Setting  as the scaling function, that is, mN

)()( xNx m=φ , then both the wavelet and the scaling 

function can be expressed in terms of the scaling 

function  as follows  )(xN m

∑
=

−=
m

k
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with the coefficients given by 
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Clearly, the support of the th order B-spline wavelet 
and the associated scaling function are        

m

⎩
⎨
⎧

−=
==
]12,0[ supp 

],0[supp supp 

m

mNm

ϕ
φ

                     (30) 

    Both the B-spline wavelet and the associated scaling 
function are symmetric in their own support. The most 
commonly used B-spline wavelets are the linear 

)2( =m and cubic ( )4=m cases, both of which can 

be expressed explicitly. 

    The B-spline wavelets have been selected in the 
present study because they are particularly suitable in 
system identification (Billings and Coca 1999). 

3.4.2     Mulitresolution B-spline wavelets 

    A multidimensional multiresolution wavelet 
decomposition(expansion) can be defined by taking the 
tensor product of the one-dimensional scaling and 

wavelet functions (Mallat 1989). Let , 

then  can be represented by the multiresolution 

wavelet series as 

)(2 dRLf ∈
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where  and     d
dkkkk Ζ∈= ),,,( 21 L
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with or φη =)(i ϕ (scalar scaling function and the 

mother wavelet) but at least one . 

Theoretically, the wavelet coefficients are given by the 
inner products: 

ϕη =)(i
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    In the two-dimensional case,  the multiresolution 
approximation can be generated, for example, in terms 
of the dilation and translation of a two-dimensional 
scaling and wavelet functions  

                     (36) 
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    Although many functions can be chosen as scaling 
and wavelet functions, most of these are not suitable in 
system identification applications, especially in the case 
of multidimensional and multiresolution expansions 
because of the curse-of-dimensionality. An 
implementation, which has been tested with very good 
results, involves B-spline scaling and wavelet functions 
as the regressors (expansion basis) (Billings and Coca 
1999). Furthermore, not all the B-spline wavelet and 
scaling functions are used when modelling a dynamic 
system. Since the B-spline wavelet and scaling functions 
have local support and since the position of each basis 
function is determined by an integer multi-index 

= , only a finite number of basis 

functions will have relevance for a particular model 
structure. It is obvious that only the functions whose 
support contains data points should be considered as 
candidate model terms. Thus in this case there is no need 
to solve the problem of positioning the centers of the 
basis functions, which is normally associated with the 
radial wavelet basis functions. Therefore, in practice 
most of the coefficients in the expansion (21) or (31) 
have negligible values and can be ignored, and this will 
lead to a very economical representation of the function 

.   

k },,,{ 21 dkkk L

)(xf

4.      Time-varying system   
         identification using wavelets  

4.1      Expanding the time-varying coefficients  
           into multiresolution wavelet series    

    The multiresolution wavelet and scaling functions 
will now be used as the basis functions to describe the 
time-varying system models represented in section 2. 

Consider the model (2), and choose )(tlξ in (3) as 

multiresolution wavelet and scaling functions. In such a 

case, each coefficient  can be expressed as )(tai
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Substituting (37) into (2), yields 
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This is a time-invariant equation with respect to the 

parameters of the wavelet coefficients and 

. Define 
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(d9)   ],,,[ 100

T
J

T
j

T
j

T ββββ L+=

where the symbol “ ” denotes the Kronecker product. 
Now, (38) can be recast as 

⊗

)()()()( 0 tetBtAaty +++= βα                (39) 

    If  measurements of the input and output are 
available, (39) can be written in a compact matrix form 
as  

N

εθ += HY                                                      (40) 

where 

           )](    )2(   )1([ NyyyY T L=

        )](,),2(),1([ Neee L=ε  
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TTT L==

00 a=θ  

Here, the symbol ),( βαn is used to indicate that the 

number of unknown parameters in (40) dependents on 
the selection of the basis functions in the wavelet 
expansions. 

    The parameter vector θ  in (40) can now be estimated 
using a least-squares-based algorithm or a prediction 
error routine (Billings and Voon 1986). Notice, however, 
that the number of possible terms in the model is very 
large and this is why detecting the model structure is a 
vitally important problem in nonlinear system 
identification. The problem is even more acute for 
nonlinear time varying models. The orthogonal least-
squares algorithm (OLS), whose purpose is to 
orthogonalize all the terms in (40) by introducing an 
auxiliary orthogonal model, is one of the most efficient 
techniques that address this problem. The error 
reduction ratio (ERR) values can then be used as a 
measure of the significance of each candidate model 
term. Because the values of the error reduction ratios 
depend on the order in which candidate terms are 
orthogonalized into the regression equation, simply 
orthogonalizing candidate terms in an arbitrary order 
may result in incorrect information regarding the 
significance of terms. In order to overcome this problem, 
the forward regression orthogonal algorithm was 
introduced (Billings and Chen 1989a, 1989b). 

    Consider the time-varying ARMAX model, which is 
as a special case of the time-varying NARMAX model, 
to illustrate the approach 
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tektetcjtutbitytaty
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===

 

                             (41) 

where and  are time dependent 

coefficients which can be estimated from measured 
values of and  by expanding 

and  as multiresolution wavelet 

series. 

)(),( tbta ji )(tck

)(),( tuty )(te

)(),( tbta ji )(tck

The values of the noise are not normally available 

for measurement and these are usually replaced with the 

residuals computed as 

)(te

)1(ˆ)()( −−= ttytytr , where 

)1(ˆ −tty  is the one-step ahead predicted output. This 

leads to the modified model used in practice 
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    Expanding the coefficients ,  and 

as a multiresolution wavelet series, the model (42) 

becomes 
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where    

∑∑∑∑∑
= ==

−+−=
p

i

J

jj k
kj

ia
kj

p

i
kj

k

ia
kj itytitytty

1
,

),(
,

1
,

),(
,1

1

0

00
)()()()()( ϕβφα                       

   (44)      

∑∑∑∑∑
= ==

−+−=
q

i

J

jj k
kj

ib
kj

q

i
kj

k

ib
kj itutitutty

1
,

),(
,

1
,

),(
,2

2

0

00
)()()()()( ϕβφα                       

(45) 

∑∑∑∑∑
= ==

−+−=
s

i

J

jj k
kj

id
kj

s

i
kj

k

id
kj itrtitrtty

1
,

),(
,

1
,

),(
,3

3

0

00
)()()()()( ϕβφα                       

  (46) 

In practice, ,  and  are often chosen to be the 

same values, i.e., 

1J 2J 3J

JJJJ === 321 .   

4.2      Selecting the multiresolution levels  

    Theoretically, the multiresolution wavelet expansion 
contains an infinite number of terms, but in practice only 
a finite number of basis functions are needed to 
approximate a given nonlinear signal/function. However, 
finding or selecting the appropriate basis functions, also 
known as the structure selection problem, represents a 
very important step in constructing a parsimonious 
mapping from the regression space to the output 

space. The multiresolution wavelet basis set 

f
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G },,,,:,{ 00,,0
jjZkjjjkj ≤∈= llϕφ  will in 

practice be truncated by including only the scaling 

functions with the given initial resolution level  and 

the wavelet functions with the resolution levels from  

to a certain scale . In addition only those basis 

functions whose support contains the sampled data 
points will be considered. The highest resolution or scale 
will be such that at least one observation is within the 
support of the corresponding wavelet. 

0j

0j

maxjJ =

    Assume that N-samples of observations are available 
from the following input-output system 

Niexfy iii ,,2,1   ,)( L=+=               (47) 

where , 

 can be constructed from  and using 

the  dimensional mutiresolution wavelet expansion 

(31) subject to some restrictions.If  is uniformly 

distributed on , then the loglog type of statistical 

laws offer a rough interval for selecting the highest 

resolution scale  (Sjoberg et al 1995) 

T
idiii xxxx ],[ ,,,2,,1 L= d]1,0[∈

)(2 RLf ∈ ix iy

d

ix
d]1,0[

maxj

N

N

N

N jd

ln

2
2

ln
max ≤≤ ⋅                                  (48) 

Since most practical identification problems fail to 
satisfy the uniform distribution assumption, the estimate 
(48) provides only a rough indication for the upper scale 

. A practical approach is to select such that a 

minimum number of observations hit the support of each 

basis function 

maxj maxj

kj ,max
ϕ . Features, such as the natural 

frequency, for example, of the sampled signal can also 
be considered when determining the highest resolution 
scale. Assume that the maximum natural frequency of 

the sampled signals is , then the upper scale 

can be empirically chosen as ,  

where 

maxf

maxj )]([log max2max Mfj =
M is a positive number between 10 and 20 and 

 denotes taking the integer value of the corresponding 

number.  

][ ⋅

    Denote the support of the basis functions kj ,ϕ as 

(Zhang 1997) 
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where δ is a small positive number. For each 

, where is in the problem interval, 

introduce the following index set  

dbax ],[∈ dba ],[

                      },,:),{( )(
,

)( ZkjSxkjI kjnn ∈∈= ϕϕ

Similarly the symbols  and  pertaining to the 

scaling functions 

)(
,
φ
kjS )(φ

mI

kj ,φ  can also be introduced, such that 

                      },,:),{( )(
,

)( ZkjSxkjI kjmm ∈∈= φφ

Then the union of , gives 

the indices of the wavelets whose supports contain at 
least one data point. This results in a reduced set of basis 
functions 

NnmII mn ,,2,1,,, )()( L=φϕ
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1
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1

)(
, U UU
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n
nkj IIkjgW φϕ

                  }max0, jjjZk ≤≤∈            (49) 

where  denotes kjg , kj ,ϕ  or kj ,φ .  The basis functions 

set W in (47) forms the initial regressor set which is used 
to build the model structure. 

    Once the regressor set has been determined, the 
structure selection and parameter estimation procedure 
can be implemented by means of several algorithms. In 
the present study the orthogonal forward regression 
(OFR) algorithm (Korenberg and Billings et al 1988, 
Chen and Billings 1989b) will be used because OFR can 
arrange the candidate model terms in the order of 
significance and provides an effective and upwardly 
extendible method of selecting the relevant model terms. 

4.3      Data pre-processing  

    In some cases it is more convenient to select the 
starting resolution level and the range of the shift 
parameters if the sample data has been normalized to the 
unit interval [0,1], this is especially true when the Haar 
wavelet (the first-order B-spline wavelet) and scaling 
functions are chosen as the expansion basis. The Haar 
wavelet is very simple, but it does possess almost all the 
properties of multiresolution analysis. In some cases, for 
example if the system coefficients are known to be 
piece-wise constant, that is where the system exhibits 
discontinuous jumps, then the Haar basis may be the 
best choice for depicting this behaviour.  

    Assume that all the observations fall into the finite 
interval , in order to deal with the end effects at 

both ends of the data record, the common practice of 
periodically extending the available data , as well as the 

coefficients  beyond  can be followed. The 

original data in  can  now be normalized to the 

],[ ba

)(tai ],[ ba

],[ ba
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unit interval [0,1] by means of the following simple 
linear transform  h

              ]1,0[],[ ∈→∈ ζζ
h

ba  

with 

 
ab

a

−
−

=
ζζ                                                    (50) 

This will result in equivalent data )()( ζζ yy = ,and 

equivalent coefficients )()( ζζ ii aa = .  

    The algorithms proposed in this section can be 
summarised as 

)(i   Choose a class of wavelet φ  and ϕ , 

)(ii  Pre-process the sampled data (where necessary), 

)(iii Determine the start resolution scale  and the 

maximum scale J, as well as the order of the model, 
such as p, q, s in the time varying ARMAX model 
(41), based on prior knowledge and computational 
constraints, 

0j

)(iv For , select the candidate 

wavelet and scaling functions from the family  

Jjjj ,,1, 00 L+=

        composed of all the possible functions Zkkj ∈}{ ,0
φ  

and   Zkkj ∈}{ ,ϕ . The candidate functions are  

        those, whose support contain sample data points. 

)(v   Perform model structure selection and parameter 

estimation using the OFR algorithm, 

)(vi Validate the model using for example the tests in 

Billings and Voon (1983), Billings and Zhu  
(1994,1995). 

    Notice that, the proposed identification procedure is 
not limited to the wavelet basis case. Other bases can 
also be employed if there is strong evidence that they 
can yield a sparse expansion of the time-dependent 
coefficients. In addition, the proposed identification 
procedure has the capability to estimate the lagged 
model terms. For example in the simple case of an AR 

model of true order , where  is unknown. 

Assigning the order to be 

0p 0p

)(~
0pp >  during the 

identification procedure, then the OFR algorithm 
(Billings and Chen 1989) will reject all the regressors 

corresponding to the expansion of  for )(tai

pip ~
0 << .      

5.       Examples  

    Some examples are described below to show the 
application of the new multiresolution wavelet models in 
the identification of time-varying systems.  

5.1       Sunspot data 

    The Wolf sunspot data is a very well-known data set 
and records the annual sunspot index from 1700 
onwards (Priestley 1988). The main feature of this time 
series is a cycle of activity varying in duration between 
9 and 14 years, with an average period of approximately 
11.3 years. Another feature of the series is that in each 
cycle the rise to the maximum tends to have a steeper 
gradient than that of the fall to the next minimum. This 
suggests that a nonlinear model might be appropriate 
and many different models have been fitted to this data 
set (Priestley 1988). However, few time-varying models 
have been fitted to this data. 

    In the present study the application of the new 
wavelet identification procedure derived above will be 
applied to fit a simple time-varying AR model to the 
sunspot data. The objective here however is not to find 
the definitive model for the sunspot data but rather to 
use this data to illustrate the new algorithm on a well 
known real data set. The initial candidate term set was 
defined by a 3-rd AR model and the wavelet expansion 

scales 2min0 == jj  and . The 

coefficient trajectories corresponding to the model are 
shown in figure 1 together with the one-step-ahead 
predictions. 

4max == jJ

5.2      Modelling a flight vehicle simulator  

    Figure 2 shows 1000 sampled input and output data 
that were collected from a flight vehicle experimental 
simulator. The input , a squared voltage excitation 

signal with unit amplitude, was the input to the servo 
system. The output  was the spin angle of the flight 

vehicle simulator. The objective here is to build a simple 
model to describe the system input-output relationship 
using a time-varying ARX model. The following time-
varying ARX structure was chosen according to 
theoretical analysis and prior knowledge  

)(tu

)(ty

)()4()()2()()1()()( 3210 tetutatytatytaaty +−+−+−+=                       

(51) 

    Expanding the coefficients into a multiwavelet 

series, the time-varying model (51) becomes a time-
invariant parameter estimation problem. Solving this 
problem by employing the OFR algorithm, the wavelet 
coefficients and hence the time-dependent parameters 

 can be identified. The identified parameter 

trajectories are shown in figure 3. The one step-ahead 
predicted output and the corresponding error are 
illustrated in figure 4, which shows that although the 
model (51) is very simple, it can describe the system 
well.  

)(tai

)(tai
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Figure 1. Parameter trajectories for the estimated 3rd-
order time-varying AR model coefficients and the one-
step-ahead predictions for the sunspot data(“*” indicates 
true values;  “—” indicates one-step-ahead predictions). 

(a) ;  (b) ;   (c) ;  (d) Sunspot data 

and one-step ahead predictions. 
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Figure 2.  System input and output for a flight vehicle 
experimental subsystem. (a) The input—a squared 
voltage excitation signal with unit amplitude; (b) The 
measured output. 
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Figure 3. Parameter trajectories of the time-varying 
ARX model in the section 5.2 
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Figure 4.  One-step-ahead predicted output and prediction error 
for the flight vehicle experimental subsystem in section 5.2.   
(a) ,(b)  The measurements and the one-step-ahead predicted 
output; (c) The one-step-ahead prediction error.   (“*” indicates 
true values;  “—” indicates one-step-ahead prediction). 
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5.3     Coefficient estimation for nonlinear  
          time-invariant continuous time systems 

    Although the approach described in section 4 was 
proposed for time-varying systems, it can also be used 
for the identification of time-invariant linear and 
nonlinear systems. As an example, consider the 
Goodwin Equation(Coca 1996), a nonlinear time-
invariant continuous system model 

)()()()(
1)(

1)(
)( 3

2

2

tutcytbyty
ty

ty
aty λ−=++

+
−

+ &&&                       

(52) 

where and cba ,, λ are time-invariant parameters.  

    Under the conditions 0)0()0( == yy& , 

)sin()( ttu = , with ,5.0,1.0 −== ba 5.0=c and 

37=λ , a 4th-order Runge-Kutta algorithm was used 
to simulate this model to obtain 1000 equi-spaced 
samples from the input and output with a sampling 
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interval of  time units. The sampled data will 

be referred to subsequently as , 

. 

01.0=T
)(kTuuk =

)(kTyyk =

    For this continuous time model identification, the 
model structure is assumed to be known. If the 
derivatives and can be observed or reconstructed, 

the time-invariant parameters and  can be 

estimated using the algorithm introduced in section 
4.The model (51) can be re-written as 

y& y&&

ba, c

 )()()()()()(
1)(

1)(
)( 3

2

2

tftytctytbty
ty

ty
ta =++

+
−

&           

(53) 

                                             

where )()()( tutytf λ−−= && . Expanding 

and  into multiwavelet series, the time-

varying model (53) becomes a time-invariant model and 
the wavelet coefficients can be estimated. The 
trajectories of and are shown in figure 5.  
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Figure 5. The true and estimated values of the time-
varying coefficients for the model in Eq. (53) 

5.4     Time-varying parameter estimation 

    The following system  

)()1()()1()()( tvtutbtytaty +−+−=      (54) 

was used to generate 500 data samples of (see 

figure6(a)), where and were independent 

normally distributed random sequences with zero means 

and variances . The coefficients 

)(ty
)(tu )(tv

0.122 == vu σσ

8.0)( =ta for 5000 ≤≤ t , and was a piece-

wise function described as follows    

)(tb

⎩
⎨
⎧

≤≤≤≤
≤≤≤≤≤≤

=
400301  ,200101    ,3

500401   ,300201   ,1000       ,2
)(

tt

ttt
tb   (55) 

Assuming that no prior knowledge about the parameters 
and  were known, the aim was to identify 

these from the above simulated data using the algorithm 
introduced in section 4. Expanding the coefficients 

and into multiresolution wavelet series, the 

time-varying model (54) becomes a time-invariant 
identification problem and the wavelet coefficients can 
be estimated using the OFR algorithm. The estimated 
values of the parameters and are depicted in 

figure 6(b), which clearly shows that the wavelet 
expansion can track the piece-wise varying coefficient 
very well.  
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Figure 6. System output (a) and the coefficient 

estimates(b) for the system in section 5.4.  

6.   Conclusions  
Parametric identification of nonlinear time-varying 
systems is simplified if each time-varying coefficient 
can be expanded as a finite set of basis functions. The 
problem then becomes time-invariant with respect to the 
parameters in the expansions and the main problem then 
becomes regression selection. A multiresolutuion 
wavelet expansion of the time-varying model 
coefficients has been proposed and implemented using 
an orthogonal least-squares procedure as a solution to 
this important problem. This provides a flexible 
procedure that overcomes many of the limitations 
associated with employing the F and AIC tests when 
many potential candidate terms are involved. The new 
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algorithm automatically selects the most significant 
model terms in the time-varying expansion to provide a 
parsimonious representation for both linear and 
nonlinear time-varying systems. 
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